linux/drivers/scsi/libfc/fc_exch.c

// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright(c) 2007 Intel Corporation. All rights reserved.
 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
 * Copyright(c) 2008 Mike Christie
 *
 * Maintained at www.Open-FCoE.org
 */

/*
 * Fibre Channel exchange and sequence handling.
 */

#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/log2.h>

#include <scsi/fc/fc_fc2.h>

#include <scsi/libfc.h>

#include "fc_libfc.h"

u16	fc_cpu_mask;		/* cpu mask for possible cpus */
EXPORT_SYMBOL();
static u16	fc_cpu_order;	/* 2's power to represent total possible cpus */
static struct kmem_cache *fc_em_cachep;	       /* cache for exchanges */
static struct workqueue_struct *fc_exch_workqueue;

/*
 * Structure and function definitions for managing Fibre Channel Exchanges
 * and Sequences.
 *
 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
 *
 * fc_exch_mgr holds the exchange state for an N port
 *
 * fc_exch holds state for one exchange and links to its active sequence.
 *
 * fc_seq holds the state for an individual sequence.
 */

/**
 * struct fc_exch_pool - Per cpu exchange pool
 * @next_index:	  Next possible free exchange index
 * @total_exches: Total allocated exchanges
 * @lock:	  Exch pool lock
 * @ex_list:	  List of exchanges
 * @left:	  Cache of free slot in exch array
 * @right:	  Cache of free slot in exch array
 *
 * This structure manages per cpu exchanges in array of exchange pointers.
 * This array is allocated followed by struct fc_exch_pool memory for
 * assigned range of exchanges to per cpu pool.
 */
struct fc_exch_pool {} ____cacheline_aligned_in_smp;

/**
 * struct fc_exch_mgr - The Exchange Manager (EM).
 * @class:	    Default class for new sequences
 * @kref:	    Reference counter
 * @min_xid:	    Minimum exchange ID
 * @max_xid:	    Maximum exchange ID
 * @ep_pool:	    Reserved exchange pointers
 * @pool_max_index: Max exch array index in exch pool
 * @pool:	    Per cpu exch pool
 * @lport:	    Local exchange port
 * @stats:	    Statistics structure
 *
 * This structure is the center for creating exchanges and sequences.
 * It manages the allocation of exchange IDs.
 */
struct fc_exch_mgr {};

/**
 * struct fc_exch_mgr_anchor - primary structure for list of EMs
 * @ema_list: Exchange Manager Anchor list
 * @mp:	      Exchange Manager associated with this anchor
 * @match:    Routine to determine if this anchor's EM should be used
 *
 * When walking the list of anchors the match routine will be called
 * for each anchor to determine if that EM should be used. The last
 * anchor in the list will always match to handle any exchanges not
 * handled by other EMs. The non-default EMs would be added to the
 * anchor list by HW that provides offloads.
 */
struct fc_exch_mgr_anchor {};

static void fc_exch_rrq(struct fc_exch *);
static void fc_seq_ls_acc(struct fc_frame *);
static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
			  enum fc_els_rjt_explan);
static void fc_exch_els_rec(struct fc_frame *);
static void fc_exch_els_rrq(struct fc_frame *);

/*
 * Internal implementation notes.
 *
 * The exchange manager is one by default in libfc but LLD may choose
 * to have one per CPU. The sequence manager is one per exchange manager
 * and currently never separated.
 *
 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
 * assigned by the Sequence Initiator that shall be unique for a specific
 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
 * qualified by exchange ID, which one might think it would be.
 * In practice this limits the number of open sequences and exchanges to 256
 * per session.	 For most targets we could treat this limit as per exchange.
 *
 * The exchange and its sequence are freed when the last sequence is received.
 * It's possible for the remote port to leave an exchange open without
 * sending any sequences.
 *
 * Notes on reference counts:
 *
 * Exchanges are reference counted and exchange gets freed when the reference
 * count becomes zero.
 *
 * Timeouts:
 * Sequences are timed out for E_D_TOV and R_A_TOV.
 *
 * Sequence event handling:
 *
 * The following events may occur on initiator sequences:
 *
 *	Send.
 *	    For now, the whole thing is sent.
 *	Receive ACK
 *	    This applies only to class F.
 *	    The sequence is marked complete.
 *	ULP completion.
 *	    The upper layer calls fc_exch_done() when done
 *	    with exchange and sequence tuple.
 *	RX-inferred completion.
 *	    When we receive the next sequence on the same exchange, we can
 *	    retire the previous sequence ID.  (XXX not implemented).
 *	Timeout.
 *	    R_A_TOV frees the sequence ID.  If we're waiting for ACK,
 *	    E_D_TOV causes abort and calls upper layer response handler
 *	    with FC_EX_TIMEOUT error.
 *	Receive RJT
 *	    XXX defer.
 *	Send ABTS
 *	    On timeout.
 *
 * The following events may occur on recipient sequences:
 *
 *	Receive
 *	    Allocate sequence for first frame received.
 *	    Hold during receive handler.
 *	    Release when final frame received.
 *	    Keep status of last N of these for the ELS RES command.  XXX TBD.
 *	Receive ABTS
 *	    Deallocate sequence
 *	Send RJT
 *	    Deallocate
 *
 * For now, we neglect conditions where only part of a sequence was
 * received or transmitted, or where out-of-order receipt is detected.
 */

/*
 * Locking notes:
 *
 * The EM code run in a per-CPU worker thread.
 *
 * To protect against concurrency between a worker thread code and timers,
 * sequence allocation and deallocation must be locked.
 *  - exchange refcnt can be done atomicly without locks.
 *  - sequence allocation must be locked by exch lock.
 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
 *    EM pool lock must be taken before the ex_lock.
 */

/*
 * opcode names for debugging.
 */
static char *fc_exch_rctl_names[] =;

/**
 * fc_exch_name_lookup() - Lookup name by opcode
 * @op:	       Opcode to be looked up
 * @table:     Opcode/name table
 * @max_index: Index not to be exceeded
 *
 * This routine is used to determine a human-readable string identifying
 * a R_CTL opcode.
 */
static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
					      unsigned int max_index)
{}

/**
 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
 * @op: The opcode to be looked up
 */
static const char *fc_exch_rctl_name(unsigned int op)
{}

/**
 * fc_exch_hold() - Increment an exchange's reference count
 * @ep: Echange to be held
 */
static inline void fc_exch_hold(struct fc_exch *ep)
{}

/**
 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
 *			 and determine SOF and EOF.
 * @ep:	   The exchange to that will use the header
 * @fp:	   The frame whose header is to be modified
 * @f_ctl: F_CTL bits that will be used for the frame header
 *
 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
 */
static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
			      u32 f_ctl)
{}

/**
 * fc_exch_release() - Decrement an exchange's reference count
 * @ep: Exchange to be released
 *
 * If the reference count reaches zero and the exchange is complete,
 * it is freed.
 */
static void fc_exch_release(struct fc_exch *ep)
{}

/**
 * fc_exch_timer_cancel() - cancel exch timer
 * @ep:		The exchange whose timer to be canceled
 */
static inline void fc_exch_timer_cancel(struct fc_exch *ep)
{}

/**
 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
 *				the exchange lock held
 * @ep:		The exchange whose timer will start
 * @timer_msec: The timeout period
 *
 * Used for upper level protocols to time out the exchange.
 * The timer is cancelled when it fires or when the exchange completes.
 */
static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
					    unsigned int timer_msec)
{}

/**
 * fc_exch_timer_set() - Lock the exchange and set the timer
 * @ep:		The exchange whose timer will start
 * @timer_msec: The timeout period
 */
static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
{}

/**
 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
 * @ep: The exchange that is complete
 *
 * Note: May sleep if invoked from outside a response handler.
 */
static int fc_exch_done_locked(struct fc_exch *ep)
{}

static struct fc_exch fc_quarantine_exch;

/**
 * fc_exch_ptr_get() - Return an exchange from an exchange pool
 * @pool:  Exchange Pool to get an exchange from
 * @index: Index of the exchange within the pool
 *
 * Use the index to get an exchange from within an exchange pool. exches
 * will point to an array of exchange pointers. The index will select
 * the exchange within the array.
 */
static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
					      u16 index)
{}

/**
 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
 * @pool:  The pool to assign the exchange to
 * @index: The index in the pool where the exchange will be assigned
 * @ep:	   The exchange to assign to the pool
 */
static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
				   struct fc_exch *ep)
{}

/**
 * fc_exch_delete() - Delete an exchange
 * @ep: The exchange to be deleted
 */
static void fc_exch_delete(struct fc_exch *ep)
{}

static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
			      struct fc_frame *fp)
{}

/**
 * fc_seq_send() - Send a frame using existing sequence/exchange pair
 * @lport: The local port that the exchange will be sent on
 * @sp:	   The sequence to be sent
 * @fp:	   The frame to be sent on the exchange
 *
 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
 * or indirectly by calling libfc_function_template.frame_send().
 */
int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
{}
EXPORT_SYMBOL();

/**
 * fc_seq_alloc() - Allocate a sequence for a given exchange
 * @ep:	    The exchange to allocate a new sequence for
 * @seq_id: The sequence ID to be used
 *
 * We don't support multiple originated sequences on the same exchange.
 * By implication, any previously originated sequence on this exchange
 * is complete, and we reallocate the same sequence.
 */
static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
{}

/**
 * fc_seq_start_next_locked() - Allocate a new sequence on the same
 *				exchange as the supplied sequence
 * @sp: The sequence/exchange to get a new sequence for
 */
static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
{}

/**
 * fc_seq_start_next() - Lock the exchange and get a new sequence
 *			 for a given sequence/exchange pair
 * @sp: The sequence/exchange to get a new exchange for
 */
struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
{}
EXPORT_SYMBOL();

/*
 * Set the response handler for the exchange associated with a sequence.
 *
 * Note: May sleep if invoked from outside a response handler.
 */
void fc_seq_set_resp(struct fc_seq *sp,
		     void (*resp)(struct fc_seq *, struct fc_frame *, void *),
		     void *arg)
{}
EXPORT_SYMBOL();

/**
 * fc_exch_abort_locked() - Abort an exchange
 * @ep:	The exchange to be aborted
 * @timer_msec: The period of time to wait before aborting
 *
 * Abort an exchange and sequence. Generally called because of a
 * exchange timeout or an abort from the upper layer.
 *
 * A timer_msec can be specified for abort timeout, if non-zero
 * timer_msec value is specified then exchange resp handler
 * will be called with timeout error if no response to abort.
 *
 * Locking notes:  Called with exch lock held
 *
 * Return value: 0 on success else error code
 */
static int fc_exch_abort_locked(struct fc_exch *ep,
				unsigned int timer_msec)
{}

/**
 * fc_seq_exch_abort() - Abort an exchange and sequence
 * @req_sp:	The sequence to be aborted
 * @timer_msec: The period of time to wait before aborting
 *
 * Generally called because of a timeout or an abort from the upper layer.
 *
 * Return value: 0 on success else error code
 */
int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
{}

/**
 * fc_invoke_resp() - invoke ep->resp()
 * @ep:	   The exchange to be operated on
 * @fp:	   The frame pointer to pass through to ->resp()
 * @sp:	   The sequence pointer to pass through to ->resp()
 *
 * Notes:
 * It is assumed that after initialization finished (this means the
 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
 * modified only via fc_seq_set_resp(). This guarantees that none of these
 * two variables changes if ep->resp_active > 0.
 *
 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
 * this function is invoked, the first spin_lock_bh() call in this function
 * will wait until fc_seq_set_resp() has finished modifying these variables.
 *
 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
 * ep->resp() won't be invoked after fc_exch_done() has returned.
 *
 * The response handler itself may invoke fc_exch_done(), which will clear the
 * ep->resp pointer.
 *
 * Return value:
 * Returns true if and only if ep->resp has been invoked.
 */
static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
			   struct fc_frame *fp)
{}

/**
 * fc_exch_timeout() - Handle exchange timer expiration
 * @work: The work_struct identifying the exchange that timed out
 */
static void fc_exch_timeout(struct work_struct *work)
{}

/**
 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
 * @lport: The local port that the exchange is for
 * @mp:	   The exchange manager that will allocate the exchange
 *
 * Returns pointer to allocated fc_exch with exch lock held.
 */
static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
					struct fc_exch_mgr *mp)
{}

/**
 * fc_exch_alloc() - Allocate an exchange from an EM on a
 *		     local port's list of EMs.
 * @lport: The local port that will own the exchange
 * @fp:	   The FC frame that the exchange will be for
 *
 * This function walks the list of exchange manager(EM)
 * anchors to select an EM for a new exchange allocation. The
 * EM is selected when a NULL match function pointer is encountered
 * or when a call to a match function returns true.
 */
static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
				     struct fc_frame *fp)
{}

/**
 * fc_exch_find() - Lookup and hold an exchange
 * @mp:	 The exchange manager to lookup the exchange from
 * @xid: The XID of the exchange to look up
 */
static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
{}


/**
 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
 *		    the memory allocated for the related objects may be freed.
 * @sp: The sequence that has completed
 *
 * Note: May sleep if invoked from outside a response handler.
 */
void fc_exch_done(struct fc_seq *sp)
{}
EXPORT_SYMBOL();

/**
 * fc_exch_resp() - Allocate a new exchange for a response frame
 * @lport: The local port that the exchange was for
 * @mp:	   The exchange manager to allocate the exchange from
 * @fp:	   The response frame
 *
 * Sets the responder ID in the frame header.
 */
static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
				    struct fc_exch_mgr *mp,
				    struct fc_frame *fp)
{}

/**
 * fc_seq_lookup_recip() - Find a sequence where the other end
 *			   originated the sequence
 * @lport: The local port that the frame was sent to
 * @mp:	   The Exchange Manager to lookup the exchange from
 * @fp:	   The frame associated with the sequence we're looking for
 *
 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
 * on the ep that should be released by the caller.
 */
static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
						 struct fc_exch_mgr *mp,
						 struct fc_frame *fp)
{}

/**
 * fc_seq_lookup_orig() - Find a sequence where this end
 *			  originated the sequence
 * @mp:	   The Exchange Manager to lookup the exchange from
 * @fp:	   The frame associated with the sequence we're looking for
 *
 * Does not hold the sequence for the caller.
 */
static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
					 struct fc_frame *fp)
{}

/**
 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
 * @ep:	     The exchange to set the addresses for
 * @orig_id: The originator's ID
 * @resp_id: The responder's ID
 *
 * Note this must be done before the first sequence of the exchange is sent.
 */
static void fc_exch_set_addr(struct fc_exch *ep,
			     u32 orig_id, u32 resp_id)
{}

/**
 * fc_seq_els_rsp_send() - Send an ELS response using information from
 *			   the existing sequence/exchange.
 * @fp:	      The received frame
 * @els_cmd:  The ELS command to be sent
 * @els_data: The ELS data to be sent
 *
 * The received frame is not freed.
 */
void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
			 struct fc_seq_els_data *els_data)
{}
EXPORT_SYMBOL_GPL();

/**
 * fc_seq_send_last() - Send a sequence that is the last in the exchange
 * @sp:	     The sequence that is to be sent
 * @fp:	     The frame that will be sent on the sequence
 * @rctl:    The R_CTL information to be sent
 * @fh_type: The frame header type
 */
static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
			     enum fc_rctl rctl, enum fc_fh_type fh_type)
{}

/**
 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
 * @sp:	   The sequence to send the ACK on
 * @rx_fp: The received frame that is being acknoledged
 *
 * Send ACK_1 (or equiv.) indicating we received something.
 */
static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
{}

/**
 * fc_exch_send_ba_rjt() - Send BLS Reject
 * @rx_fp:  The frame being rejected
 * @reason: The reason the frame is being rejected
 * @explan: The explanation for the rejection
 *
 * This is for rejecting BA_ABTS only.
 */
static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
				enum fc_ba_rjt_reason reason,
				enum fc_ba_rjt_explan explan)
{}

/**
 * fc_exch_recv_abts() - Handle an incoming ABTS
 * @ep:	   The exchange the abort was on
 * @rx_fp: The ABTS frame
 *
 * This would be for target mode usually, but could be due to lost
 * FCP transfer ready, confirm or RRQ. We always handle this as an
 * exchange abort, ignoring the parameter.
 */
static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
{}

/**
 * fc_seq_assign() - Assign exchange and sequence for incoming request
 * @lport: The local port that received the request
 * @fp:    The request frame
 *
 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
 * A reference will be held on the exchange/sequence for the caller, which
 * must call fc_seq_release().
 */
struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
{}
EXPORT_SYMBOL();

/**
 * fc_seq_release() - Release the hold
 * @sp:    The sequence.
 */
void fc_seq_release(struct fc_seq *sp)
{}
EXPORT_SYMBOL();

/**
 * fc_exch_recv_req() - Handler for an incoming request
 * @lport: The local port that received the request
 * @mp:	   The EM that the exchange is on
 * @fp:	   The request frame
 *
 * This is used when the other end is originating the exchange
 * and the sequence.
 */
static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
			     struct fc_frame *fp)
{}

/**
 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
 *			     end is the originator of the sequence that is a
 *			     response to our initial exchange
 * @mp: The EM that the exchange is on
 * @fp: The response frame
 */
static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
{}

/**
 * fc_exch_recv_resp() - Handler for a sequence where other end is
 *			 responding to our sequence
 * @mp: The EM that the exchange is on
 * @fp: The response frame
 */
static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
{}

/**
 * fc_exch_abts_resp() - Handler for a response to an ABT
 * @ep: The exchange that the frame is on
 * @fp: The response frame
 *
 * This response would be to an ABTS cancelling an exchange or sequence.
 * The response can be either BA_ACC or BA_RJT
 */
static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
{}

/**
 * fc_exch_recv_bls() - Handler for a BLS sequence
 * @mp: The EM that the exchange is on
 * @fp: The request frame
 *
 * The BLS frame is always a sequence initiated by the remote side.
 * We may be either the originator or recipient of the exchange.
 */
static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
{}

/**
 * fc_seq_ls_acc() - Accept sequence with LS_ACC
 * @rx_fp: The received frame, not freed here.
 *
 * If this fails due to allocation or transmit congestion, assume the
 * originator will repeat the sequence.
 */
static void fc_seq_ls_acc(struct fc_frame *rx_fp)
{}

/**
 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
 * @rx_fp: The received frame, not freed here.
 * @reason: The reason the sequence is being rejected
 * @explan: The explanation for the rejection
 *
 * If this fails due to allocation or transmit congestion, assume the
 * originator will repeat the sequence.
 */
static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
			  enum fc_els_rjt_explan explan)
{}

/**
 * fc_exch_reset() - Reset an exchange
 * @ep: The exchange to be reset
 *
 * Note: May sleep if invoked from outside a response handler.
 */
static void fc_exch_reset(struct fc_exch *ep)
{}

/**
 * fc_exch_pool_reset() - Reset a per cpu exchange pool
 * @lport: The local port that the exchange pool is on
 * @pool:  The exchange pool to be reset
 * @sid:   The source ID
 * @did:   The destination ID
 *
 * Resets a per cpu exches pool, releasing all of its sequences
 * and exchanges. If sid is non-zero then reset only exchanges
 * we sourced from the local port's FID. If did is non-zero then
 * only reset exchanges destined for the local port's FID.
 */
static void fc_exch_pool_reset(struct fc_lport *lport,
			       struct fc_exch_pool *pool,
			       u32 sid, u32 did)
{}

/**
 * fc_exch_mgr_reset() - Reset all EMs of a local port
 * @lport: The local port whose EMs are to be reset
 * @sid:   The source ID
 * @did:   The destination ID
 *
 * Reset all EMs associated with a given local port. Release all
 * sequences and exchanges. If sid is non-zero then reset only the
 * exchanges sent from the local port's FID. If did is non-zero then
 * reset only exchanges destined for the local port's FID.
 */
void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
{}
EXPORT_SYMBOL();

/**
 * fc_exch_lookup() - find an exchange
 * @lport: The local port
 * @xid: The exchange ID
 *
 * Returns exchange pointer with hold for caller, or NULL if not found.
 */
static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
{}

/**
 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
 * @rfp: The REC frame, not freed here.
 *
 * Note that the requesting port may be different than the S_ID in the request.
 */
static void fc_exch_els_rec(struct fc_frame *rfp)
{}

/**
 * fc_exch_rrq_resp() - Handler for RRQ responses
 * @sp:	 The sequence that the RRQ is on
 * @fp:	 The RRQ frame
 * @arg: The exchange that the RRQ is on
 *
 * TODO: fix error handler.
 */
static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
{}


/**
 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
 * @lport:	The local port to send the frame on
 * @fp:		The frame to be sent
 * @resp:	The response handler for this request
 * @destructor: The destructor for the exchange
 * @arg:	The argument to be passed to the response handler
 * @timer_msec: The timeout period for the exchange
 *
 * The exchange response handler is set in this routine to resp()
 * function pointer. It can be called in two scenarios: if a timeout
 * occurs or if a response frame is received for the exchange. The
 * fc_frame pointer in response handler will also indicate timeout
 * as error using IS_ERR related macros.
 *
 * The exchange destructor handler is also set in this routine.
 * The destructor handler is invoked by EM layer when exchange
 * is about to free, this can be used by caller to free its
 * resources along with exchange free.
 *
 * The arg is passed back to resp and destructor handler.
 *
 * The timeout value (in msec) for an exchange is set if non zero
 * timer_msec argument is specified. The timer is canceled when
 * it fires or when the exchange is done. The exchange timeout handler
 * is registered by EM layer.
 *
 * The frame pointer with some of the header's fields must be
 * filled before calling this routine, those fields are:
 *
 * - routing control
 * - FC port did
 * - FC port sid
 * - FC header type
 * - frame control
 * - parameter or relative offset
 */
struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
				struct fc_frame *fp,
				void (*resp)(struct fc_seq *,
					     struct fc_frame *fp,
					     void *arg),
				void (*destructor)(struct fc_seq *, void *),
				void *arg, u32 timer_msec)
{}
EXPORT_SYMBOL();

/**
 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
 * @ep: The exchange to send the RRQ on
 *
 * This tells the remote port to stop blocking the use of
 * the exchange and the seq_cnt range.
 */
static void fc_exch_rrq(struct fc_exch *ep)
{}

/**
 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
 * @fp: The RRQ frame, not freed here.
 */
static void fc_exch_els_rrq(struct fc_frame *fp)
{}

/**
 * fc_exch_update_stats() - update exches stats to lport
 * @lport: The local port to update exchange manager stats
 */
void fc_exch_update_stats(struct fc_lport *lport)
{}
EXPORT_SYMBOL();

/**
 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
 * @lport: The local port to add the exchange manager to
 * @mp:	   The exchange manager to be added to the local port
 * @match: The match routine that indicates when this EM should be used
 */
struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
					   struct fc_exch_mgr *mp,
					   bool (*match)(struct fc_frame *))
{}
EXPORT_SYMBOL();

/**
 * fc_exch_mgr_destroy() - Destroy an exchange manager
 * @kref: The reference to the EM to be destroyed
 */
static void fc_exch_mgr_destroy(struct kref *kref)
{}

/**
 * fc_exch_mgr_del() - Delete an EM from a local port's list
 * @ema: The exchange manager anchor identifying the EM to be deleted
 */
void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
{}
EXPORT_SYMBOL();

/**
 * fc_exch_mgr_list_clone() - Share all exchange manager objects
 * @src: Source lport to clone exchange managers from
 * @dst: New lport that takes references to all the exchange managers
 */
int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
{}
EXPORT_SYMBOL();

/**
 * fc_exch_mgr_alloc() - Allocate an exchange manager
 * @lport:   The local port that the new EM will be associated with
 * @class:   The default FC class for new exchanges
 * @min_xid: The minimum XID for exchanges from the new EM
 * @max_xid: The maximum XID for exchanges from the new EM
 * @match:   The match routine for the new EM
 */
struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
				      enum fc_class class,
				      u16 min_xid, u16 max_xid,
				      bool (*match)(struct fc_frame *))
{}
EXPORT_SYMBOL();

/**
 * fc_exch_mgr_free() - Free all exchange managers on a local port
 * @lport: The local port whose EMs are to be freed
 */
void fc_exch_mgr_free(struct fc_lport *lport)
{}
EXPORT_SYMBOL();

/**
 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
 * upon 'xid'.
 * @f_ctl: f_ctl
 * @lport: The local port the frame was received on
 * @fh: The received frame header
 */
static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
					      struct fc_lport *lport,
					      struct fc_frame_header *fh)
{}
/**
 * fc_exch_recv() - Handler for received frames
 * @lport: The local port the frame was received on
 * @fp:	The received frame
 */
void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
{}
EXPORT_SYMBOL();

/**
 * fc_exch_init() - Initialize the exchange layer for a local port
 * @lport: The local port to initialize the exchange layer for
 */
int fc_exch_init(struct fc_lport *lport)
{}
EXPORT_SYMBOL();

/**
 * fc_setup_exch_mgr() - Setup an exchange manager
 */
int fc_setup_exch_mgr(void)
{}

/**
 * fc_destroy_exch_mgr() - Destroy an exchange manager
 */
void fc_destroy_exch_mgr(void)
{}