linux/drivers/pwm/pwm-sl28cpld.c

// SPDX-License-Identifier: GPL-2.0-only
/*
 * sl28cpld PWM driver
 *
 * Copyright (c) 2020 Michael Walle <[email protected]>
 *
 * There is no public datasheet available for this PWM core. But it is easy
 * enough to be briefly explained. It consists of one 8-bit counter. The PWM
 * supports four distinct frequencies by selecting when to reset the counter.
 * With the prescaler setting you can select which bit of the counter is used
 * to reset it. This implies that the higher the frequency the less remaining
 * bits are available for the actual counter.
 *
 * Let cnt[7:0] be the counter, clocked at 32kHz:
 * +-----------+--------+--------------+-----------+---------------+
 * | prescaler |  reset | counter bits | frequency | period length |
 * +-----------+--------+--------------+-----------+---------------+
 * |         0 | cnt[7] |     cnt[6:0] |    250 Hz |    4000000 ns |
 * |         1 | cnt[6] |     cnt[5:0] |    500 Hz |    2000000 ns |
 * |         2 | cnt[5] |     cnt[4:0] |     1 kHz |    1000000 ns |
 * |         3 | cnt[4] |     cnt[3:0] |     2 kHz |     500000 ns |
 * +-----------+--------+--------------+-----------+---------------+
 *
 * Limitations:
 * - The hardware cannot generate a 100% duty cycle if the prescaler is 0.
 * - The hardware cannot atomically set the prescaler and the counter value,
 *   which might lead to glitches and inconsistent states if a write fails.
 * - The counter is not reset if you switch the prescaler which leads
 *   to glitches, too.
 * - The duty cycle will switch immediately and not after a complete cycle.
 * - Depending on the actual implementation, disabling the PWM might have
 *   side effects. For example, if the output pin is shared with a GPIO pin
 *   it will automatically switch back to GPIO mode.
 */

#include <linux/bitfield.h>
#include <linux/kernel.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/pwm.h>
#include <linux/regmap.h>

/*
 * PWM timer block registers.
 */
#define SL28CPLD_PWM_CTRL
#define SL28CPLD_PWM_CTRL_ENABLE
#define SL28CPLD_PWM_CTRL_PRESCALER_MASK
#define SL28CPLD_PWM_CYCLE
#define SL28CPLD_PWM_CYCLE_MAX

#define SL28CPLD_PWM_CLK
#define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)
#define SL28CPLD_PWM_PERIOD(prescaler)

/*
 * We calculate the duty cycle like this:
 *   duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle
 *
 * With
 *   max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC
 *   max_duty_cycle = 1 << (7 - prescaler)
 * this then simplifies to:
 *   duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC
 *                 = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg
 *
 * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing
 * precision by doing the divison first.
 */
#define SL28CPLD_PWM_TO_DUTY_CYCLE(reg)
#define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle)

#define sl28cpld_pwm_read(priv, reg, val)
#define sl28cpld_pwm_write(priv, reg, val)

struct sl28cpld_pwm {};

static inline struct sl28cpld_pwm *sl28cpld_pwm_from_chip(struct pwm_chip *chip)
{}

static int sl28cpld_pwm_get_state(struct pwm_chip *chip,
				  struct pwm_device *pwm,
				  struct pwm_state *state)
{}

static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
			      const struct pwm_state *state)
{}

static const struct pwm_ops sl28cpld_pwm_ops =;

static int sl28cpld_pwm_probe(struct platform_device *pdev)
{}

static const struct of_device_id sl28cpld_pwm_of_match[] =;
MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match);

static struct platform_driver sl28cpld_pwm_driver =;
module_platform_driver();

MODULE_DESCRIPTION();
MODULE_AUTHOR();
MODULE_LICENSE();