linux/drivers/net/wireless/intel/iwlegacy/commands.h

/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
 * in the file called LICENSE.GPL.
 *
 * Contact Information:
 *  Intel Linux Wireless <[email protected]>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *****************************************************************************/

#ifndef __il_commands_h__
#define __il_commands_h__

#include <linux/ieee80211.h>

struct il_priv;

/* uCode version contains 4 values: Major/Minor/API/Serial */
#define IL_UCODE_MAJOR(ver)
#define IL_UCODE_MINOR(ver)
#define IL_UCODE_API(ver)
#define IL_UCODE_SERIAL(ver)

/* Tx rates */
#define IL_CCK_RATES
#define IL_OFDM_RATES
#define IL_MAX_RATES

enum {};

/******************************************************************************
 * (0)
 * Commonly used structures and definitions:
 * Command header, rate_n_flags, txpower
 *
 *****************************************************************************/

/* il_cmd_header flags value */
#define IL_CMD_FAILED_MSK

#define SEQ_TO_QUEUE(s)
#define QUEUE_TO_SEQ(q)
#define SEQ_TO_IDX(s)
#define IDX_TO_SEQ(i)
#define SEQ_HUGE_FRAME
#define SEQ_RX_FRAME

/**
 * struct il_cmd_header
 *
 * This header format appears in the beginning of each command sent from the
 * driver, and each response/notification received from uCode.
 */
struct il_cmd_header {} __packed;

/**
 * struct il3945_tx_power
 *
 * Used in C_TX_PWR_TBL, C_SCAN, C_CHANNEL_SWITCH
 *
 * Each entry contains two values:
 * 1)  DSP gain (or sometimes called DSP attenuation).  This is a fine-grained
 *     linear value that multiplies the output of the digital signal processor,
 *     before being sent to the analog radio.
 * 2)  Radio gain.  This sets the analog gain of the radio Tx path.
 *     It is a coarser setting, and behaves in a logarithmic (dB) fashion.
 *
 * Driver obtains values from struct il3945_tx_power power_gain_table[][].
 */
struct il3945_tx_power {} __packed;

/**
 * struct il3945_power_per_rate
 *
 * Used in C_TX_PWR_TBL, C_CHANNEL_SWITCH
 */
struct il3945_power_per_rate {} __packed;

/**
 * iwl4965 rate_n_flags bit fields
 *
 * rate_n_flags format is used in following iwl4965 commands:
 *  N_RX (response only)
 *  N_RX_MPDU (response only)
 *  C_TX (both command and response)
 *  C_TX_LINK_QUALITY_CMD
 *
 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
 *  2-0:  0)   6 Mbps
 *        1)  12 Mbps
 *        2)  18 Mbps
 *        3)  24 Mbps
 *        4)  36 Mbps
 *        5)  48 Mbps
 *        6)  54 Mbps
 *        7)  60 Mbps
 *
 *  4-3:  0)  Single stream (SISO)
 *        1)  Dual stream (MIMO)
 *        2)  Triple stream (MIMO)
 *
 *    5:  Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
 *
 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
 *  3-0:  0xD)   6 Mbps
 *        0xF)   9 Mbps
 *        0x5)  12 Mbps
 *        0x7)  18 Mbps
 *        0x9)  24 Mbps
 *        0xB)  36 Mbps
 *        0x1)  48 Mbps
 *        0x3)  54 Mbps
 *
 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
 *  6-0:   10)  1 Mbps
 *         20)  2 Mbps
 *         55)  5.5 Mbps
 *        110)  11 Mbps
 */
#define RATE_MCS_CODE_MSK
#define RATE_MCS_SPATIAL_POS
#define RATE_MCS_SPATIAL_MSK
#define RATE_MCS_HT_DUP_POS
#define RATE_MCS_HT_DUP_MSK

/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
#define RATE_MCS_FLAGS_POS
#define RATE_MCS_HT_POS
#define RATE_MCS_HT_MSK

/* Bit 9: (1) CCK, (0) OFDM.  HT (bit 8) must be "0" for this bit to be valid */
#define RATE_MCS_CCK_POS
#define RATE_MCS_CCK_MSK

/* Bit 10: (1) Use Green Field preamble */
#define RATE_MCS_GF_POS
#define RATE_MCS_GF_MSK

/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
#define RATE_MCS_HT40_POS
#define RATE_MCS_HT40_MSK

/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
#define RATE_MCS_DUP_POS
#define RATE_MCS_DUP_MSK

/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
#define RATE_MCS_SGI_POS
#define RATE_MCS_SGI_MSK

/**
 * rate_n_flags Tx antenna masks
 * 4965 has 2 transmitters
 * bit14:16
 */
#define RATE_MCS_ANT_POS
#define RATE_MCS_ANT_A_MSK
#define RATE_MCS_ANT_B_MSK
#define RATE_MCS_ANT_C_MSK
#define RATE_MCS_ANT_AB_MSK
#define RATE_MCS_ANT_ABC_MSK
#define RATE_ANT_NUM

#define POWER_TBL_NUM_ENTRIES
#define POWER_TBL_NUM_HT_OFDM_ENTRIES
#define POWER_TBL_CCK_ENTRY

#define IL_PWR_NUM_HT_OFDM_ENTRIES
#define IL_PWR_CCK_ENTRIES

/**
 * union il4965_tx_power_dual_stream
 *
 * Host format used for C_TX_PWR_TBL, C_CHANNEL_SWITCH
 * Use __le32 version (struct tx_power_dual_stream) when building command.
 *
 * Driver provides radio gain and DSP attenuation settings to device in pairs,
 * one value for each transmitter chain.  The first value is for transmitter A,
 * second for transmitter B.
 *
 * For SISO bit rates, both values in a pair should be identical.
 * For MIMO rates, one value may be different from the other,
 * in order to balance the Tx output between the two transmitters.
 *
 * See more details in doc for TXPOWER in 4965.h.
 */
il4965_tx_power_dual_stream;

/**
 * struct tx_power_dual_stream
 *
 * Table entries in C_TX_PWR_TBL, C_CHANNEL_SWITCH
 *
 * Same format as il_tx_power_dual_stream, but __le32
 */
struct tx_power_dual_stream {} __packed;

/**
 * struct il4965_tx_power_db
 *
 * Entire table within C_TX_PWR_TBL, C_CHANNEL_SWITCH
 */
struct il4965_tx_power_db {} __packed;

/******************************************************************************
 * (0a)
 * Alive and Error Commands & Responses:
 *
 *****************************************************************************/

#define UCODE_VALID_OK
#define INITIALIZE_SUBTYPE

/*
 * ("Initialize") N_ALIVE = 0x1 (response only, not a command)
 *
 * uCode issues this "initialize alive" notification once the initialization
 * uCode image has completed its work, and is ready to load the runtime image.
 * This is the *first* "alive" notification that the driver will receive after
 * rebooting uCode; the "initialize" alive is indicated by subtype field == 9.
 *
 * See comments documenting "BSM" (bootstrap state machine).
 *
 * For 4965, this notification contains important calibration data for
 * calculating txpower settings:
 *
 * 1)  Power supply voltage indication.  The voltage sensor outputs higher
 *     values for lower voltage, and vice verse.
 *
 * 2)  Temperature measurement parameters, for each of two channel widths
 *     (20 MHz and 40 MHz) supported by the radios.  Temperature sensing
 *     is done via one of the receiver chains, and channel width influences
 *     the results.
 *
 * 3)  Tx gain compensation to balance 4965's 2 Tx chains for MIMO operation,
 *     for each of 5 frequency ranges.
 */
struct il_init_alive_resp {} __packed;

/**
 * N_ALIVE = 0x1 (response only, not a command)
 *
 * uCode issues this "alive" notification once the runtime image is ready
 * to receive commands from the driver.  This is the *second* "alive"
 * notification that the driver will receive after rebooting uCode;
 * this "alive" is indicated by subtype field != 9.
 *
 * See comments documenting "BSM" (bootstrap state machine).
 *
 * This response includes two pointers to structures within the device's
 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
 *
 * 1)  log_event_table_ptr indicates base of the event log.  This traces
 *     a 256-entry history of uCode execution within a circular buffer.
 *     Its header format is:
 *
 *	__le32 log_size;     log capacity (in number of entries)
 *	__le32 type;         (1) timestamp with each entry, (0) no timestamp
 *	__le32 wraps;        # times uCode has wrapped to top of circular buffer
 *      __le32 write_idx;  next circular buffer entry that uCode would fill
 *
 *     The header is followed by the circular buffer of log entries.  Entries
 *     with timestamps have the following format:
 *
 *	__le32 event_id;     range 0 - 1500
 *	__le32 timestamp;    low 32 bits of TSF (of network, if associated)
 *	__le32 data;         event_id-specific data value
 *
 *     Entries without timestamps contain only event_id and data.
 *
 *
 * 2)  error_event_table_ptr indicates base of the error log.  This contains
 *     information about any uCode error that occurs.  For 4965, the format
 *     of the error log is:
 *
 *	__le32 valid;        (nonzero) valid, (0) log is empty
 *	__le32 error_id;     type of error
 *	__le32 pc;           program counter
 *	__le32 blink1;       branch link
 *	__le32 blink2;       branch link
 *	__le32 ilink1;       interrupt link
 *	__le32 ilink2;       interrupt link
 *	__le32 data1;        error-specific data
 *	__le32 data2;        error-specific data
 *	__le32 line;         source code line of error
 *	__le32 bcon_time;    beacon timer
 *	__le32 tsf_low;      network timestamp function timer
 *	__le32 tsf_hi;       network timestamp function timer
 *	__le32 gp1;          GP1 timer register
 *	__le32 gp2;          GP2 timer register
 *	__le32 gp3;          GP3 timer register
 *	__le32 ucode_ver;    uCode version
 *	__le32 hw_ver;       HW Silicon version
 *	__le32 brd_ver;      HW board version
 *	__le32 log_pc;       log program counter
 *	__le32 frame_ptr;    frame pointer
 *	__le32 stack_ptr;    stack pointer
 *	__le32 hcmd;         last host command
 *	__le32 isr0;         isr status register LMPM_NIC_ISR0: rxtx_flag
 *	__le32 isr1;         isr status register LMPM_NIC_ISR1: host_flag
 *	__le32 isr2;         isr status register LMPM_NIC_ISR2: enc_flag
 *	__le32 isr3;         isr status register LMPM_NIC_ISR3: time_flag
 *	__le32 isr4;         isr status register LMPM_NIC_ISR4: wico interrupt
 *	__le32 isr_pref;     isr status register LMPM_NIC_PREF_STAT
 *	__le32 wait_event;   wait event() caller address
 *	__le32 l2p_control;  L2pControlField
 *	__le32 l2p_duration; L2pDurationField
 *	__le32 l2p_mhvalid;  L2pMhValidBits
 *	__le32 l2p_addr_match; L2pAddrMatchStat
 *	__le32 lmpm_pmg_sel; indicate which clocks are turned on (LMPM_PMG_SEL)
 *	__le32 u_timestamp;  indicate when the date and time of the compilation
 *	__le32 reserved;
 *
 * The Linux driver can print both logs to the system log when a uCode error
 * occurs.
 */
struct il_alive_resp {} __packed;

/*
 * N_ERROR = 0x2 (response only, not a command)
 */
struct il_error_resp {} __packed;

/******************************************************************************
 * (1)
 * RXON Commands & Responses:
 *
 *****************************************************************************/

/*
 * Rx config defines & structure
 */
/* rx_config device types  */
enum {};

#define RXON_RX_CHAIN_DRIVER_FORCE_MSK
#define RXON_RX_CHAIN_DRIVER_FORCE_POS
#define RXON_RX_CHAIN_VALID_MSK
#define RXON_RX_CHAIN_VALID_POS
#define RXON_RX_CHAIN_FORCE_SEL_MSK
#define RXON_RX_CHAIN_FORCE_SEL_POS
#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK
#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS
#define RXON_RX_CHAIN_CNT_MSK
#define RXON_RX_CHAIN_CNT_POS
#define RXON_RX_CHAIN_MIMO_CNT_MSK
#define RXON_RX_CHAIN_MIMO_CNT_POS
#define RXON_RX_CHAIN_MIMO_FORCE_MSK
#define RXON_RX_CHAIN_MIMO_FORCE_POS

/* rx_config flags */
/* band & modulation selection */
#define RXON_FLG_BAND_24G_MSK
#define RXON_FLG_CCK_MSK
/* auto detection enable */
#define RXON_FLG_AUTO_DETECT_MSK
/* TGg protection when tx */
#define RXON_FLG_TGG_PROTECT_MSK
/* cck short slot & preamble */
#define RXON_FLG_SHORT_SLOT_MSK
#define RXON_FLG_SHORT_PREAMBLE_MSK
/* antenna selection */
#define RXON_FLG_DIS_DIV_MSK
#define RXON_FLG_ANT_SEL_MSK
#define RXON_FLG_ANT_A_MSK
#define RXON_FLG_ANT_B_MSK
/* radar detection enable */
#define RXON_FLG_RADAR_DETECT_MSK
#define RXON_FLG_TGJ_NARROW_BAND_MSK
/* rx response to host with 8-byte TSF
* (according to ON_AIR deassertion) */
#define RXON_FLG_TSF2HOST_MSK

/* HT flags */
#define RXON_FLG_CTRL_CHANNEL_LOC_POS
#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK

#define RXON_FLG_HT_OPERATING_MODE_POS

#define RXON_FLG_HT_PROT_MSK
#define RXON_FLG_HT40_PROT_MSK

#define RXON_FLG_CHANNEL_MODE_POS
#define RXON_FLG_CHANNEL_MODE_MSK

/* channel mode */
enum {};
#define RXON_FLG_CHANNEL_MODE_LEGACY
#define RXON_FLG_CHANNEL_MODE_PURE_40
#define RXON_FLG_CHANNEL_MODE_MIXED

/* CTS to self (if spec allows) flag */
#define RXON_FLG_SELF_CTS_EN

/* rx_config filter flags */
/* accept all data frames */
#define RXON_FILTER_PROMISC_MSK
/* pass control & management to host */
#define RXON_FILTER_CTL2HOST_MSK
/* accept multi-cast */
#define RXON_FILTER_ACCEPT_GRP_MSK
/* don't decrypt uni-cast frames */
#define RXON_FILTER_DIS_DECRYPT_MSK
/* don't decrypt multi-cast frames */
#define RXON_FILTER_DIS_GRP_DECRYPT_MSK
/* STA is associated */
#define RXON_FILTER_ASSOC_MSK
/* transfer to host non bssid beacons in associated state */
#define RXON_FILTER_BCON_AWARE_MSK

/**
 * C_RXON = 0x10 (command, has simple generic response)
 *
 * RXON tunes the radio tuner to a service channel, and sets up a number
 * of parameters that are used primarily for Rx, but also for Tx operations.
 *
 * NOTE:  When tuning to a new channel, driver must set the
 *        RXON_FILTER_ASSOC_MSK to 0.  This will clear station-dependent
 *        info within the device, including the station tables, tx retry
 *        rate tables, and txpower tables.  Driver must build a new station
 *        table and txpower table before transmitting anything on the RXON
 *        channel.
 *
 * NOTE:  All RXONs wipe clean the internal txpower table.  Driver must
 *        issue a new C_TX_PWR_TBL after each C_RXON (0x10),
 *        regardless of whether RXON_FILTER_ASSOC_MSK is set.
 */

struct il3945_rxon_cmd {} __packed;

struct il4965_rxon_cmd {} __packed;

/* Create a common rxon cmd which will be typecast into the 3945 or 4965
 * specific rxon cmd, depending on where it is called from.
 */
struct il_rxon_cmd {} __packed;

/*
 * C_RXON_ASSOC = 0x11 (command, has simple generic response)
 */
struct il3945_rxon_assoc_cmd {} __packed;

struct il4965_rxon_assoc_cmd {} __packed;

#define IL_CONN_MAX_LISTEN_INTERVAL
#define IL_MAX_UCODE_BEACON_INTERVAL
#define IL39_MAX_UCODE_BEACON_INTERVAL

/*
 * C_RXON_TIMING = 0x14 (command, has simple generic response)
 */
struct il_rxon_time_cmd {} __packed;

/*
 * C_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
 */
struct il3945_channel_switch_cmd {} __packed;

struct il4965_channel_switch_cmd {} __packed;

/*
 * N_CHANNEL_SWITCH = 0x73 (notification only, not a command)
 */
struct il_csa_notification {} __packed;

/******************************************************************************
 * (2)
 * Quality-of-Service (QOS) Commands & Responses:
 *
 *****************************************************************************/

/**
 * struct il_ac_qos -- QOS timing params for C_QOS_PARAM
 * One for each of 4 EDCA access categories in struct il_qosparam_cmd
 *
 * @cw_min: Contention win, start value in numbers of slots.
 *          Should be a power-of-2, minus 1.  Device's default is 0x0f.
 * @cw_max: Contention win, max value in numbers of slots.
 *          Should be a power-of-2, minus 1.  Device's default is 0x3f.
 * @aifsn:  Number of slots in Arbitration Interframe Space (before
 *          performing random backoff timing prior to Tx).  Device default 1.
 * @edca_txop:  Length of Tx opportunity, in uSecs.  Device default is 0.
 *
 * Device will automatically increase contention win by (2*CW) + 1 for each
 * transmission retry.  Device uses cw_max as a bit mask, ANDed with new CW
 * value, to cap the CW value.
 */
struct il_ac_qos {} __packed;

/* QoS flags defines */
#define QOS_PARAM_FLG_UPDATE_EDCA_MSK
#define QOS_PARAM_FLG_TGN_MSK
#define QOS_PARAM_FLG_TXOP_TYPE_MSK

/* Number of Access Categories (AC) (EDCA), queues 0..3 */
#define AC_NUM

/*
 * C_QOS_PARAM = 0x13 (command, has simple generic response)
 *
 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
 */
struct il_qosparam_cmd {} __packed;

/******************************************************************************
 * (3)
 * Add/Modify Stations Commands & Responses:
 *
 *****************************************************************************/
/*
 * Multi station support
 */

/* Special, dedicated locations within device's station table */
#define IL_AP_ID
#define IL_STA_ID
#define IL3945_BROADCAST_ID
#define IL3945_STATION_COUNT
#define IL4965_BROADCAST_ID
#define IL4965_STATION_COUNT

#define IL_STATION_COUNT
#define IL_INVALID_STATION

#define STA_FLG_TX_RATE_MSK
#define STA_FLG_PWR_SAVE_MSK
#define STA_FLG_RTS_MIMO_PROT_MSK
#define STA_FLG_AGG_MPDU_8US_MSK
#define STA_FLG_MAX_AGG_SIZE_POS
#define STA_FLG_MAX_AGG_SIZE_MSK
#define STA_FLG_HT40_EN_MSK
#define STA_FLG_MIMO_DIS_MSK
#define STA_FLG_AGG_MPDU_DENSITY_POS
#define STA_FLG_AGG_MPDU_DENSITY_MSK

/* Use in mode field.  1: modify existing entry, 0: add new station entry */
#define STA_CONTROL_MODIFY_MSK

/* key flags __le16*/
#define STA_KEY_FLG_ENCRYPT_MSK
#define STA_KEY_FLG_NO_ENC
#define STA_KEY_FLG_WEP
#define STA_KEY_FLG_CCMP
#define STA_KEY_FLG_TKIP

#define STA_KEY_FLG_KEYID_POS
#define STA_KEY_FLG_INVALID
/* wep key is either from global key (0) or from station info array (1) */
#define STA_KEY_FLG_MAP_KEY_MSK

/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
#define STA_KEY_FLG_KEY_SIZE_MSK
#define STA_KEY_MULTICAST_MSK
#define STA_KEY_MAX_NUM

/* Flags indicate whether to modify vs. don't change various station params */
#define STA_MODIFY_KEY_MASK
#define STA_MODIFY_TID_DISABLE_TX
#define STA_MODIFY_TX_RATE_MSK
#define STA_MODIFY_ADDBA_TID_MSK
#define STA_MODIFY_DELBA_TID_MSK
#define STA_MODIFY_SLEEP_TX_COUNT_MSK

/* Receiver address (actually, Rx station's idx into station table),
 * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
#define BUILD_RAxTID(sta_id, tid)

struct il4965_keyinfo {} __packed;

/**
 * struct sta_id_modify
 * @addr[ETH_ALEN]: station's MAC address
 * @sta_id: idx of station in uCode's station table
 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
 *
 * Driver selects unused table idx when adding new station,
 * or the idx to a pre-existing station entry when modifying that station.
 * Some idxes have special purposes (IL_AP_ID, idx 0, is for AP).
 *
 * modify_mask flags select which parameters to modify vs. leave alone.
 */
struct sta_id_modify {} __packed;

/*
 * C_ADD_STA = 0x18 (command)
 *
 * The device contains an internal table of per-station information,
 * with info on security keys, aggregation parameters, and Tx rates for
 * initial Tx attempt and any retries (4965 devices uses
 * C_TX_LINK_QUALITY_CMD,
 * 3945 uses C_RATE_SCALE to set up rate tables).
 *
 * C_ADD_STA sets up the table entry for one station, either creating
 * a new entry, or modifying a pre-existing one.
 *
 * NOTE:  RXON command (without "associated" bit set) wipes the station table
 *        clean.  Moving into RF_KILL state does this also.  Driver must set up
 *        new station table before transmitting anything on the RXON channel
 *        (except active scans or active measurements; those commands carry
 *        their own txpower/rate setup data).
 *
 *        When getting started on a new channel, driver must set up the
 *        IL_BROADCAST_ID entry (last entry in the table).  For a client
 *        station in a BSS, once an AP is selected, driver sets up the AP STA
 *        in the IL_AP_ID entry (1st entry in the table).  BROADCAST and AP
 *        are all that are needed for a BSS client station.  If the device is
 *        used as AP, or in an IBSS network, driver must set up station table
 *        entries for all STAs in network, starting with idx IL_STA_ID.
 */

struct il3945_addsta_cmd {} __packed;

struct il4965_addsta_cmd {} __packed;

/* Wrapper struct for 3945 and 4965 addsta_cmd structures */
struct il_addsta_cmd {} __packed;

#define ADD_STA_SUCCESS_MSK
#define ADD_STA_NO_ROOM_IN_TBL
#define ADD_STA_NO_BLOCK_ACK_RESOURCE
#define ADD_STA_MODIFY_NON_EXIST_STA
/*
 * C_ADD_STA = 0x18 (response)
 */
struct il_add_sta_resp {} __packed;

#define REM_STA_SUCCESS_MSK
/*
 *  C_REM_STA = 0x19 (response)
 */
struct il_rem_sta_resp {} __packed;

/*
 *  C_REM_STA = 0x19 (command)
 */
struct il_rem_sta_cmd {} __packed;

#define IL_TX_FIFO_BK_MSK
#define IL_TX_FIFO_BE_MSK
#define IL_TX_FIFO_VI_MSK
#define IL_TX_FIFO_VO_MSK
#define IL_AGG_TX_QUEUE_MSK

#define IL_DROP_SINGLE
#define IL_DROP_SELECTED
#define IL_DROP_ALL

/*
 * REPLY_WEP_KEY = 0x20
 */
struct il_wep_key {} __packed;

struct il_wep_cmd {} __packed;

#define WEP_KEY_WEP_TYPE
#define WEP_KEYS_MAX
#define WEP_INVALID_OFFSET
#define WEP_KEY_LEN_64
#define WEP_KEY_LEN_128

/******************************************************************************
 * (4)
 * Rx Responses:
 *
 *****************************************************************************/

#define RX_RES_STATUS_NO_CRC32_ERROR
#define RX_RES_STATUS_NO_RXE_OVERFLOW

#define RX_RES_PHY_FLAGS_BAND_24_MSK
#define RX_RES_PHY_FLAGS_MOD_CCK_MSK
#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK
#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK
#define RX_RES_PHY_FLAGS_ANTENNA_MSK
#define RX_RES_PHY_FLAGS_ANTENNA_POS
#define RX_RES_PHY_FLAGS_AGG_MSK

#define RX_RES_STATUS_SEC_TYPE_MSK
#define RX_RES_STATUS_SEC_TYPE_NONE
#define RX_RES_STATUS_SEC_TYPE_WEP
#define RX_RES_STATUS_SEC_TYPE_CCMP
#define RX_RES_STATUS_SEC_TYPE_TKIP
#define RX_RES_STATUS_SEC_TYPE_ERR

#define RX_RES_STATUS_STATION_FOUND
#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH

#define RX_RES_STATUS_DECRYPT_TYPE_MSK
#define RX_RES_STATUS_NOT_DECRYPT
#define RX_RES_STATUS_DECRYPT_OK
#define RX_RES_STATUS_BAD_ICV_MIC
#define RX_RES_STATUS_BAD_KEY_TTAK

#define RX_MPDU_RES_STATUS_ICV_OK
#define RX_MPDU_RES_STATUS_MIC_OK
#define RX_MPDU_RES_STATUS_TTAK_OK
#define RX_MPDU_RES_STATUS_DEC_DONE_MSK

struct il3945_rx_frame_stats {} __packed;

struct il3945_rx_frame_hdr {} __packed;

struct il3945_rx_frame_end {} __packed;

/*
 * N_3945_RX = 0x1b (response only, not a command)
 *
 * NOTE:  DO NOT dereference from casts to this structure
 * It is provided only for calculating minimum data set size.
 * The actual offsets of the hdr and end are dynamic based on
 * stats.phy_count
 */
struct il3945_rx_frame {} __packed;

#define IL39_RX_FRAME_SIZE

/* Fixed (non-configurable) rx data from phy */

#define IL49_RX_RES_PHY_CNT
#define IL49_RX_PHY_FLAGS_ANTENNAE_OFFSET
#define IL49_RX_PHY_FLAGS_ANTENNAE_MASK
#define IL49_AGC_DB_MASK
#define IL49_AGC_DB_POS
struct il4965_rx_non_cfg_phy {} __packed;

/*
 * N_RX = 0xc3 (response only, not a command)
 * Used only for legacy (non 11n) frames.
 */
struct il_rx_phy_res {} __packed;

struct il_rx_mpdu_res_start {} __packed;

/******************************************************************************
 * (5)
 * Tx Commands & Responses:
 *
 * Driver must place each C_TX command into one of the prioritized Tx
 * queues in host DRAM, shared between driver and device (see comments for
 * SCD registers and Tx/Rx Queues).  When the device's Tx scheduler and uCode
 * are preparing to transmit, the device pulls the Tx command over the PCI
 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
 * from which data will be transmitted.
 *
 * uCode handles all timing and protocol related to control frames
 * (RTS/CTS/ACK), based on flags in the Tx command.  uCode and Tx scheduler
 * handle reception of block-acks; uCode updates the host driver via
 * N_COMPRESSED_BA.
 *
 * uCode handles retrying Tx when an ACK is expected but not received.
 * This includes trying lower data rates than the one requested in the Tx
 * command, as set up by the C_RATE_SCALE (for 3945) or
 * C_TX_LINK_QUALITY_CMD (4965).
 *
 * Driver sets up transmit power for various rates via C_TX_PWR_TBL.
 * This command must be executed after every RXON command, before Tx can occur.
 *****************************************************************************/

/* C_TX Tx flags field */

/*
 * 1: Use Request-To-Send protocol before this frame.
 * Mutually exclusive vs. TX_CMD_FLG_CTS_MSK.
 */
#define TX_CMD_FLG_RTS_MSK

/*
 * 1: Transmit Clear-To-Send to self before this frame.
 * Driver should set this for AUTH/DEAUTH/ASSOC-REQ/REASSOC mgmnt frames.
 * Mutually exclusive vs. TX_CMD_FLG_RTS_MSK.
 */
#define TX_CMD_FLG_CTS_MSK

/* 1: Expect ACK from receiving station
 * 0: Don't expect ACK (MAC header's duration field s/b 0)
 * Set this for unicast frames, but not broadcast/multicast. */
#define TX_CMD_FLG_ACK_MSK

/* For 4965 devices:
 * 1: Use rate scale table (see C_TX_LINK_QUALITY_CMD).
 *    Tx command's initial_rate_idx indicates first rate to try;
 *    uCode walks through table for additional Tx attempts.
 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
 *    This rate will be used for all Tx attempts; it will not be scaled. */
#define TX_CMD_FLG_STA_RATE_MSK

/* 1: Expect immediate block-ack.
 * Set when Txing a block-ack request frame.  Also set TX_CMD_FLG_ACK_MSK. */
#define TX_CMD_FLG_IMM_BA_RSP_MASK

/*
 * 1: Frame requires full Tx-Op protection.
 * Set this if either RTS or CTS Tx Flag gets set.
 */
#define TX_CMD_FLG_FULL_TXOP_PROT_MSK

/* Tx antenna selection field; used only for 3945, reserved (0) for 4965 devices.
 * Set field to "0" to allow 3945 uCode to select antenna (normal usage). */
#define TX_CMD_FLG_ANT_SEL_MSK
#define TX_CMD_FLG_ANT_A_MSK
#define TX_CMD_FLG_ANT_B_MSK

/* 1: uCode overrides sequence control field in MAC header.
 * 0: Driver provides sequence control field in MAC header.
 * Set this for management frames, non-QOS data frames, non-unicast frames,
 * and also in Tx command embedded in C_SCAN for active scans. */
#define TX_CMD_FLG_SEQ_CTL_MSK

/* 1: This frame is non-last MPDU; more fragments are coming.
 * 0: Last fragment, or not using fragmentation. */
#define TX_CMD_FLG_MORE_FRAG_MSK

/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
 * 0: No TSF required in outgoing frame.
 * Set this for transmitting beacons and probe responses. */
#define TX_CMD_FLG_TSF_MSK

/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
 *    alignment of frame's payload data field.
 * 0: No pad
 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
 * field (but not both).  Driver must align frame data (i.e. data following
 * MAC header) to DWORD boundary. */
#define TX_CMD_FLG_MH_PAD_MSK

/* accelerate aggregation support
 * 0 - no CCMP encryption; 1 - CCMP encryption */
#define TX_CMD_FLG_AGG_CCMP_MSK

/* HCCA-AP - disable duration overwriting. */
#define TX_CMD_FLG_DUR_MSK

/*
 * TX command security control
 */
#define TX_CMD_SEC_WEP
#define TX_CMD_SEC_CCM
#define TX_CMD_SEC_TKIP
#define TX_CMD_SEC_MSK
#define TX_CMD_SEC_SHIFT
#define TX_CMD_SEC_KEY128

/*
 * C_TX = 0x1c (command)
 */

struct il3945_tx_cmd {} __packed;

/*
 * C_TX = 0x1c (response)
 */
struct il3945_tx_resp {} __packed;

/*
 * 4965 uCode updates these Tx attempt count values in host DRAM.
 * Used for managing Tx retries when expecting block-acks.
 * Driver should set these fields to 0.
 */
struct il_dram_scratch {} __packed;

struct il_tx_cmd {} __packed;

/* TX command response is sent after *3945* transmission attempts.
 *
 * NOTES:
 *
 * TX_STATUS_FAIL_NEXT_FRAG
 *
 * If the fragment flag in the MAC header for the frame being transmitted
 * is set and there is insufficient time to transmit the next frame, the
 * TX status will be returned with 'TX_STATUS_FAIL_NEXT_FRAG'.
 *
 * TX_STATUS_FIFO_UNDERRUN
 *
 * Indicates the host did not provide bytes to the FIFO fast enough while
 * a TX was in progress.
 *
 * TX_STATUS_FAIL_MGMNT_ABORT
 *
 * This status is only possible if the ABORT ON MGMT RX parameter was
 * set to true with the TX command.
 *
 * If the MSB of the status parameter is set then an abort sequence is
 * required.  This sequence consists of the host activating the TX Abort
 * control line, and then waiting for the TX Abort command response.  This
 * indicates that a the device is no longer in a transmit state, and that the
 * command FIFO has been cleared.  The host must then deactivate the TX Abort
 * control line.  Receiving is still allowed in this case.
 */
enum {};

/*
 * TX command response is sent after *4965* transmission attempts.
 *
 * both postpone and abort status are expected behavior from uCode. there is
 * no special operation required from driver; except for RFKILL_FLUSH,
 * which required tx flush host command to flush all the tx frames in queues
 */
enum {};

#define TX_PACKET_MODE_REGULAR
#define TX_PACKET_MODE_BURST_SEQ
#define TX_PACKET_MODE_BURST_FIRST

enum {};

enum {};

/* *******************************
 * TX aggregation status
 ******************************* */

enum {};

#define AGG_TX_STATUS_MSK
#define AGG_TX_TRY_MSK

#define AGG_TX_STATE_LAST_SENT_MSK

/* # tx attempts for first frame in aggregation */
#define AGG_TX_STATE_TRY_CNT_POS
#define AGG_TX_STATE_TRY_CNT_MSK

/* Command ID and sequence number of Tx command for this frame */
#define AGG_TX_STATE_SEQ_NUM_POS
#define AGG_TX_STATE_SEQ_NUM_MSK

/*
 * C_TX = 0x1c (response)
 *
 * This response may be in one of two slightly different formats, indicated
 * by the frame_count field:
 *
 * 1)  No aggregation (frame_count == 1).  This reports Tx results for
 *     a single frame.  Multiple attempts, at various bit rates, may have
 *     been made for this frame.
 *
 * 2)  Aggregation (frame_count > 1).  This reports Tx results for
 *     2 or more frames that used block-acknowledge.  All frames were
 *     transmitted at same rate.  Rate scaling may have been used if first
 *     frame in this new agg block failed in previous agg block(s).
 *
 *     Note that, for aggregation, ACK (block-ack) status is not delivered here;
 *     block-ack has not been received by the time the 4965 device records
 *     this status.
 *     This status relates to reasons the tx might have been blocked or aborted
 *     within the sending station (this 4965 device), rather than whether it was
 *     received successfully by the destination station.
 */
struct agg_tx_status {} __packed;

struct il4965_tx_resp {} __packed;

/*
 * N_COMPRESSED_BA = 0xc5 (response only, not a command)
 *
 * Reports Block-Acknowledge from recipient station
 */
struct il_compressed_ba_resp {} __packed;

/*
 * C_TX_PWR_TBL = 0x97 (command, has simple generic response)
 *
 * See details under "TXPOWER" in 4965.h.
 */

struct il3945_txpowertable_cmd {} __packed;

struct il4965_txpowertable_cmd {} __packed;

/**
 * struct il3945_rate_scaling_cmd - Rate Scaling Command & Response
 *
 * C_RATE_SCALE = 0x47 (command, has simple generic response)
 *
 * NOTE: The table of rates passed to the uCode via the
 * RATE_SCALE command sets up the corresponding order of
 * rates used for all related commands, including rate
 * masks, etc.
 *
 * For example, if you set 9MB (PLCP 0x0f) as the first
 * rate in the rate table, the bit mask for that rate
 * when passed through ofdm_basic_rates on the C_RXON
 * command would be bit 0 (1 << 0)
 */
struct il3945_rate_scaling_info {} __packed;

struct il3945_rate_scaling_cmd {} __packed;

/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
#define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK

/* # of EDCA prioritized tx fifos */
#define LINK_QUAL_AC_NUM

/* # entries in rate scale table to support Tx retries */
#define LINK_QUAL_MAX_RETRY_NUM

/* Tx antenna selection values */
#define LINK_QUAL_ANT_A_MSK
#define LINK_QUAL_ANT_B_MSK
#define LINK_QUAL_ANT_MSK

/**
 * struct il_link_qual_general_params
 *
 * Used in C_TX_LINK_QUALITY_CMD
 */
struct il_link_qual_general_params {} __packed;

#define LINK_QUAL_AGG_TIME_LIMIT_DEF
#define LINK_QUAL_AGG_TIME_LIMIT_MAX
#define LINK_QUAL_AGG_TIME_LIMIT_MIN

#define LINK_QUAL_AGG_DISABLE_START_DEF
#define LINK_QUAL_AGG_DISABLE_START_MAX
#define LINK_QUAL_AGG_DISABLE_START_MIN

#define LINK_QUAL_AGG_FRAME_LIMIT_DEF
#define LINK_QUAL_AGG_FRAME_LIMIT_MAX
#define LINK_QUAL_AGG_FRAME_LIMIT_MIN

/**
 * struct il_link_qual_agg_params
 *
 * Used in C_TX_LINK_QUALITY_CMD
 */
struct il_link_qual_agg_params {} __packed;

/*
 * C_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
 *
 * For 4965 devices only; 3945 uses C_RATE_SCALE.
 *
 * Each station in the 4965 device's internal station table has its own table
 * of 16
 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
 * an ACK is not received.  This command replaces the entire table for
 * one station.
 *
 * NOTE:  Station must already be in 4965 device's station table.
 *	  Use C_ADD_STA.
 *
 * The rate scaling procedures described below work well.  Of course, other
 * procedures are possible, and may work better for particular environments.
 *
 *
 * FILLING THE RATE TBL
 *
 * Given a particular initial rate and mode, as determined by the rate
 * scaling algorithm described below, the Linux driver uses the following
 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
 * Link Quality command:
 *
 *
 * 1)  If using High-throughput (HT) (SISO or MIMO) initial rate:
 *     a) Use this same initial rate for first 3 entries.
 *     b) Find next lower available rate using same mode (SISO or MIMO),
 *        use for next 3 entries.  If no lower rate available, switch to
 *        legacy mode (no HT40 channel, no MIMO, no short guard interval).
 *     c) If using MIMO, set command's mimo_delimiter to number of entries
 *        using MIMO (3 or 6).
 *     d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
 *        no MIMO, no short guard interval), at the next lower bit rate
 *        (e.g. if second HT bit rate was 54, try 48 legacy), and follow
 *        legacy procedure for remaining table entries.
 *
 * 2)  If using legacy initial rate:
 *     a) Use the initial rate for only one entry.
 *     b) For each following entry, reduce the rate to next lower available
 *        rate, until reaching the lowest available rate.
 *     c) When reducing rate, also switch antenna selection.
 *     d) Once lowest available rate is reached, repeat this rate until
 *        rate table is filled (16 entries), switching antenna each entry.
 *
 *
 * ACCUMULATING HISTORY
 *
 * The rate scaling algorithm for 4965 devices, as implemented in Linux driver,
 * uses two sets of frame Tx success history:  One for the current/active
 * modulation mode, and one for a speculative/search mode that is being
 * attempted. If the speculative mode turns out to be more effective (i.e.
 * actual transfer rate is better), then the driver continues to use the
 * speculative mode as the new current active mode.
 *
 * Each history set contains, separately for each possible rate, data for a
 * sliding win of the 62 most recent tx attempts at that rate.  The data
 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
 * and attempted frames, from which the driver can additionally calculate a
 * success ratio (success / attempted) and number of failures
 * (attempted - success), and control the size of the win (attempted).
 * The driver uses the bit map to remove successes from the success sum, as
 * the oldest tx attempts fall out of the win.
 *
 * When the 4965 device makes multiple tx attempts for a given frame, each
 * attempt might be at a different rate, and have different modulation
 * characteristics (e.g. antenna, fat channel, short guard interval), as set
 * up in the rate scaling table in the Link Quality command.  The driver must
 * determine which rate table entry was used for each tx attempt, to determine
 * which rate-specific history to update, and record only those attempts that
 * match the modulation characteristics of the history set.
 *
 * When using block-ack (aggregation), all frames are transmitted at the same
 * rate, since there is no per-attempt acknowledgment from the destination
 * station.  The Tx response struct il_tx_resp indicates the Tx rate in
 * rate_n_flags field.  After receiving a block-ack, the driver can update
 * history for the entire block all at once.
 *
 *
 * FINDING BEST STARTING RATE:
 *
 * When working with a selected initial modulation mode (see below), the
 * driver attempts to find a best initial rate.  The initial rate is the
 * first entry in the Link Quality command's rate table.
 *
 * 1)  Calculate actual throughput (success ratio * expected throughput, see
 *     table below) for current initial rate.  Do this only if enough frames
 *     have been attempted to make the value meaningful:  at least 6 failed
 *     tx attempts, or at least 8 successes.  If not enough, don't try rate
 *     scaling yet.
 *
 * 2)  Find available rates adjacent to current initial rate.  Available means:
 *     a)  supported by hardware &&
 *     b)  supported by association &&
 *     c)  within any constraints selected by user
 *
 * 3)  Gather measured throughputs for adjacent rates.  These might not have
 *     enough history to calculate a throughput.  That's okay, we might try
 *     using one of them anyway!
 *
 * 4)  Try decreasing rate if, for current rate:
 *     a)  success ratio is < 15% ||
 *     b)  lower adjacent rate has better measured throughput ||
 *     c)  higher adjacent rate has worse throughput, and lower is unmeasured
 *
 *     As a sanity check, if decrease was determined above, leave rate
 *     unchanged if:
 *     a)  lower rate unavailable
 *     b)  success ratio at current rate > 85% (very good)
 *     c)  current measured throughput is better than expected throughput
 *         of lower rate (under perfect 100% tx conditions, see table below)
 *
 * 5)  Try increasing rate if, for current rate:
 *     a)  success ratio is < 15% ||
 *     b)  both adjacent rates' throughputs are unmeasured (try it!) ||
 *     b)  higher adjacent rate has better measured throughput ||
 *     c)  lower adjacent rate has worse throughput, and higher is unmeasured
 *
 *     As a sanity check, if increase was determined above, leave rate
 *     unchanged if:
 *     a)  success ratio at current rate < 70%.  This is not particularly
 *         good performance; higher rate is sure to have poorer success.
 *
 * 6)  Re-evaluate the rate after each tx frame.  If working with block-
 *     acknowledge, history and stats may be calculated for the entire
 *     block (including prior history that fits within the history wins),
 *     before re-evaluation.
 *
 * FINDING BEST STARTING MODULATION MODE:
 *
 * After working with a modulation mode for a "while" (and doing rate scaling),
 * the driver searches for a new initial mode in an attempt to improve
 * throughput.  The "while" is measured by numbers of attempted frames:
 *
 * For legacy mode, search for new mode after:
 *   480 successful frames, or 160 failed frames
 * For high-throughput modes (SISO or MIMO), search for new mode after:
 *   4500 successful frames, or 400 failed frames
 *
 * Mode switch possibilities are (3 for each mode):
 *
 * For legacy:
 *   Change antenna, try SISO (if HT association), try MIMO (if HT association)
 * For SISO:
 *   Change antenna, try MIMO, try shortened guard interval (SGI)
 * For MIMO:
 *   Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
 *
 * When trying a new mode, use the same bit rate as the old/current mode when
 * trying antenna switches and shortened guard interval.  When switching to
 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
 * for which the expected throughput (under perfect conditions) is about the
 * same or slightly better than the actual measured throughput delivered by
 * the old/current mode.
 *
 * Actual throughput can be estimated by multiplying the expected throughput
 * by the success ratio (successful / attempted tx frames).  Frame size is
 * not considered in this calculation; it assumes that frame size will average
 * out to be fairly consistent over several samples.  The following are
 * metric values for expected throughput assuming 100% success ratio.
 * Only G band has support for CCK rates:
 *
 *           RATE:  1    2    5   11    6   9   12   18   24   36   48   54   60
 *
 *              G:  7   13   35   58   40  57   72   98  121  154  177  186  186
 *              A:  0    0    0    0   40  57   72   98  121  154  177  186  186
 *     SISO 20MHz:  0    0    0    0   42  42   76  102  124  159  183  193  202
 * SGI SISO 20MHz:  0    0    0    0   46  46   82  110  132  168  192  202  211
 *     MIMO 20MHz:  0    0    0    0   74  74  123  155  179  214  236  244  251
 * SGI MIMO 20MHz:  0    0    0    0   81  81  131  164  188  222  243  251  257
 *     SISO 40MHz:  0    0    0    0   77  77  127  160  184  220  242  250  257
 * SGI SISO 40MHz:  0    0    0    0   83  83  135  169  193  229  250  257  264
 *     MIMO 40MHz:  0    0    0    0  123 123  182  214  235  264  279  285  289
 * SGI MIMO 40MHz:  0    0    0    0  131 131  191  222  242  270  284  289  293
 *
 * After the new mode has been tried for a short while (minimum of 6 failed
 * frames or 8 successful frames), compare success ratio and actual throughput
 * estimate of the new mode with the old.  If either is better with the new
 * mode, continue to use the new mode.
 *
 * Continue comparing modes until all 3 possibilities have been tried.
 * If moving from legacy to HT, try all 3 possibilities from the new HT
 * mode.  After trying all 3, a best mode is found.  Continue to use this mode
 * for the longer "while" described above (e.g. 480 successful frames for
 * legacy), and then repeat the search process.
 *
 */
struct il_link_quality_cmd {} __packed;

/*
 * BT configuration enable flags:
 *   bit 0 - 1: BT channel announcement enabled
 *           0: disable
 *   bit 1 - 1: priority of BT device enabled
 *           0: disable
 */
#define BT_COEX_DISABLE
#define BT_ENABLE_CHANNEL_ANNOUNCE
#define BT_ENABLE_PRIORITY

#define BT_COEX_ENABLE

#define BT_LEAD_TIME_DEF

#define BT_MAX_KILL_DEF

/*
 * C_BT_CONFIG = 0x9b (command, has simple generic response)
 *
 * 3945 and 4965 devices support hardware handshake with Bluetooth device on
 * same platform.  Bluetooth device alerts wireless device when it will Tx;
 * wireless device can delay or kill its own Tx to accommodate.
 */
struct il_bt_cmd {} __packed;

/******************************************************************************
 * (6)
 * Spectrum Management (802.11h) Commands, Responses, Notifications:
 *
 *****************************************************************************/

/*
 * Spectrum Management
 */
#define MEASUREMENT_FILTER_FLAG

struct il_measure_channel {} __packed;

/*
 * C_SPECTRUM_MEASUREMENT = 0x74 (command)
 */
struct il_spectrum_cmd {} __packed;

/*
 * C_SPECTRUM_MEASUREMENT = 0x74 (response)
 */
struct il_spectrum_resp {} __packed;

enum il_measurement_state {};

enum il_measurement_status {};

#define NUM_ELEMENTS_IN_HISTOGRAM

struct il_measurement_histogram {} __packed;

/* clear channel availability counters */
struct il_measurement_cca_counters {} __packed;

enum il_measure_type {};

/*
 * N_SPECTRUM_MEASUREMENT = 0x75 (notification only, not a command)
 */
struct il_spectrum_notification {} __packed;

/******************************************************************************
 * (7)
 * Power Management Commands, Responses, Notifications:
 *
 *****************************************************************************/

/**
 * struct il_powertable_cmd - Power Table Command
 * @flags: See below:
 *
 * C_POWER_TBL = 0x77 (command, has simple generic response)
 *
 * PM allow:
 *   bit 0 - '0' Driver not allow power management
 *           '1' Driver allow PM (use rest of parameters)
 *
 * uCode send sleep notifications:
 *   bit 1 - '0' Don't send sleep notification
 *           '1' send sleep notification (SEND_PM_NOTIFICATION)
 *
 * Sleep over DTIM
 *   bit 2 - '0' PM have to walk up every DTIM
 *           '1' PM could sleep over DTIM till listen Interval.
 *
 * PCI power managed
 *   bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
 *           '1' !(PCI_CFG_LINK_CTRL & 0x1)
 *
 * Fast PD
 *   bit 4 - '1' Put radio to sleep when receiving frame for others
 *
 * Force sleep Modes
 *   bit 31/30- '00' use both mac/xtal sleeps
 *              '01' force Mac sleep
 *              '10' force xtal sleep
 *              '11' Illegal set
 *
 * NOTE: if sleep_interval[SLEEP_INTRVL_TBL_SIZE-1] > DTIM period then
 * ucode assume sleep over DTIM is allowed and we don't need to wake up
 * for every DTIM.
 */
#define IL_POWER_VEC_SIZE

#define IL_POWER_DRIVER_ALLOW_SLEEP_MSK
#define IL_POWER_SLEEP_OVER_DTIM_MSK
#define IL_POWER_PCI_PM_MSK

struct il3945_powertable_cmd {} __packed;

struct il_powertable_cmd {} __packed;

/*
 * N_PM_SLEEP = 0x7A (notification only, not a command)
 * all devices identical.
 */
struct il_sleep_notification {} __packed;

/* Sleep states.  all devices identical. */
enum {};

/*
 * N_CARD_STATE = 0xa1 (notification only, not a command)
 */
struct il_card_state_notif {} __packed;

#define HW_CARD_DISABLED
#define SW_CARD_DISABLED
#define CT_CARD_DISABLED
#define RXON_CARD_DISABLED

struct il_ct_kill_config {} __packed;

/******************************************************************************
 * (8)
 * Scan Commands, Responses, Notifications:
 *
 *****************************************************************************/

#define SCAN_CHANNEL_TYPE_PASSIVE
#define SCAN_CHANNEL_TYPE_ACTIVE

/**
 * struct il_scan_channel - entry in C_SCAN channel table
 *
 * One for each channel in the scan list.
 * Each channel can independently select:
 * 1)  SSID for directed active scans
 * 2)  Txpower setting (for rate specified within Tx command)
 * 3)  How long to stay on-channel (behavior may be modified by quiet_time,
 *     quiet_plcp_th, good_CRC_th)
 *
 * To avoid uCode errors, make sure the following are true (see comments
 * under struct il_scan_cmd about max_out_time and quiet_time):
 * 1)  If using passive_dwell (i.e. passive_dwell != 0):
 *     active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
 * 2)  quiet_time <= active_dwell
 * 3)  If restricting off-channel time (i.e. max_out_time !=0):
 *     passive_dwell < max_out_time
 *     active_dwell < max_out_time
 */
struct il3945_scan_channel {} __packed;

/* set number of direct probes u8 type */
#define IL39_SCAN_PROBE_MASK(n)

struct il_scan_channel {} __packed;

/* set number of direct probes __le32 type */
#define IL_SCAN_PROBE_MASK(n)

/**
 * struct il_ssid_ie - directed scan network information element
 *
 * Up to 20 of these may appear in C_SCAN (Note: Only 4 are in
 * 3945 SCAN api), selected by "type" bit field in struct il_scan_channel;
 * each channel may select different ssids from among the 20 (4) entries.
 * SSID IEs get transmitted in reverse order of entry.
 */
struct il_ssid_ie {} __packed;

#define PROBE_OPTION_MAX_3945
#define PROBE_OPTION_MAX
#define TX_CMD_LIFE_TIME_INFINITE
#define IL_GOOD_CRC_TH_DISABLED
#define IL_GOOD_CRC_TH_DEFAULT
#define IL_GOOD_CRC_TH_NEVER
#define IL_MAX_SCAN_SIZE
#define IL_MAX_CMD_SIZE

/*
 * C_SCAN = 0x80 (command)
 *
 * The hardware scan command is very powerful; the driver can set it up to
 * maintain (relatively) normal network traffic while doing a scan in the
 * background.  The max_out_time and suspend_time control the ratio of how
 * long the device stays on an associated network channel ("service channel")
 * vs. how long it's away from the service channel, i.e. tuned to other channels
 * for scanning.
 *
 * max_out_time is the max time off-channel (in usec), and suspend_time
 * is how long (in "extended beacon" format) that the scan is "suspended"
 * after returning to the service channel.  That is, suspend_time is the
 * time that we stay on the service channel, doing normal work, between
 * scan segments.  The driver may set these parameters differently to support
 * scanning when associated vs. not associated, and light vs. heavy traffic
 * loads when associated.
 *
 * After receiving this command, the device's scan engine does the following;
 *
 * 1)  Sends SCAN_START notification to driver
 * 2)  Checks to see if it has time to do scan for one channel
 * 3)  Sends NULL packet, with power-save (PS) bit set to 1,
 *     to tell AP that we're going off-channel
 * 4)  Tunes to first channel in scan list, does active or passive scan
 * 5)  Sends SCAN_RESULT notification to driver
 * 6)  Checks to see if it has time to do scan on *next* channel in list
 * 7)  Repeats 4-6 until it no longer has time to scan the next channel
 *     before max_out_time expires
 * 8)  Returns to service channel
 * 9)  Sends NULL packet with PS=0 to tell AP that we're back
 * 10) Stays on service channel until suspend_time expires
 * 11) Repeats entire process 2-10 until list is complete
 * 12) Sends SCAN_COMPLETE notification
 *
 * For fast, efficient scans, the scan command also has support for staying on
 * a channel for just a short time, if doing active scanning and getting no
 * responses to the transmitted probe request.  This time is controlled by
 * quiet_time, and the number of received packets below which a channel is
 * considered "quiet" is controlled by quiet_plcp_threshold.
 *
 * For active scanning on channels that have regulatory restrictions against
 * blindly transmitting, the scan can listen before transmitting, to make sure
 * that there is already legitimate activity on the channel.  If enough
 * packets are cleanly received on the channel (controlled by good_CRC_th,
 * typical value 1), the scan engine starts transmitting probe requests.
 *
 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
 *
 * To avoid uCode errors, see timing restrictions described under
 * struct il_scan_channel.
 */

struct il3945_scan_cmd {} __packed;

struct il_scan_cmd {} __packed;

/* Can abort will notify by complete notification with abort status. */
#define CAN_ABORT_STATUS
/* complete notification statuses */
#define ABORT_STATUS

/*
 * C_SCAN = 0x80 (response)
 */
struct il_scanreq_notification {} __packed;

/*
 * N_SCAN_START = 0x82 (notification only, not a command)
 */
struct il_scanstart_notification {} __packed;

#define SCAN_OWNER_STATUS
#define MEASURE_OWNER_STATUS

#define IL_PROBE_STATUS_OK
#define IL_PROBE_STATUS_TX_FAILED
/* error statuses combined with TX_FAILED */
#define IL_PROBE_STATUS_FAIL_TTL
#define IL_PROBE_STATUS_FAIL_BT

#define NUMBER_OF_STATS
/*
 * N_SCAN_RESULTS = 0x83 (notification only, not a command)
 */
struct il_scanresults_notification {} __packed;

/*
 * N_SCAN_COMPLETE = 0x84 (notification only, not a command)
 */
struct il_scancomplete_notification {} __packed;

/******************************************************************************
 * (9)
 * IBSS/AP Commands and Notifications:
 *
 *****************************************************************************/

enum il_ibss_manager {};

/*
 * N_BEACON = 0x90 (notification only, not a command)
 */

struct il3945_beacon_notif {} __packed;

struct il4965_beacon_notif {} __packed;

/*
 * C_TX_BEACON= 0x91 (command, has simple generic response)
 */

struct il3945_tx_beacon_cmd {} __packed;

struct il_tx_beacon_cmd {} __packed;

/******************************************************************************
 * (10)
 * Statistics Commands and Notifications:
 *
 *****************************************************************************/

#define IL_TEMP_CONVERT

#define SUP_RATE_11A_MAX_NUM_CHANNELS
#define SUP_RATE_11B_MAX_NUM_CHANNELS
#define SUP_RATE_11G_MAX_NUM_CHANNELS

/* Used for passing to driver number of successes and failures per rate */
struct rate_histogram {} __packed;

/* stats command response */

struct iwl39_stats_rx_phy {} __packed;

struct iwl39_stats_rx_non_phy {} __packed;

struct iwl39_stats_rx {} __packed;

struct iwl39_stats_tx {} __packed;

struct stats_dbg {} __packed;

struct iwl39_stats_div {} __packed;

struct iwl39_stats_general {} __packed;

struct stats_rx_phy {} __packed;

struct stats_rx_ht_phy {} __packed;

#define INTERFERENCE_DATA_AVAILABLE

struct stats_rx_non_phy {} __packed;

struct stats_rx {} __packed;

/**
 * struct stats_tx_power - current tx power
 *
 * @ant_a: current tx power on chain a in 1/2 dB step
 * @ant_b: current tx power on chain b in 1/2 dB step
 * @ant_c: current tx power on chain c in 1/2 dB step
 */
struct stats_tx_power {} __packed;

struct stats_tx_non_phy_agg {} __packed;

struct stats_tx {} __packed;

struct stats_div {} __packed;

struct stats_general_common {} __packed;

struct stats_general {} __packed;

#define UCODE_STATS_CLEAR_MSK
#define UCODE_STATS_FREQUENCY_MSK
#define UCODE_STATS_NARROW_BAND_MSK

/*
 * C_STATS = 0x9c,
 * all devices identical.
 *
 * This command triggers an immediate response containing uCode stats.
 * The response is in the same format as N_STATS 0x9d, below.
 *
 * If the CLEAR_STATS configuration flag is set, uCode will clear its
 * internal copy of the stats (counters) after issuing the response.
 * This flag does not affect N_STATSs after beacons (see below).
 *
 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
 * N_STATSs after received beacons (see below).  This flag
 * does not affect the response to the C_STATS 0x9c itself.
 */
#define IL_STATS_CONF_CLEAR_STATS
#define IL_STATS_CONF_DISABLE_NOTIF
struct il_stats_cmd {} __packed;

/*
 * N_STATS = 0x9d (notification only, not a command)
 *
 * By default, uCode issues this notification after receiving a beacon
 * while associated.  To disable this behavior, set DISABLE_NOTIF flag in the
 * C_STATS 0x9c, above.
 *
 * Statistics counters continue to increment beacon after beacon, but are
 * cleared when changing channels or when driver issues C_STATS
 * 0x9c with CLEAR_STATS bit set (see above).
 *
 * uCode also issues this notification during scans.  uCode clears stats
 * appropriately so that each notification contains stats for only the
 * one channel that has just been scanned.
 */
#define STATS_REPLY_FLG_BAND_24G_MSK
#define STATS_REPLY_FLG_HT40_MODE_MSK

struct il3945_notif_stats {} __packed;

struct il_notif_stats {} __packed;

/*
 * N_MISSED_BEACONS = 0xa2 (notification only, not a command)
 *
 * uCode send N_MISSED_BEACONS to driver when detect beacon missed
 * in regardless of how many missed beacons, which mean when driver receive the
 * notification, inside the command, it can find all the beacons information
 * which include number of total missed beacons, number of consecutive missed
 * beacons, number of beacons received and number of beacons expected to
 * receive.
 *
 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
 * in order to bring the radio/PHY back to working state; which has no relation
 * to when driver will perform sensitivity calibration.
 *
 * Driver should set it own missed_beacon_threshold to decide when to perform
 * sensitivity calibration based on number of consecutive missed beacons in
 * order to improve overall performance, especially in noisy environment.
 *
 */

#define IL_MISSED_BEACON_THRESHOLD_MIN
#define IL_MISSED_BEACON_THRESHOLD_DEF
#define IL_MISSED_BEACON_THRESHOLD_MAX

struct il_missed_beacon_notif {} __packed;

/******************************************************************************
 * (11)
 * Rx Calibration Commands:
 *
 * With the uCode used for open source drivers, most Tx calibration (except
 * for Tx Power) and most Rx calibration is done by uCode during the
 * "initialize" phase of uCode boot.  Driver must calibrate only:
 *
 * 1)  Tx power (depends on temperature), described elsewhere
 * 2)  Receiver gain balance (optimize MIMO, and detect disconnected antennas)
 * 3)  Receiver sensitivity (to optimize signal detection)
 *
 *****************************************************************************/

/**
 * C_SENSITIVITY = 0xa8 (command, has simple generic response)
 *
 * This command sets up the Rx signal detector for a sensitivity level that
 * is high enough to lock onto all signals within the associated network,
 * but low enough to ignore signals that are below a certain threshold, so as
 * not to have too many "false alarms".  False alarms are signals that the
 * Rx DSP tries to lock onto, but then discards after determining that they
 * are noise.
 *
 * The optimum number of false alarms is between 5 and 50 per 200 TUs
 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
 * time listening, not transmitting).  Driver must adjust sensitivity so that
 * the ratio of actual false alarms to actual Rx time falls within this range.
 *
 * While associated, uCode delivers N_STATSs after each
 * received beacon.  These provide information to the driver to analyze the
 * sensitivity.  Don't analyze stats that come in from scanning, or any
 * other non-associated-network source.  Pertinent stats include:
 *
 * From "general" stats (struct stats_rx_non_phy):
 *
 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
 *   Measure of energy of desired signal.  Used for establishing a level
 *   below which the device does not detect signals.
 *
 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
 *   Measure of background noise in silent period after beacon.
 *
 * channel_load
 *   uSecs of actual Rx time during beacon period (varies according to
 *   how much time was spent transmitting).
 *
 * From "cck" and "ofdm" stats (struct stats_rx_phy), separately:
 *
 * false_alarm_cnt
 *   Signal locks abandoned early (before phy-level header).
 *
 * plcp_err
 *   Signal locks abandoned late (during phy-level header).
 *
 * NOTE:  Both false_alarm_cnt and plcp_err increment monotonically from
 *        beacon to beacon, i.e. each value is an accumulation of all errors
 *        before and including the latest beacon.  Values will wrap around to 0
 *        after counting up to 2^32 - 1.  Driver must differentiate vs.
 *        previous beacon's values to determine # false alarms in the current
 *        beacon period.
 *
 * Total number of false alarms = false_alarms + plcp_errs
 *
 * For OFDM, adjust the following table entries in struct il_sensitivity_cmd
 * (notice that the start points for OFDM are at or close to settings for
 * maximum sensitivity):
 *
 *                                             START  /  MIN  /  MAX
 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_IDX          90   /   85  /  120
 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX     170   /  170  /  210
 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_IDX         105   /  105  /  140
 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX     220   /  220  /  270
 *
 *   If actual rate of OFDM false alarms (+ plcp_errors) is too high
 *   (greater than 50 for each 204.8 msecs listening), reduce sensitivity
 *   by *adding* 1 to all 4 of the table entries above, up to the max for
 *   each entry.  Conversely, if false alarm rate is too low (less than 5
 *   for each 204.8 msecs listening), *subtract* 1 from each entry to
 *   increase sensitivity.
 *
 * For CCK sensitivity, keep track of the following:
 *
 *   1).  20-beacon history of maximum background noise, indicated by
 *        (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
 *        3 receivers.  For any given beacon, the "silence reference" is
 *        the maximum of last 60 samples (20 beacons * 3 receivers).
 *
 *   2).  10-beacon history of strongest signal level, as indicated
 *        by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
 *        i.e. the strength of the signal through the best receiver at the
 *        moment.  These measurements are "upside down", with lower values
 *        for stronger signals, so max energy will be *minimum* value.
 *
 *        Then for any given beacon, the driver must determine the *weakest*
 *        of the strongest signals; this is the minimum level that needs to be
 *        successfully detected, when using the best receiver at the moment.
 *        "Max cck energy" is the maximum (higher value means lower energy!)
 *        of the last 10 minima.  Once this is determined, driver must add
 *        a little margin by adding "6" to it.
 *
 *   3).  Number of consecutive beacon periods with too few false alarms.
 *        Reset this to 0 at the first beacon period that falls within the
 *        "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
 *
 * Then, adjust the following CCK table entries in struct il_sensitivity_cmd
 * (notice that the start points for CCK are at maximum sensitivity):
 *
 *                                             START  /  MIN  /  MAX
 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX         125   /  125  /  200
 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX     200   /  200  /  400
 *   HD_MIN_ENERGY_CCK_DET_IDX                100   /    0  /  100
 *
 *   If actual rate of CCK false alarms (+ plcp_errors) is too high
 *   (greater than 50 for each 204.8 msecs listening), method for reducing
 *   sensitivity is:
 *
 *   1)  *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX,
 *       up to max 400.
 *
 *   2)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX is < 160,
 *       sensitivity has been reduced a significant amount; bring it up to
 *       a moderate 161.  Otherwise, *add* 3, up to max 200.
 *
 *   3)  a)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX is > 160,
 *       sensitivity has been reduced only a moderate or small amount;
 *       *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_IDX,
 *       down to min 0.  Otherwise (if gain has been significantly reduced),
 *       don't change the HD_MIN_ENERGY_CCK_DET_IDX value.
 *
 *       b)  Save a snapshot of the "silence reference".
 *
 *   If actual rate of CCK false alarms (+ plcp_errors) is too low
 *   (less than 5 for each 204.8 msecs listening), method for increasing
 *   sensitivity is used only if:
 *
 *   1a)  Previous beacon did not have too many false alarms
 *   1b)  AND difference between previous "silence reference" and current
 *        "silence reference" (prev - current) is 2 or more,
 *   OR 2)  100 or more consecutive beacon periods have had rate of
 *          less than 5 false alarms per 204.8 milliseconds rx time.
 *
 *   Method for increasing sensitivity:
 *
 *   1)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX,
 *       down to min 125.
 *
 *   2)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX,
 *       down to min 200.
 *
 *   3)  *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_IDX, up to max 100.
 *
 *   If actual rate of CCK false alarms (+ plcp_errors) is within good range
 *   (between 5 and 50 for each 204.8 msecs listening):
 *
 *   1)  Save a snapshot of the silence reference.
 *
 *   2)  If previous beacon had too many CCK false alarms (+ plcp_errors),
 *       give some extra margin to energy threshold by *subtracting* 8
 *       from value in HD_MIN_ENERGY_CCK_DET_IDX.
 *
 *   For all cases (too few, too many, good range), make sure that the CCK
 *   detection threshold (energy) is below the energy level for robust
 *   detection over the past 10 beacon periods, the "Max cck energy".
 *   Lower values mean higher energy; this means making sure that the value
 *   in HD_MIN_ENERGY_CCK_DET_IDX is at or *above* "Max cck energy".
 *
 */

/*
 * Table entries in C_SENSITIVITY (struct il_sensitivity_cmd)
 */
#define HD_TBL_SIZE
#define HD_MIN_ENERGY_CCK_DET_IDX
#define HD_MIN_ENERGY_OFDM_DET_IDX
#define HD_AUTO_CORR32_X1_TH_ADD_MIN_IDX
#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX
#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX
#define HD_AUTO_CORR32_X4_TH_ADD_MIN_IDX
#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX
#define HD_BARKER_CORR_TH_ADD_MIN_IDX
#define HD_BARKER_CORR_TH_ADD_MIN_MRC_IDX
#define HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX
#define HD_OFDM_ENERGY_TH_IN_IDX

/* Control field in struct il_sensitivity_cmd */
#define C_SENSITIVITY_CONTROL_DEFAULT_TBL
#define C_SENSITIVITY_CONTROL_WORK_TBL

/**
 * struct il_sensitivity_cmd
 * @control:  (1) updates working table, (0) updates default table
 * @table:  energy threshold values, use HD_* as idx into table
 *
 * Always use "1" in "control" to update uCode's working table and DSP.
 */
struct il_sensitivity_cmd {} __packed;

/**
 * C_PHY_CALIBRATION = 0xb0 (command, has simple generic response)
 *
 * This command sets the relative gains of 4965 device's 3 radio receiver chains.
 *
 * After the first association, driver should accumulate signal and noise
 * stats from the N_STATSs that follow the first 20
 * beacons from the associated network (don't collect stats that come
 * in from scanning, or any other non-network source).
 *
 * DISCONNECTED ANTENNA:
 *
 * Driver should determine which antennas are actually connected, by comparing
 * average beacon signal levels for the 3 Rx chains.  Accumulate (add) the
 * following values over 20 beacons, one accumulator for each of the chains
 * a/b/c, from struct stats_rx_non_phy:
 *
 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
 *
 * Find the strongest signal from among a/b/c.  Compare the other two to the
 * strongest.  If any signal is more than 15 dB (times 20, unless you
 * divide the accumulated values by 20) below the strongest, the driver
 * considers that antenna to be disconnected, and should not try to use that
 * antenna/chain for Rx or Tx.  If both A and B seem to be disconnected,
 * driver should declare the stronger one as connected, and attempt to use it
 * (A and B are the only 2 Tx chains!).
 *
 *
 * RX BALANCE:
 *
 * Driver should balance the 3 receivers (but just the ones that are connected
 * to antennas, see above) for gain, by comparing the average signal levels
 * detected during the silence after each beacon (background noise).
 * Accumulate (add) the following values over 20 beacons, one accumulator for
 * each of the chains a/b/c, from struct stats_rx_non_phy:
 *
 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
 *
 * Find the weakest background noise level from among a/b/c.  This Rx chain
 * will be the reference, with 0 gain adjustment.  Attenuate other channels by
 * finding noise difference:
 *
 * (accum_noise[i] - accum_noise[reference]) / 30
 *
 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
 * For use in diff_gain_[abc] fields of struct il_calibration_cmd, the
 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
 * and set bit 2 to indicate "reduce gain".  The value for the reference
 * (weakest) chain should be "0".
 *
 * diff_gain_[abc] bit fields:
 *   2: (1) reduce gain, (0) increase gain
 * 1-0: amount of gain, units of 1.5 dB
 */

/* Phy calibration command for series */
/* The default calibrate table size if not specified by firmware */
#define IL_DEFAULT_STANDARD_PHY_CALIBRATE_TBL_SIZE
enum {};

#define IL_MAX_PHY_CALIBRATE_TBL_SIZE

struct il_calib_hdr {} __packed;

/* IL_PHY_CALIBRATE_DIFF_GAIN_CMD (7) */
struct il_calib_diff_gain_cmd {} __packed;

/******************************************************************************
 * (12)
 * Miscellaneous Commands:
 *
 *****************************************************************************/

/*
 * LEDs Command & Response
 * C_LEDS = 0x48 (command, has simple generic response)
 *
 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
 * this command turns it on or off, or sets up a periodic blinking cycle.
 */
struct il_led_cmd {} __packed;

/******************************************************************************
 * (13)
 * Union of all expected notifications/responses:
 *
 *****************************************************************************/

#define IL_RX_FRAME_SIZE_MSK

struct il_rx_pkt {} __packed;

#endif /* __il_commands_h__ */