linux/drivers/net/wireless/intel/iwlwifi/dvm/commands.h

/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
/*
 * Copyright (C) 2005-2014, 2023-2024 Intel Corporation
 */
/*
 * Please use this file (commands.h) only for uCode API definitions.
 * Please use iwl-xxxx-hw.h for hardware-related definitions.
 * Please use dev.h for driver implementation definitions.
 */

#ifndef __iwl_commands_h__
#define __iwl_commands_h__

#include <linux/ieee80211.h>
#include <linux/types.h>


enum {};

/*
 * Minimum number of queues. MAX_NUM is defined in hw specific files.
 * Set the minimum to accommodate
 *  - 4 standard TX queues
 *  - the command queue
 *  - 4 PAN TX queues
 *  - the PAN multicast queue, and
 *  - the AUX (TX during scan dwell) queue.
 */
#define IWL_MIN_NUM_QUEUES

/*
 * Command queue depends on iPAN support.
 */
#define IWL_DEFAULT_CMD_QUEUE_NUM
#define IWL_IPAN_CMD_QUEUE_NUM

#define IWL_TX_FIFO_BK
#define IWL_TX_FIFO_BE
#define IWL_TX_FIFO_VI
#define IWL_TX_FIFO_VO
#define IWL_TX_FIFO_BK_IPAN
#define IWL_TX_FIFO_BE_IPAN
#define IWL_TX_FIFO_VI_IPAN
#define IWL_TX_FIFO_VO_IPAN
/* re-uses the VO FIFO, uCode will properly flush/schedule */
#define IWL_TX_FIFO_AUX
#define IWL_TX_FIFO_UNUSED

#define IWLAGN_CMD_FIFO_NUM

/*
 * This queue number is required for proper operation
 * because the ucode will stop/start the scheduler as
 * required.
 */
#define IWL_IPAN_MCAST_QUEUE

/******************************************************************************
 * (0)
 * Commonly used structures and definitions:
 * Command header, rate_n_flags, txpower
 *
 *****************************************************************************/

/*
 * iwlagn rate_n_flags bit fields
 *
 * rate_n_flags format is used in following iwlagn commands:
 *  REPLY_RX (response only)
 *  REPLY_RX_MPDU (response only)
 *  REPLY_TX (both command and response)
 *  REPLY_TX_LINK_QUALITY_CMD
 *
 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
 *  2-0:  0)   6 Mbps
 *        1)  12 Mbps
 *        2)  18 Mbps
 *        3)  24 Mbps
 *        4)  36 Mbps
 *        5)  48 Mbps
 *        6)  54 Mbps
 *        7)  60 Mbps
 *
 *  4-3:  0)  Single stream (SISO)
 *        1)  Dual stream (MIMO)
 *        2)  Triple stream (MIMO)
 *
 *    5:  Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
 *
 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
 *  3-0:  0xD)   6 Mbps
 *        0xF)   9 Mbps
 *        0x5)  12 Mbps
 *        0x7)  18 Mbps
 *        0x9)  24 Mbps
 *        0xB)  36 Mbps
 *        0x1)  48 Mbps
 *        0x3)  54 Mbps
 *
 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
 *  6-0:   10)  1 Mbps
 *         20)  2 Mbps
 *         55)  5.5 Mbps
 *        110)  11 Mbps
 */
#define RATE_MCS_CODE_MSK
#define RATE_MCS_SPATIAL_POS
#define RATE_MCS_SPATIAL_MSK
#define RATE_MCS_HT_DUP_POS
#define RATE_MCS_HT_DUP_MSK
/* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
#define RATE_MCS_RATE_MSK

/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
#define RATE_MCS_FLAGS_POS
#define RATE_MCS_HT_POS
#define RATE_MCS_HT_MSK

/* Bit 9: (1) CCK, (0) OFDM.  HT (bit 8) must be "0" for this bit to be valid */
#define RATE_MCS_CCK_POS
#define RATE_MCS_CCK_MSK

/* Bit 10: (1) Use Green Field preamble */
#define RATE_MCS_GF_POS
#define RATE_MCS_GF_MSK

/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
#define RATE_MCS_HT40_POS
#define RATE_MCS_HT40_MSK

/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
#define RATE_MCS_DUP_POS
#define RATE_MCS_DUP_MSK

/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
#define RATE_MCS_SGI_POS
#define RATE_MCS_SGI_MSK

/*
 * rate_n_flags Tx antenna masks
 * bit14:16
 */
#define RATE_MCS_ANT_POS
#define RATE_MCS_ANT_A_MSK
#define RATE_MCS_ANT_B_MSK
#define RATE_MCS_ANT_C_MSK
#define RATE_MCS_ANT_AB_MSK
#define RATE_MCS_ANT_ABC_MSK
#define RATE_ANT_NUM

#define POWER_TABLE_NUM_ENTRIES
#define POWER_TABLE_NUM_HT_OFDM_ENTRIES
#define POWER_TABLE_CCK_ENTRY

#define IWL_PWR_NUM_HT_OFDM_ENTRIES
#define IWL_PWR_CCK_ENTRIES

/*
 * struct tx_power_dual_stream
 *
 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
 *
 * Same format as iwl_tx_power_dual_stream, but __le32
 */
struct tx_power_dual_stream {} __packed;

/*
 * Command REPLY_TX_POWER_DBM_CMD = 0x98
 * struct iwlagn_tx_power_dbm_cmd
 */
#define IWLAGN_TX_POWER_AUTO
#define IWLAGN_TX_POWER_NO_CLOSED

struct iwlagn_tx_power_dbm_cmd {} __packed;

/*
 * Command TX_ANT_CONFIGURATION_CMD = 0x98
 * This command is used to configure valid Tx antenna.
 * By default uCode concludes the valid antenna according to the radio flavor.
 * This command enables the driver to override/modify this conclusion.
 */
struct iwl_tx_ant_config_cmd {} __packed;

/******************************************************************************
 * (0a)
 * Alive and Error Commands & Responses:
 *
 *****************************************************************************/

#define UCODE_VALID_OK

/*
 * REPLY_ALIVE = 0x1 (response only, not a command)
 *
 * uCode issues this "alive" notification once the runtime image is ready
 * to receive commands from the driver.  This is the *second* "alive"
 * notification that the driver will receive after rebooting uCode;
 * this "alive" is indicated by subtype field != 9.
 *
 * See comments documenting "BSM" (bootstrap state machine).
 *
 * This response includes two pointers to structures within the device's
 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
 *
 * 1)  log_event_table_ptr indicates base of the event log.  This traces
 *     a 256-entry history of uCode execution within a circular buffer.
 *     Its header format is:
 *
 *	__le32 log_size;     log capacity (in number of entries)
 *	__le32 type;         (1) timestamp with each entry, (0) no timestamp
 *	__le32 wraps;        # times uCode has wrapped to top of circular buffer
 *      __le32 write_index;  next circular buffer entry that uCode would fill
 *
 *     The header is followed by the circular buffer of log entries.  Entries
 *     with timestamps have the following format:
 *
 *	__le32 event_id;     range 0 - 1500
 *	__le32 timestamp;    low 32 bits of TSF (of network, if associated)
 *	__le32 data;         event_id-specific data value
 *
 *     Entries without timestamps contain only event_id and data.
 *
 *
 * 2)  error_event_table_ptr indicates base of the error log.  This contains
 *     information about any uCode error that occurs.  For agn, the format
 *     of the error log is defined by struct iwl_error_event_table.
 *
 * The Linux driver can print both logs to the system log when a uCode error
 * occurs.
 */

/*
 * Note: This structure is read from the device with IO accesses,
 * and the reading already does the endian conversion. As it is
 * read with u32-sized accesses, any members with a different size
 * need to be ordered correctly though!
 */
struct iwl_error_event_table {} __packed;

struct iwl_alive_resp {} __packed;

/*
 * REPLY_ERROR = 0x2 (response only, not a command)
 */
struct iwl_error_resp {} __packed;

/******************************************************************************
 * (1)
 * RXON Commands & Responses:
 *
 *****************************************************************************/

/*
 * Rx config defines & structure
 */
/* rx_config device types  */
enum {};


#define RXON_RX_CHAIN_DRIVER_FORCE_MSK
#define RXON_RX_CHAIN_DRIVER_FORCE_POS
#define RXON_RX_CHAIN_VALID_MSK
#define RXON_RX_CHAIN_VALID_POS
#define RXON_RX_CHAIN_FORCE_SEL_MSK
#define RXON_RX_CHAIN_FORCE_SEL_POS
#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK
#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS
#define RXON_RX_CHAIN_CNT_MSK
#define RXON_RX_CHAIN_CNT_POS
#define RXON_RX_CHAIN_MIMO_CNT_MSK
#define RXON_RX_CHAIN_MIMO_CNT_POS
#define RXON_RX_CHAIN_MIMO_FORCE_MSK
#define RXON_RX_CHAIN_MIMO_FORCE_POS

/* rx_config flags */
/* band & modulation selection */
#define RXON_FLG_BAND_24G_MSK
#define RXON_FLG_CCK_MSK
/* auto detection enable */
#define RXON_FLG_AUTO_DETECT_MSK
/* TGg protection when tx */
#define RXON_FLG_TGG_PROTECT_MSK
/* cck short slot & preamble */
#define RXON_FLG_SHORT_SLOT_MSK
#define RXON_FLG_SHORT_PREAMBLE_MSK
/* antenna selection */
#define RXON_FLG_DIS_DIV_MSK
#define RXON_FLG_ANT_SEL_MSK
#define RXON_FLG_ANT_A_MSK
#define RXON_FLG_ANT_B_MSK
/* radar detection enable */
#define RXON_FLG_RADAR_DETECT_MSK
#define RXON_FLG_TGJ_NARROW_BAND_MSK
/* rx response to host with 8-byte TSF
* (according to ON_AIR deassertion) */
#define RXON_FLG_TSF2HOST_MSK


/* HT flags */
#define RXON_FLG_CTRL_CHANNEL_LOC_POS
#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK

#define RXON_FLG_HT_OPERATING_MODE_POS

#define RXON_FLG_HT_PROT_MSK
#define RXON_FLG_HT40_PROT_MSK

#define RXON_FLG_CHANNEL_MODE_POS
#define RXON_FLG_CHANNEL_MODE_MSK

/* channel mode */
enum {};
#define RXON_FLG_CHANNEL_MODE_LEGACY
#define RXON_FLG_CHANNEL_MODE_PURE_40
#define RXON_FLG_CHANNEL_MODE_MIXED

/* CTS to self (if spec allows) flag */
#define RXON_FLG_SELF_CTS_EN

/* rx_config filter flags */
/* accept all data frames */
#define RXON_FILTER_PROMISC_MSK
/* pass control & management to host */
#define RXON_FILTER_CTL2HOST_MSK
/* accept multi-cast */
#define RXON_FILTER_ACCEPT_GRP_MSK
/* don't decrypt uni-cast frames */
#define RXON_FILTER_DIS_DECRYPT_MSK
/* don't decrypt multi-cast frames */
#define RXON_FILTER_DIS_GRP_DECRYPT_MSK
/* STA is associated */
#define RXON_FILTER_ASSOC_MSK
/* transfer to host non bssid beacons in associated state */
#define RXON_FILTER_BCON_AWARE_MSK

/*
 * REPLY_RXON = 0x10 (command, has simple generic response)
 *
 * RXON tunes the radio tuner to a service channel, and sets up a number
 * of parameters that are used primarily for Rx, but also for Tx operations.
 *
 * NOTE:  When tuning to a new channel, driver must set the
 *        RXON_FILTER_ASSOC_MSK to 0.  This will clear station-dependent
 *        info within the device, including the station tables, tx retry
 *        rate tables, and txpower tables.  Driver must build a new station
 *        table and txpower table before transmitting anything on the RXON
 *        channel.
 *
 * NOTE:  All RXONs wipe clean the internal txpower table.  Driver must
 *        issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
 *        regardless of whether RXON_FILTER_ASSOC_MSK is set.
 */

struct iwl_rxon_cmd {} __packed;

/*
 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
 */
struct iwl_rxon_assoc_cmd {} __packed;

#define IWL_CONN_MAX_LISTEN_INTERVAL
#define IWL_MAX_UCODE_BEACON_INTERVAL

/*
 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
 */
struct iwl_rxon_time_cmd {} __packed;

/*
 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
 */
/**
 * struct iwl5000_channel_switch_cmd
 * @band: 0- 5.2GHz, 1- 2.4GHz
 * @expect_beacon: 0- resume transmits after channel switch
 *		   1- wait for beacon to resume transmits
 * @channel: new channel number
 * @rxon_flags: Rx on flags
 * @rxon_filter_flags: filtering parameters
 * @switch_time: switch time in extended beacon format
 * @reserved: reserved bytes
 */
struct iwl5000_channel_switch_cmd {} __packed;

/**
 * struct iwl6000_channel_switch_cmd
 * @band: 0- 5.2GHz, 1- 2.4GHz
 * @expect_beacon: 0- resume transmits after channel switch
 *		   1- wait for beacon to resume transmits
 * @channel: new channel number
 * @rxon_flags: Rx on flags
 * @rxon_filter_flags: filtering parameters
 * @switch_time: switch time in extended beacon format
 * @reserved: reserved bytes
 */
struct iwl6000_channel_switch_cmd {} __packed;

/*
 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
 */
struct iwl_csa_notification {} __packed;

/******************************************************************************
 * (2)
 * Quality-of-Service (QOS) Commands & Responses:
 *
 *****************************************************************************/

/**
 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
 *
 * @cw_min: Contention window, start value in numbers of slots.
 *          Should be a power-of-2, minus 1.  Device's default is 0x0f.
 * @cw_max: Contention window, max value in numbers of slots.
 *          Should be a power-of-2, minus 1.  Device's default is 0x3f.
 * @aifsn:  Number of slots in Arbitration Interframe Space (before
 *          performing random backoff timing prior to Tx).  Device default 1.
 * @edca_txop:  Length of Tx opportunity, in uSecs.  Device default is 0.
 * @reserved1: reserved for alignment
 *
 * Device will automatically increase contention window by (2*CW) + 1 for each
 * transmission retry.  Device uses cw_max as a bit mask, ANDed with new CW
 * value, to cap the CW value.
 */
struct iwl_ac_qos {} __packed;

/* QoS flags defines */
#define QOS_PARAM_FLG_UPDATE_EDCA_MSK
#define QOS_PARAM_FLG_TGN_MSK
#define QOS_PARAM_FLG_TXOP_TYPE_MSK

/* Number of Access Categories (AC) (EDCA), queues 0..3 */
#define AC_NUM

/*
 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
 *
 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
 */
struct iwl_qosparam_cmd {} __packed;

/******************************************************************************
 * (3)
 * Add/Modify Stations Commands & Responses:
 *
 *****************************************************************************/
/*
 * Multi station support
 */

/* Special, dedicated locations within device's station table */
#define IWL_AP_ID
#define IWL_AP_ID_PAN
#define IWL_STA_ID
#define IWLAGN_PAN_BCAST_ID
#define IWLAGN_BROADCAST_ID
#define IWLAGN_STATION_COUNT

#define IWL_TID_NON_QOS

#define STA_FLG_TX_RATE_MSK
#define STA_FLG_PWR_SAVE_MSK
#define STA_FLG_PAN_STATION
#define STA_FLG_RTS_MIMO_PROT_MSK
#define STA_FLG_AGG_MPDU_8US_MSK
#define STA_FLG_MAX_AGG_SIZE_POS
#define STA_FLG_MAX_AGG_SIZE_MSK
#define STA_FLG_HT40_EN_MSK
#define STA_FLG_MIMO_DIS_MSK
#define STA_FLG_AGG_MPDU_DENSITY_POS
#define STA_FLG_AGG_MPDU_DENSITY_MSK

/* Use in mode field.  1: modify existing entry, 0: add new station entry */
#define STA_CONTROL_MODIFY_MSK

/* key flags __le16*/
#define STA_KEY_FLG_ENCRYPT_MSK
#define STA_KEY_FLG_NO_ENC
#define STA_KEY_FLG_WEP
#define STA_KEY_FLG_CCMP
#define STA_KEY_FLG_TKIP

#define STA_KEY_FLG_KEYID_POS
#define STA_KEY_FLG_INVALID
/* wep key is either from global key (0) or from station info array (1) */
#define STA_KEY_FLG_MAP_KEY_MSK

/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
#define STA_KEY_FLG_KEY_SIZE_MSK
#define STA_KEY_MULTICAST_MSK
#define STA_KEY_MAX_NUM
#define STA_KEY_MAX_NUM_PAN
/* must not match WEP_INVALID_OFFSET */
#define IWLAGN_HW_KEY_DEFAULT

/* Flags indicate whether to modify vs. don't change various station params */
#define STA_MODIFY_KEY_MASK
#define STA_MODIFY_TID_DISABLE_TX
#define STA_MODIFY_TX_RATE_MSK
#define STA_MODIFY_ADDBA_TID_MSK
#define STA_MODIFY_DELBA_TID_MSK
#define STA_MODIFY_SLEEP_TX_COUNT_MSK

/* agn */
struct iwl_keyinfo {} __packed;

/**
 * struct sta_id_modify
 * @addr: station's MAC address
 * @reserved1: reserved for alignment
 * @sta_id: index of station in uCode's station table
 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
 * @reserved2: reserved for alignment
 *
 * Driver selects unused table index when adding new station,
 * or the index to a pre-existing station entry when modifying that station.
 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
 *
 * modify_mask flags select which parameters to modify vs. leave alone.
 */
struct sta_id_modify {} __packed;

/*
 * REPLY_ADD_STA = 0x18 (command)
 *
 * The device contains an internal table of per-station information,
 * with info on security keys, aggregation parameters, and Tx rates for
 * initial Tx attempt and any retries (agn devices uses
 * REPLY_TX_LINK_QUALITY_CMD,
 *
 * REPLY_ADD_STA sets up the table entry for one station, either creating
 * a new entry, or modifying a pre-existing one.
 *
 * NOTE:  RXON command (without "associated" bit set) wipes the station table
 *        clean.  Moving into RF_KILL state does this also.  Driver must set up
 *        new station table before transmitting anything on the RXON channel
 *        (except active scans or active measurements; those commands carry
 *        their own txpower/rate setup data).
 *
 *        When getting started on a new channel, driver must set up the
 *        IWL_BROADCAST_ID entry (last entry in the table).  For a client
 *        station in a BSS, once an AP is selected, driver sets up the AP STA
 *        in the IWL_AP_ID entry (1st entry in the table).  BROADCAST and AP
 *        are all that are needed for a BSS client station.  If the device is
 *        used as AP, or in an IBSS network, driver must set up station table
 *        entries for all STAs in network, starting with index IWL_STA_ID.
 */

struct iwl_addsta_cmd {} __packed;


#define ADD_STA_SUCCESS_MSK
#define ADD_STA_NO_ROOM_IN_TABLE
#define ADD_STA_NO_BLOCK_ACK_RESOURCE
#define ADD_STA_MODIFY_NON_EXIST_STA
/*
 * REPLY_ADD_STA = 0x18 (response)
 */
struct iwl_add_sta_resp {} __packed;

#define REM_STA_SUCCESS_MSK
/*
 *  REPLY_REM_STA = 0x19 (response)
 */
struct iwl_rem_sta_resp {} __packed;

/*
 *  REPLY_REM_STA = 0x19 (command)
 */
struct iwl_rem_sta_cmd {} __packed;


/* WiFi queues mask */
#define IWL_SCD_BK_MSK
#define IWL_SCD_BE_MSK
#define IWL_SCD_VI_MSK
#define IWL_SCD_VO_MSK
#define IWL_SCD_MGMT_MSK

/* PAN queues mask */
#define IWL_PAN_SCD_BK_MSK
#define IWL_PAN_SCD_BE_MSK
#define IWL_PAN_SCD_VI_MSK
#define IWL_PAN_SCD_VO_MSK
#define IWL_PAN_SCD_MGMT_MSK
#define IWL_PAN_SCD_MULTICAST_MSK

#define IWL_AGG_TX_QUEUE_MSK

#define IWL_DROP_ALL

/*
 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
 *
 * When using full FIFO flush this command checks the scheduler HW block WR/RD
 * pointers to check if all the frames were transferred by DMA into the
 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
 * empty the command can finish.
 * This command is used to flush the TXFIFO from transmit commands, it may
 * operate on single or multiple queues, the command queue can't be flushed by
 * this command. The command response is returned when all the queue flush
 * operations are done. Each TX command flushed return response with the FLUSH
 * status set in the TX response status. When FIFO flush operation is used,
 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
 * are set.
 *
 * @queue_control: bit mask for which queues to flush
 * @flush_control: flush controls
 *	0: Dump single MSDU
 *	1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
 *	2: Dump all FIFO
 */
struct iwl_txfifo_flush_cmd_v3 {} __packed;

struct iwl_txfifo_flush_cmd_v2 {} __packed;

/*
 * REPLY_WEP_KEY = 0x20
 */
struct iwl_wep_key {} __packed;

struct iwl_wep_cmd {} __packed;

#define WEP_KEY_WEP_TYPE
#define WEP_KEYS_MAX
#define WEP_INVALID_OFFSET
#define WEP_KEY_LEN_64
#define WEP_KEY_LEN_128

/******************************************************************************
 * (4)
 * Rx Responses:
 *
 *****************************************************************************/

#define RX_RES_STATUS_NO_CRC32_ERROR
#define RX_RES_STATUS_NO_RXE_OVERFLOW

#define RX_RES_PHY_FLAGS_BAND_24_MSK
#define RX_RES_PHY_FLAGS_MOD_CCK_MSK
#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK
#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK
#define RX_RES_PHY_FLAGS_ANTENNA_MSK
#define RX_RES_PHY_FLAGS_ANTENNA_POS
#define RX_RES_PHY_FLAGS_AGG_MSK

#define RX_RES_STATUS_SEC_TYPE_MSK
#define RX_RES_STATUS_SEC_TYPE_NONE
#define RX_RES_STATUS_SEC_TYPE_WEP
#define RX_RES_STATUS_SEC_TYPE_CCMP
#define RX_RES_STATUS_SEC_TYPE_TKIP
#define RX_RES_STATUS_SEC_TYPE_ERR

#define RX_RES_STATUS_STATION_FOUND
#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH

#define RX_RES_STATUS_DECRYPT_TYPE_MSK
#define RX_RES_STATUS_NOT_DECRYPT
#define RX_RES_STATUS_DECRYPT_OK
#define RX_RES_STATUS_BAD_ICV_MIC
#define RX_RES_STATUS_BAD_KEY_TTAK

#define RX_MPDU_RES_STATUS_ICV_OK
#define RX_MPDU_RES_STATUS_MIC_OK
#define RX_MPDU_RES_STATUS_TTAK_OK
#define RX_MPDU_RES_STATUS_DEC_DONE_MSK


#define IWLAGN_RX_RES_PHY_CNT
#define IWLAGN_RX_RES_AGC_IDX
#define IWLAGN_RX_RES_RSSI_AB_IDX
#define IWLAGN_RX_RES_RSSI_C_IDX
#define IWLAGN_OFDM_AGC_MSK
#define IWLAGN_OFDM_AGC_BIT_POS
#define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK
#define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK
#define IWLAGN_OFDM_RSSI_A_BIT_POS
#define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK
#define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK
#define IWLAGN_OFDM_RSSI_B_BIT_POS
#define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK
#define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK
#define IWLAGN_OFDM_RSSI_C_BIT_POS

struct iwlagn_non_cfg_phy {} __packed;


/*
 * REPLY_RX = 0xc3 (response only, not a command)
 * Used only for legacy (non 11n) frames.
 */
struct iwl_rx_phy_res {} __packed;

struct iwl_rx_mpdu_res_start {} __packed;


/******************************************************************************
 * (5)
 * Tx Commands & Responses:
 *
 * Driver must place each REPLY_TX command into one of the prioritized Tx
 * queues in host DRAM, shared between driver and device (see comments for
 * SCD registers and Tx/Rx Queues).  When the device's Tx scheduler and uCode
 * are preparing to transmit, the device pulls the Tx command over the PCI
 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
 * from which data will be transmitted.
 *
 * uCode handles all timing and protocol related to control frames
 * (RTS/CTS/ACK), based on flags in the Tx command.  uCode and Tx scheduler
 * handle reception of block-acks; uCode updates the host driver via
 * REPLY_COMPRESSED_BA.
 *
 * uCode handles retrying Tx when an ACK is expected but not received.
 * This includes trying lower data rates than the one requested in the Tx
 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
 *
 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
 * This command must be executed after every RXON command, before Tx can occur.
 *****************************************************************************/

/* REPLY_TX Tx flags field */

/*
 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
 * before this frame. if CTS-to-self required check
 * RXON_FLG_SELF_CTS_EN status.
 */
#define TX_CMD_FLG_PROT_REQUIRE_MSK

/* 1: Expect ACK from receiving station
 * 0: Don't expect ACK (MAC header's duration field s/b 0)
 * Set this for unicast frames, but not broadcast/multicast. */
#define TX_CMD_FLG_ACK_MSK

/* For agn devices:
 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
 *    Tx command's initial_rate_index indicates first rate to try;
 *    uCode walks through table for additional Tx attempts.
 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
 *    This rate will be used for all Tx attempts; it will not be scaled. */
#define TX_CMD_FLG_STA_RATE_MSK

/* 1: Expect immediate block-ack.
 * Set when Txing a block-ack request frame.  Also set TX_CMD_FLG_ACK_MSK. */
#define TX_CMD_FLG_IMM_BA_RSP_MASK

/* Tx antenna selection field; reserved (0) for agn devices. */
#define TX_CMD_FLG_ANT_SEL_MSK

/* 1: Ignore Bluetooth priority for this frame.
 * 0: Delay Tx until Bluetooth device is done (normal usage). */
#define TX_CMD_FLG_IGNORE_BT

/* 1: uCode overrides sequence control field in MAC header.
 * 0: Driver provides sequence control field in MAC header.
 * Set this for management frames, non-QOS data frames, non-unicast frames,
 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
#define TX_CMD_FLG_SEQ_CTL_MSK

/* 1: This frame is non-last MPDU; more fragments are coming.
 * 0: Last fragment, or not using fragmentation. */
#define TX_CMD_FLG_MORE_FRAG_MSK

/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
 * 0: No TSF required in outgoing frame.
 * Set this for transmitting beacons and probe responses. */
#define TX_CMD_FLG_TSF_MSK

/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
 *    alignment of frame's payload data field.
 * 0: No pad
 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
 * field (but not both).  Driver must align frame data (i.e. data following
 * MAC header) to DWORD boundary. */
#define TX_CMD_FLG_MH_PAD_MSK

/* accelerate aggregation support
 * 0 - no CCMP encryption; 1 - CCMP encryption */
#define TX_CMD_FLG_AGG_CCMP_MSK

/* HCCA-AP - disable duration overwriting. */
#define TX_CMD_FLG_DUR_MSK


/*
 * TX command security control
 */
#define TX_CMD_SEC_WEP
#define TX_CMD_SEC_CCM
#define TX_CMD_SEC_TKIP
#define TX_CMD_SEC_MSK
#define TX_CMD_SEC_SHIFT
#define TX_CMD_SEC_KEY128

/*
 * REPLY_TX = 0x1c (command)
 */

/*
 * Used for managing Tx retries when expecting block-acks.
 * Driver should set these fields to 0.
 */
struct iwl_dram_scratch {} __packed;

struct iwl_tx_cmd {} __packed;

/*
 * TX command response is sent after *agn* transmission attempts.
 *
 * both postpone and abort status are expected behavior from uCode. there is
 * no special operation required from driver; except for RFKILL_FLUSH,
 * which required tx flush host command to flush all the tx frames in queues
 */
enum {};

#define TX_PACKET_MODE_REGULAR
#define TX_PACKET_MODE_BURST_SEQ
#define TX_PACKET_MODE_BURST_FIRST

enum {};

enum {};

/* *******************************
 * TX aggregation status
 ******************************* */

enum {};

#define AGG_TX_STATUS_MSK
#define AGG_TX_TRY_MSK
#define AGG_TX_TRY_POS

#define AGG_TX_STATE_LAST_SENT_MSK

/* # tx attempts for first frame in aggregation */
#define AGG_TX_STATE_TRY_CNT_POS
#define AGG_TX_STATE_TRY_CNT_MSK

/* Command ID and sequence number of Tx command for this frame */
#define AGG_TX_STATE_SEQ_NUM_POS
#define AGG_TX_STATE_SEQ_NUM_MSK

/*
 * REPLY_TX = 0x1c (response)
 *
 * This response may be in one of two slightly different formats, indicated
 * by the frame_count field:
 *
 * 1)  No aggregation (frame_count == 1).  This reports Tx results for
 *     a single frame.  Multiple attempts, at various bit rates, may have
 *     been made for this frame.
 *
 * 2)  Aggregation (frame_count > 1).  This reports Tx results for
 *     2 or more frames that used block-acknowledge.  All frames were
 *     transmitted at same rate.  Rate scaling may have been used if first
 *     frame in this new agg block failed in previous agg block(s).
 *
 *     Note that, for aggregation, ACK (block-ack) status is not delivered here;
 *     block-ack has not been received by the time the agn device records
 *     this status.
 *     This status relates to reasons the tx might have been blocked or aborted
 *     within the sending station (this agn device), rather than whether it was
 *     received successfully by the destination station.
 */
struct agg_tx_status {} __packed;

/* refer to ra_tid */
#define IWLAGN_TX_RES_TID_POS
#define IWLAGN_TX_RES_TID_MSK
#define IWLAGN_TX_RES_RA_POS
#define IWLAGN_TX_RES_RA_MSK

struct iwlagn_tx_resp {} __packed;
/*
 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
 *
 * Reports Block-Acknowledge from recipient station
 */
struct iwl_compressed_ba_resp {} __packed;

/*
 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
 *
 */

/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
#define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK

/* # of EDCA prioritized tx fifos */
#define LINK_QUAL_AC_NUM

/* # entries in rate scale table to support Tx retries */
#define LINK_QUAL_MAX_RETRY_NUM

/* Tx antenna selection values */
#define LINK_QUAL_ANT_A_MSK
#define LINK_QUAL_ANT_B_MSK
#define LINK_QUAL_ANT_MSK


/*
 * struct iwl_link_qual_general_params
 *
 * Used in REPLY_TX_LINK_QUALITY_CMD
 */
struct iwl_link_qual_general_params {} __packed;

#define LINK_QUAL_AGG_TIME_LIMIT_DEF
#define LINK_QUAL_AGG_TIME_LIMIT_MAX
#define LINK_QUAL_AGG_TIME_LIMIT_MIN

#define LINK_QUAL_AGG_DISABLE_START_DEF
#define LINK_QUAL_AGG_DISABLE_START_MAX
#define LINK_QUAL_AGG_DISABLE_START_MIN

#define LINK_QUAL_AGG_FRAME_LIMIT_DEF
#define LINK_QUAL_AGG_FRAME_LIMIT_MAX
#define LINK_QUAL_AGG_FRAME_LIMIT_MIN

/*
 * struct iwl_link_qual_agg_params
 *
 * Used in REPLY_TX_LINK_QUALITY_CMD
 */
struct iwl_link_qual_agg_params {} __packed;

/*
 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
 *
 * For agn devices
 *
 * Each station in the agn device's internal station table has its own table
 * of 16
 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
 * an ACK is not received.  This command replaces the entire table for
 * one station.
 *
 * NOTE:  Station must already be in agn device's station table.
 *	  Use REPLY_ADD_STA.
 *
 * The rate scaling procedures described below work well.  Of course, other
 * procedures are possible, and may work better for particular environments.
 *
 *
 * FILLING THE RATE TABLE
 *
 * Given a particular initial rate and mode, as determined by the rate
 * scaling algorithm described below, the Linux driver uses the following
 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
 * Link Quality command:
 *
 *
 * 1)  If using High-throughput (HT) (SISO or MIMO) initial rate:
 *     a) Use this same initial rate for first 3 entries.
 *     b) Find next lower available rate using same mode (SISO or MIMO),
 *        use for next 3 entries.  If no lower rate available, switch to
 *        legacy mode (no HT40 channel, no MIMO, no short guard interval).
 *     c) If using MIMO, set command's mimo_delimiter to number of entries
 *        using MIMO (3 or 6).
 *     d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
 *        no MIMO, no short guard interval), at the next lower bit rate
 *        (e.g. if second HT bit rate was 54, try 48 legacy), and follow
 *        legacy procedure for remaining table entries.
 *
 * 2)  If using legacy initial rate:
 *     a) Use the initial rate for only one entry.
 *     b) For each following entry, reduce the rate to next lower available
 *        rate, until reaching the lowest available rate.
 *     c) When reducing rate, also switch antenna selection.
 *     d) Once lowest available rate is reached, repeat this rate until
 *        rate table is filled (16 entries), switching antenna each entry.
 *
 *
 * ACCUMULATING HISTORY
 *
 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
 * uses two sets of frame Tx success history:  One for the current/active
 * modulation mode, and one for a speculative/search mode that is being
 * attempted. If the speculative mode turns out to be more effective (i.e.
 * actual transfer rate is better), then the driver continues to use the
 * speculative mode as the new current active mode.
 *
 * Each history set contains, separately for each possible rate, data for a
 * sliding window of the 62 most recent tx attempts at that rate.  The data
 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
 * and attempted frames, from which the driver can additionally calculate a
 * success ratio (success / attempted) and number of failures
 * (attempted - success), and control the size of the window (attempted).
 * The driver uses the bit map to remove successes from the success sum, as
 * the oldest tx attempts fall out of the window.
 *
 * When the agn device makes multiple tx attempts for a given frame, each
 * attempt might be at a different rate, and have different modulation
 * characteristics (e.g. antenna, fat channel, short guard interval), as set
 * up in the rate scaling table in the Link Quality command.  The driver must
 * determine which rate table entry was used for each tx attempt, to determine
 * which rate-specific history to update, and record only those attempts that
 * match the modulation characteristics of the history set.
 *
 * When using block-ack (aggregation), all frames are transmitted at the same
 * rate, since there is no per-attempt acknowledgment from the destination
 * station.  The Tx response struct iwl_tx_resp indicates the Tx rate in
 * rate_n_flags field.  After receiving a block-ack, the driver can update
 * history for the entire block all at once.
 *
 *
 * FINDING BEST STARTING RATE:
 *
 * When working with a selected initial modulation mode (see below), the
 * driver attempts to find a best initial rate.  The initial rate is the
 * first entry in the Link Quality command's rate table.
 *
 * 1)  Calculate actual throughput (success ratio * expected throughput, see
 *     table below) for current initial rate.  Do this only if enough frames
 *     have been attempted to make the value meaningful:  at least 6 failed
 *     tx attempts, or at least 8 successes.  If not enough, don't try rate
 *     scaling yet.
 *
 * 2)  Find available rates adjacent to current initial rate.  Available means:
 *     a)  supported by hardware &&
 *     b)  supported by association &&
 *     c)  within any constraints selected by user
 *
 * 3)  Gather measured throughputs for adjacent rates.  These might not have
 *     enough history to calculate a throughput.  That's okay, we might try
 *     using one of them anyway!
 *
 * 4)  Try decreasing rate if, for current rate:
 *     a)  success ratio is < 15% ||
 *     b)  lower adjacent rate has better measured throughput ||
 *     c)  higher adjacent rate has worse throughput, and lower is unmeasured
 *
 *     As a sanity check, if decrease was determined above, leave rate
 *     unchanged if:
 *     a)  lower rate unavailable
 *     b)  success ratio at current rate > 85% (very good)
 *     c)  current measured throughput is better than expected throughput
 *         of lower rate (under perfect 100% tx conditions, see table below)
 *
 * 5)  Try increasing rate if, for current rate:
 *     a)  success ratio is < 15% ||
 *     b)  both adjacent rates' throughputs are unmeasured (try it!) ||
 *     b)  higher adjacent rate has better measured throughput ||
 *     c)  lower adjacent rate has worse throughput, and higher is unmeasured
 *
 *     As a sanity check, if increase was determined above, leave rate
 *     unchanged if:
 *     a)  success ratio at current rate < 70%.  This is not particularly
 *         good performance; higher rate is sure to have poorer success.
 *
 * 6)  Re-evaluate the rate after each tx frame.  If working with block-
 *     acknowledge, history and statistics may be calculated for the entire
 *     block (including prior history that fits within the history windows),
 *     before re-evaluation.
 *
 * FINDING BEST STARTING MODULATION MODE:
 *
 * After working with a modulation mode for a "while" (and doing rate scaling),
 * the driver searches for a new initial mode in an attempt to improve
 * throughput.  The "while" is measured by numbers of attempted frames:
 *
 * For legacy mode, search for new mode after:
 *   480 successful frames, or 160 failed frames
 * For high-throughput modes (SISO or MIMO), search for new mode after:
 *   4500 successful frames, or 400 failed frames
 *
 * Mode switch possibilities are (3 for each mode):
 *
 * For legacy:
 *   Change antenna, try SISO (if HT association), try MIMO (if HT association)
 * For SISO:
 *   Change antenna, try MIMO, try shortened guard interval (SGI)
 * For MIMO:
 *   Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
 *
 * When trying a new mode, use the same bit rate as the old/current mode when
 * trying antenna switches and shortened guard interval.  When switching to
 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
 * for which the expected throughput (under perfect conditions) is about the
 * same or slightly better than the actual measured throughput delivered by
 * the old/current mode.
 *
 * Actual throughput can be estimated by multiplying the expected throughput
 * by the success ratio (successful / attempted tx frames).  Frame size is
 * not considered in this calculation; it assumes that frame size will average
 * out to be fairly consistent over several samples.  The following are
 * metric values for expected throughput assuming 100% success ratio.
 * Only G band has support for CCK rates:
 *
 *           RATE:  1    2    5   11    6   9   12   18   24   36   48   54   60
 *
 *              G:  7   13   35   58   40  57   72   98  121  154  177  186  186
 *              A:  0    0    0    0   40  57   72   98  121  154  177  186  186
 *     SISO 20MHz:  0    0    0    0   42  42   76  102  124  159  183  193  202
 * SGI SISO 20MHz:  0    0    0    0   46  46   82  110  132  168  192  202  211
 *     MIMO 20MHz:  0    0    0    0   74  74  123  155  179  214  236  244  251
 * SGI MIMO 20MHz:  0    0    0    0   81  81  131  164  188  222  243  251  257
 *     SISO 40MHz:  0    0    0    0   77  77  127  160  184  220  242  250  257
 * SGI SISO 40MHz:  0    0    0    0   83  83  135  169  193  229  250  257  264
 *     MIMO 40MHz:  0    0    0    0  123 123  182  214  235  264  279  285  289
 * SGI MIMO 40MHz:  0    0    0    0  131 131  191  222  242  270  284  289  293
 *
 * After the new mode has been tried for a short while (minimum of 6 failed
 * frames or 8 successful frames), compare success ratio and actual throughput
 * estimate of the new mode with the old.  If either is better with the new
 * mode, continue to use the new mode.
 *
 * Continue comparing modes until all 3 possibilities have been tried.
 * If moving from legacy to HT, try all 3 possibilities from the new HT
 * mode.  After trying all 3, a best mode is found.  Continue to use this mode
 * for the longer "while" described above (e.g. 480 successful frames for
 * legacy), and then repeat the search process.
 *
 */
struct iwl_link_quality_cmd {} __packed;

/*
 * BT configuration enable flags:
 *   bit 0 - 1: BT channel announcement enabled
 *           0: disable
 *   bit 1 - 1: priority of BT device enabled
 *           0: disable
 *   bit 2 - 1: BT 2 wire support enabled
 *           0: disable
 */
#define BT_COEX_DISABLE
#define BT_ENABLE_CHANNEL_ANNOUNCE
#define BT_ENABLE_PRIORITY
#define BT_ENABLE_2_WIRE

#define BT_COEX_DISABLE
#define BT_COEX_ENABLE

#define BT_LEAD_TIME_MIN
#define BT_LEAD_TIME_DEF
#define BT_LEAD_TIME_MAX

#define BT_MAX_KILL_MIN
#define BT_MAX_KILL_DEF
#define BT_MAX_KILL_MAX

#define BT_DURATION_LIMIT_DEF
#define BT_DURATION_LIMIT_MAX
#define BT_DURATION_LIMIT_MIN

#define BT_ON_THRESHOLD_DEF
#define BT_ON_THRESHOLD_MAX
#define BT_ON_THRESHOLD_MIN

#define BT_FRAG_THRESHOLD_DEF
#define BT_FRAG_THRESHOLD_MAX
#define BT_FRAG_THRESHOLD_MIN

#define BT_AGG_THRESHOLD_DEF
#define BT_AGG_THRESHOLD_MAX
#define BT_AGG_THRESHOLD_MIN

/*
 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
 *
 * agn devices support hardware handshake with Bluetooth device on
 * same platform.  Bluetooth device alerts wireless device when it will Tx;
 * wireless device can delay or kill its own Tx to accommodate.
 */
struct iwl_bt_cmd {} __packed;

#define IWLAGN_BT_FLAG_CHANNEL_INHIBITION

#define IWLAGN_BT_FLAG_COEX_MODE_MASK
#define IWLAGN_BT_FLAG_COEX_MODE_SHIFT
#define IWLAGN_BT_FLAG_COEX_MODE_DISABLED
#define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W
#define IWLAGN_BT_FLAG_COEX_MODE_3W
#define IWLAGN_BT_FLAG_COEX_MODE_4W

#define IWLAGN_BT_FLAG_UCODE_DEFAULT
/* Disable Sync PSPoll on SCO/eSCO */
#define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE

#define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD
#define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD

#define IWLAGN_BT_PRIO_BOOST_MAX
#define IWLAGN_BT_PRIO_BOOST_MIN
#define IWLAGN_BT_PRIO_BOOST_DEFAULT
#define IWLAGN_BT_PRIO_BOOST_DEFAULT32

#define IWLAGN_BT_MAX_KILL_DEFAULT

#define IWLAGN_BT3_T7_DEFAULT

enum iwl_bt_kill_idx {};

#define IWLAGN_BT_KILL_ACK_MASK_DEFAULT
#define IWLAGN_BT_KILL_CTS_MASK_DEFAULT
#define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO
#define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE

#define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT

#define IWLAGN_BT3_T2_DEFAULT

#define IWLAGN_BT_VALID_ENABLE_FLAGS
#define IWLAGN_BT_VALID_BOOST
#define IWLAGN_BT_VALID_MAX_KILL
#define IWLAGN_BT_VALID_3W_TIMERS
#define IWLAGN_BT_VALID_KILL_ACK_MASK
#define IWLAGN_BT_VALID_KILL_CTS_MASK
#define IWLAGN_BT_VALID_REDUCED_TX_PWR
#define IWLAGN_BT_VALID_3W_LUT

#define IWLAGN_BT_ALL_VALID_MSK

#define IWLAGN_BT_REDUCED_TX_PWR

#define IWLAGN_BT_DECISION_LUT_SIZE

struct iwl_basic_bt_cmd {};

struct iwl_bt_cmd_v1 {};

struct iwl_bt_cmd_v2 {};

#define IWLAGN_BT_SCO_ACTIVE

struct iwlagn_bt_sco_cmd {};

/******************************************************************************
 * (6)
 * Spectrum Management (802.11h) Commands, Responses, Notifications:
 *
 *****************************************************************************/

/*
 * Spectrum Management
 */
#define MEASUREMENT_FILTER_FLAG

struct iwl_measure_channel {} __packed;

/*
 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
 */
struct iwl_spectrum_cmd {} __packed;

/*
 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
 */
struct iwl_spectrum_resp {} __packed;

enum iwl_measurement_state {};

enum iwl_measurement_status {};

#define NUM_ELEMENTS_IN_HISTOGRAM

struct iwl_measurement_histogram {} __packed;

/* clear channel availability counters */
struct iwl_measurement_cca_counters {} __packed;

enum iwl_measure_type {};

/*
 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
 */
struct iwl_spectrum_notification {} __packed;

/******************************************************************************
 * (7)
 * Power Management Commands, Responses, Notifications:
 *
 *****************************************************************************/

/*
 * struct iwl_powertable_cmd - Power Table Command
 * @flags: See below:
 *
 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
 *
 * PM allow:
 *   bit 0 - '0' Driver not allow power management
 *           '1' Driver allow PM (use rest of parameters)
 *
 * uCode send sleep notifications:
 *   bit 1 - '0' Don't send sleep notification
 *           '1' send sleep notification (SEND_PM_NOTIFICATION)
 *
 * Sleep over DTIM
 *   bit 2 - '0' PM have to walk up every DTIM
 *           '1' PM could sleep over DTIM till listen Interval.
 *
 * PCI power managed
 *   bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
 *           '1' !(PCI_CFG_LINK_CTRL & 0x1)
 *
 * Fast PD
 *   bit 4 - '1' Put radio to sleep when receiving frame for others
 *
 * Force sleep Modes
 *   bit 31/30- '00' use both mac/xtal sleeps
 *              '01' force Mac sleep
 *              '10' force xtal sleep
 *              '11' Illegal set
 *
 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
 * ucode assume sleep over DTIM is allowed and we don't need to wake up
 * for every DTIM.
 */
#define IWL_POWER_VEC_SIZE

#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK
#define IWL_POWER_POWER_SAVE_ENA_MSK
#define IWL_POWER_POWER_MANAGEMENT_ENA_MSK
#define IWL_POWER_SLEEP_OVER_DTIM_MSK
#define IWL_POWER_PCI_PM_MSK
#define IWL_POWER_FAST_PD
#define IWL_POWER_BEACON_FILTERING
#define IWL_POWER_SHADOW_REG_ENA
#define IWL_POWER_CT_KILL_SET
#define IWL_POWER_BT_SCO_ENA
#define IWL_POWER_ADVANCE_PM_ENA_MSK

struct iwl_powertable_cmd {} __packed;

/*
 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
 * all devices identical.
 */
struct iwl_sleep_notification {} __packed;

/* Sleep states.  all devices identical. */
enum {};

/*
 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
 */
#define CARD_STATE_CMD_DISABLE
#define CARD_STATE_CMD_ENABLE
#define CARD_STATE_CMD_HALT
struct iwl_card_state_cmd {} __packed;

/*
 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
 */
struct iwl_card_state_notif {} __packed;

#define HW_CARD_DISABLED
#define SW_CARD_DISABLED
#define CT_CARD_DISABLED
#define RXON_CARD_DISABLED

struct iwl_ct_kill_config {}  __packed;

/* 1000, and 6x00 */
struct iwl_ct_kill_throttling_config {}  __packed;

/******************************************************************************
 * (8)
 * Scan Commands, Responses, Notifications:
 *
 *****************************************************************************/

#define SCAN_CHANNEL_TYPE_PASSIVE
#define SCAN_CHANNEL_TYPE_ACTIVE

/*
 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
 *
 * One for each channel in the scan list.
 * Each channel can independently select:
 * 1)  SSID for directed active scans
 * 2)  Txpower setting (for rate specified within Tx command)
 * 3)  How long to stay on-channel (behavior may be modified by quiet_time,
 *     quiet_plcp_th, good_CRC_th)
 *
 * To avoid uCode errors, make sure the following are true (see comments
 * under struct iwl_scan_cmd about max_out_time and quiet_time):
 * 1)  If using passive_dwell (i.e. passive_dwell != 0):
 *     active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
 * 2)  quiet_time <= active_dwell
 * 3)  If restricting off-channel time (i.e. max_out_time !=0):
 *     passive_dwell < max_out_time
 *     active_dwell < max_out_time
 */

struct iwl_scan_channel {} __packed;

/* set number of direct probes __le32 type */
#define IWL_SCAN_PROBE_MASK(n)

/*
 * struct iwl_ssid_ie - directed scan network information element
 *
 * Up to 20 of these may appear in REPLY_SCAN_CMD,
 * selected by "type" bit field in struct iwl_scan_channel;
 * each channel may select different ssids from among the 20 entries.
 * SSID IEs get transmitted in reverse order of entry.
 */
struct iwl_ssid_ie {} __packed;

#define PROBE_OPTION_MAX
#define TX_CMD_LIFE_TIME_INFINITE
#define IWL_GOOD_CRC_TH_DISABLED
#define IWL_GOOD_CRC_TH_DEFAULT
#define IWL_GOOD_CRC_TH_NEVER
#define IWL_MAX_CMD_SIZE

/*
 * REPLY_SCAN_CMD = 0x80 (command)
 *
 * The hardware scan command is very powerful; the driver can set it up to
 * maintain (relatively) normal network traffic while doing a scan in the
 * background.  The max_out_time and suspend_time control the ratio of how
 * long the device stays on an associated network channel ("service channel")
 * vs. how long it's away from the service channel, i.e. tuned to other channels
 * for scanning.
 *
 * max_out_time is the max time off-channel (in usec), and suspend_time
 * is how long (in "extended beacon" format) that the scan is "suspended"
 * after returning to the service channel.  That is, suspend_time is the
 * time that we stay on the service channel, doing normal work, between
 * scan segments.  The driver may set these parameters differently to support
 * scanning when associated vs. not associated, and light vs. heavy traffic
 * loads when associated.
 *
 * After receiving this command, the device's scan engine does the following;
 *
 * 1)  Sends SCAN_START notification to driver
 * 2)  Checks to see if it has time to do scan for one channel
 * 3)  Sends NULL packet, with power-save (PS) bit set to 1,
 *     to tell AP that we're going off-channel
 * 4)  Tunes to first channel in scan list, does active or passive scan
 * 5)  Sends SCAN_RESULT notification to driver
 * 6)  Checks to see if it has time to do scan on *next* channel in list
 * 7)  Repeats 4-6 until it no longer has time to scan the next channel
 *     before max_out_time expires
 * 8)  Returns to service channel
 * 9)  Sends NULL packet with PS=0 to tell AP that we're back
 * 10) Stays on service channel until suspend_time expires
 * 11) Repeats entire process 2-10 until list is complete
 * 12) Sends SCAN_COMPLETE notification
 *
 * For fast, efficient scans, the scan command also has support for staying on
 * a channel for just a short time, if doing active scanning and getting no
 * responses to the transmitted probe request.  This time is controlled by
 * quiet_time, and the number of received packets below which a channel is
 * considered "quiet" is controlled by quiet_plcp_threshold.
 *
 * For active scanning on channels that have regulatory restrictions against
 * blindly transmitting, the scan can listen before transmitting, to make sure
 * that there is already legitimate activity on the channel.  If enough
 * packets are cleanly received on the channel (controlled by good_CRC_th,
 * typical value 1), the scan engine starts transmitting probe requests.
 *
 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
 *
 * To avoid uCode errors, see timing restrictions described under
 * struct iwl_scan_channel.
 */

enum iwl_scan_flags {};

struct iwl_scan_cmd {} __packed;

/* Can abort will notify by complete notification with abort status. */
#define CAN_ABORT_STATUS
/* complete notification statuses */
#define ABORT_STATUS

/*
 * REPLY_SCAN_CMD = 0x80 (response)
 */
struct iwl_scanreq_notification {} __packed;

/*
 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
 */
struct iwl_scanstart_notification {} __packed;

#define SCAN_OWNER_STATUS
#define MEASURE_OWNER_STATUS

#define IWL_PROBE_STATUS_OK
#define IWL_PROBE_STATUS_TX_FAILED
/* error statuses combined with TX_FAILED */
#define IWL_PROBE_STATUS_FAIL_TTL
#define IWL_PROBE_STATUS_FAIL_BT

#define NUMBER_OF_STATISTICS
/*
 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
 */
struct iwl_scanresults_notification {} __packed;

/*
 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
 */
struct iwl_scancomplete_notification {} __packed;


/******************************************************************************
 * (9)
 * IBSS/AP Commands and Notifications:
 *
 *****************************************************************************/

enum iwl_ibss_manager {};

/*
 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
 */

struct iwlagn_beacon_notif {} __packed;

/*
 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
 */

struct iwl_tx_beacon_cmd {} __packed;

/******************************************************************************
 * (10)
 * Statistics Commands and Notifications:
 *
 *****************************************************************************/

#define IWL_TEMP_CONVERT

#define SUP_RATE_11A_MAX_NUM_CHANNELS
#define SUP_RATE_11B_MAX_NUM_CHANNELS
#define SUP_RATE_11G_MAX_NUM_CHANNELS

/* Used for passing to driver number of successes and failures per rate */
struct rate_histogram {} __packed;

/* statistics command response */

struct statistics_dbg {} __packed;

struct statistics_rx_phy {} __packed;

struct statistics_rx_ht_phy {} __packed;

#define INTERFERENCE_DATA_AVAILABLE

struct statistics_rx_non_phy {} __packed;

struct statistics_rx_non_phy_bt {} __packed;

struct statistics_rx {} __packed;

struct statistics_rx_bt {} __packed;

/**
 * struct statistics_tx_power - current tx power
 *
 * @ant_a: current tx power on chain a in 1/2 dB step
 * @ant_b: current tx power on chain b in 1/2 dB step
 * @ant_c: current tx power on chain c in 1/2 dB step
 * @reserved: reserved for alignment
 */
struct statistics_tx_power {} __packed;

struct statistics_tx_non_phy_agg {} __packed;

struct statistics_tx {} __packed;


struct statistics_div {} __packed;

struct statistics_general_common {} __packed;

struct statistics_bt_activity {} __packed;

struct statistics_general {} __packed;

struct statistics_general_bt {} __packed;

#define UCODE_STATISTICS_CLEAR_MSK
#define UCODE_STATISTICS_FREQUENCY_MSK
#define UCODE_STATISTICS_NARROW_BAND_MSK

/*
 * REPLY_STATISTICS_CMD = 0x9c,
 * all devices identical.
 *
 * This command triggers an immediate response containing uCode statistics.
 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
 *
 * If the CLEAR_STATS configuration flag is set, uCode will clear its
 * internal copy of the statistics (counters) after issuing the response.
 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
 *
 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
 * STATISTICS_NOTIFICATIONs after received beacons (see below).  This flag
 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
 */
#define IWL_STATS_CONF_CLEAR_STATS
#define IWL_STATS_CONF_DISABLE_NOTIF
struct iwl_statistics_cmd {} __packed;

/*
 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
 *
 * By default, uCode issues this notification after receiving a beacon
 * while associated.  To disable this behavior, set DISABLE_NOTIF flag in the
 * REPLY_STATISTICS_CMD 0x9c, above.
 *
 * Statistics counters continue to increment beacon after beacon, but are
 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
 * 0x9c with CLEAR_STATS bit set (see above).
 *
 * uCode also issues this notification during scans.  uCode clears statistics
 * appropriately so that each notification contains statistics for only the
 * one channel that has just been scanned.
 */
#define STATISTICS_REPLY_FLG_BAND_24G_MSK
#define STATISTICS_REPLY_FLG_HT40_MODE_MSK

struct iwl_notif_statistics {} __packed;

struct iwl_bt_notif_statistics {} __packed;

/*
 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
 *
 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
 * in regardless of how many missed beacons, which mean when driver receive the
 * notification, inside the command, it can find all the beacons information
 * which include number of total missed beacons, number of consecutive missed
 * beacons, number of beacons received and number of beacons expected to
 * receive.
 *
 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
 * in order to bring the radio/PHY back to working state; which has no relation
 * to when driver will perform sensitivity calibration.
 *
 * Driver should set it own missed_beacon_threshold to decide when to perform
 * sensitivity calibration based on number of consecutive missed beacons in
 * order to improve overall performance, especially in noisy environment.
 *
 */

#define IWL_MISSED_BEACON_THRESHOLD_MIN
#define IWL_MISSED_BEACON_THRESHOLD_DEF
#define IWL_MISSED_BEACON_THRESHOLD_MAX

struct iwl_missed_beacon_notif {} __packed;


/******************************************************************************
 * (11)
 * Rx Calibration Commands:
 *
 * With the uCode used for open source drivers, most Tx calibration (except
 * for Tx Power) and most Rx calibration is done by uCode during the
 * "initialize" phase of uCode boot.  Driver must calibrate only:
 *
 * 1)  Tx power (depends on temperature), described elsewhere
 * 2)  Receiver gain balance (optimize MIMO, and detect disconnected antennas)
 * 3)  Receiver sensitivity (to optimize signal detection)
 *
 *****************************************************************************/

/*
 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
 *
 * This command sets up the Rx signal detector for a sensitivity level that
 * is high enough to lock onto all signals within the associated network,
 * but low enough to ignore signals that are below a certain threshold, so as
 * not to have too many "false alarms".  False alarms are signals that the
 * Rx DSP tries to lock onto, but then discards after determining that they
 * are noise.
 *
 * The optimum number of false alarms is between 5 and 50 per 200 TUs
 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
 * time listening, not transmitting).  Driver must adjust sensitivity so that
 * the ratio of actual false alarms to actual Rx time falls within this range.
 *
 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
 * received beacon.  These provide information to the driver to analyze the
 * sensitivity.  Don't analyze statistics that come in from scanning, or any
 * other non-associated-network source.  Pertinent statistics include:
 *
 * From "general" statistics (struct statistics_rx_non_phy):
 *
 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
 *   Measure of energy of desired signal.  Used for establishing a level
 *   below which the device does not detect signals.
 *
 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
 *   Measure of background noise in silent period after beacon.
 *
 * channel_load
 *   uSecs of actual Rx time during beacon period (varies according to
 *   how much time was spent transmitting).
 *
 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
 *
 * false_alarm_cnt
 *   Signal locks abandoned early (before phy-level header).
 *
 * plcp_err
 *   Signal locks abandoned late (during phy-level header).
 *
 * NOTE:  Both false_alarm_cnt and plcp_err increment monotonically from
 *        beacon to beacon, i.e. each value is an accumulation of all errors
 *        before and including the latest beacon.  Values will wrap around to 0
 *        after counting up to 2^32 - 1.  Driver must differentiate vs.
 *        previous beacon's values to determine # false alarms in the current
 *        beacon period.
 *
 * Total number of false alarms = false_alarms + plcp_errs
 *
 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
 * (notice that the start points for OFDM are at or close to settings for
 * maximum sensitivity):
 *
 *                                             START  /  MIN  /  MAX
 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          90   /   85  /  120
 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX     170   /  170  /  210
 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX         105   /  105  /  140
 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX     220   /  220  /  270
 *
 *   If actual rate of OFDM false alarms (+ plcp_errors) is too high
 *   (greater than 50 for each 204.8 msecs listening), reduce sensitivity
 *   by *adding* 1 to all 4 of the table entries above, up to the max for
 *   each entry.  Conversely, if false alarm rate is too low (less than 5
 *   for each 204.8 msecs listening), *subtract* 1 from each entry to
 *   increase sensitivity.
 *
 * For CCK sensitivity, keep track of the following:
 *
 *   1).  20-beacon history of maximum background noise, indicated by
 *        (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
 *        3 receivers.  For any given beacon, the "silence reference" is
 *        the maximum of last 60 samples (20 beacons * 3 receivers).
 *
 *   2).  10-beacon history of strongest signal level, as indicated
 *        by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
 *        i.e. the strength of the signal through the best receiver at the
 *        moment.  These measurements are "upside down", with lower values
 *        for stronger signals, so max energy will be *minimum* value.
 *
 *        Then for any given beacon, the driver must determine the *weakest*
 *        of the strongest signals; this is the minimum level that needs to be
 *        successfully detected, when using the best receiver at the moment.
 *        "Max cck energy" is the maximum (higher value means lower energy!)
 *        of the last 10 minima.  Once this is determined, driver must add
 *        a little margin by adding "6" to it.
 *
 *   3).  Number of consecutive beacon periods with too few false alarms.
 *        Reset this to 0 at the first beacon period that falls within the
 *        "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
 *
 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
 * (notice that the start points for CCK are at maximum sensitivity):
 *
 *                                             START  /  MIN  /  MAX
 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX         125   /  125  /  200
 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX     200   /  200  /  400
 *   HD_MIN_ENERGY_CCK_DET_INDEX                100   /    0  /  100
 *
 *   If actual rate of CCK false alarms (+ plcp_errors) is too high
 *   (greater than 50 for each 204.8 msecs listening), method for reducing
 *   sensitivity is:
 *
 *   1)  *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
 *       up to max 400.
 *
 *   2)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
 *       sensitivity has been reduced a significant amount; bring it up to
 *       a moderate 161.  Otherwise, *add* 3, up to max 200.
 *
 *   3)  a)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
 *       sensitivity has been reduced only a moderate or small amount;
 *       *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
 *       down to min 0.  Otherwise (if gain has been significantly reduced),
 *       don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
 *
 *       b)  Save a snapshot of the "silence reference".
 *
 *   If actual rate of CCK false alarms (+ plcp_errors) is too low
 *   (less than 5 for each 204.8 msecs listening), method for increasing
 *   sensitivity is used only if:
 *
 *   1a)  Previous beacon did not have too many false alarms
 *   1b)  AND difference between previous "silence reference" and current
 *        "silence reference" (prev - current) is 2 or more,
 *   OR 2)  100 or more consecutive beacon periods have had rate of
 *          less than 5 false alarms per 204.8 milliseconds rx time.
 *
 *   Method for increasing sensitivity:
 *
 *   1)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
 *       down to min 125.
 *
 *   2)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
 *       down to min 200.
 *
 *   3)  *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
 *
 *   If actual rate of CCK false alarms (+ plcp_errors) is within good range
 *   (between 5 and 50 for each 204.8 msecs listening):
 *
 *   1)  Save a snapshot of the silence reference.
 *
 *   2)  If previous beacon had too many CCK false alarms (+ plcp_errors),
 *       give some extra margin to energy threshold by *subtracting* 8
 *       from value in HD_MIN_ENERGY_CCK_DET_INDEX.
 *
 *   For all cases (too few, too many, good range), make sure that the CCK
 *   detection threshold (energy) is below the energy level for robust
 *   detection over the past 10 beacon periods, the "Max cck energy".
 *   Lower values mean higher energy; this means making sure that the value
 *   in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
 *
 */

/*
 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
 */
#define HD_TABLE_SIZE
#define HD_MIN_ENERGY_CCK_DET_INDEX
#define HD_MIN_ENERGY_OFDM_DET_INDEX
#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX
#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX
#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX
#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX
#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX
#define HD_BARKER_CORR_TH_ADD_MIN_INDEX
#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX
#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX
#define HD_OFDM_ENERGY_TH_IN_INDEX

/*
 * Additional table entries in enhance SENSITIVITY_CMD
 */
#define HD_INA_NON_SQUARE_DET_OFDM_INDEX
#define HD_INA_NON_SQUARE_DET_CCK_INDEX
#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX
#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX
#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX
#define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX
#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX
#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX
#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX
#define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX
#define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX
#define HD_RESERVED

/* number of entries for enhanced tbl */
#define ENHANCE_HD_TABLE_SIZE

/* number of additional entries for enhanced tbl */
#define ENHANCE_HD_TABLE_ENTRIES

#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1
#define HD_INA_NON_SQUARE_DET_CCK_DATA_V1
#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1
#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1
#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1
#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1
#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1
#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1
#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1
#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1
#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1

#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2
#define HD_INA_NON_SQUARE_DET_CCK_DATA_V2
#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2
#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2
#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2
#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2
#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2
#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2
#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2
#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2
#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2


/* Control field in struct iwl_sensitivity_cmd */
#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE
#define SENSITIVITY_CMD_CONTROL_WORK_TABLE

/**
 * struct iwl_sensitivity_cmd
 * @control:  (1) updates working table, (0) updates default table
 * @table:  energy threshold values, use HD_* as index into table
 *
 * Always use "1" in "control" to update uCode's working table and DSP.
 */
struct iwl_sensitivity_cmd {} __packed;

/*
 *
 */
struct iwl_enhance_sensitivity_cmd {} __packed;


/*
 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
 *
 * This command sets the relative gains of agn device's 3 radio receiver chains.
 *
 * After the first association, driver should accumulate signal and noise
 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
 * beacons from the associated network (don't collect statistics that come
 * in from scanning, or any other non-network source).
 *
 * DISCONNECTED ANTENNA:
 *
 * Driver should determine which antennas are actually connected, by comparing
 * average beacon signal levels for the 3 Rx chains.  Accumulate (add) the
 * following values over 20 beacons, one accumulator for each of the chains
 * a/b/c, from struct statistics_rx_non_phy:
 *
 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
 *
 * Find the strongest signal from among a/b/c.  Compare the other two to the
 * strongest.  If any signal is more than 15 dB (times 20, unless you
 * divide the accumulated values by 20) below the strongest, the driver
 * considers that antenna to be disconnected, and should not try to use that
 * antenna/chain for Rx or Tx.  If both A and B seem to be disconnected,
 * driver should declare the stronger one as connected, and attempt to use it
 * (A and B are the only 2 Tx chains!).
 *
 *
 * RX BALANCE:
 *
 * Driver should balance the 3 receivers (but just the ones that are connected
 * to antennas, see above) for gain, by comparing the average signal levels
 * detected during the silence after each beacon (background noise).
 * Accumulate (add) the following values over 20 beacons, one accumulator for
 * each of the chains a/b/c, from struct statistics_rx_non_phy:
 *
 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
 *
 * Find the weakest background noise level from among a/b/c.  This Rx chain
 * will be the reference, with 0 gain adjustment.  Attenuate other channels by
 * finding noise difference:
 *
 * (accum_noise[i] - accum_noise[reference]) / 30
 *
 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
 * and set bit 2 to indicate "reduce gain".  The value for the reference
 * (weakest) chain should be "0".
 *
 * diff_gain_[abc] bit fields:
 *   2: (1) reduce gain, (0) increase gain
 * 1-0: amount of gain, units of 1.5 dB
 */

/* Phy calibration command for series */
enum {};

/* This enum defines the bitmap of various calibrations to enable in both
 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
 */
enum iwl_ucode_calib_cfg {};

#define IWL_CALIB_INIT_CFG_ALL

#define IWL_CALIB_RT_CFG_ALL

#define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK

struct iwl_calib_cfg_elmnt_s {} __packed;

struct iwl_calib_cfg_status_s {} __packed;

struct iwl_calib_cfg_cmd {} __packed;

struct iwl_calib_hdr {} __packed;

struct iwl_calib_cmd {} __packed;

struct iwl_calib_xtal_freq_cmd {} __packed;

#define DEFAULT_RADIO_SENSOR_OFFSET
struct iwl_calib_temperature_offset_cmd {} __packed;

struct iwl_calib_temperature_offset_v2_cmd {} __packed;

/* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
struct iwl_calib_chain_noise_reset_cmd {};

/* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
struct iwl_calib_chain_noise_gain_cmd {} __packed;

/******************************************************************************
 * (12)
 * Miscellaneous Commands:
 *
 *****************************************************************************/

/*
 * LEDs Command & Response
 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
 *
 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
 * this command turns it on or off, or sets up a periodic blinking cycle.
 */
struct iwl_led_cmd {} __packed;

/*
 * station priority table entries
 * also used as potential "events" value for both
 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
 */

/*
 * COEX events entry flag masks
 * RP - Requested Priority
 * WP - Win Medium Priority: priority assigned when the contention has been won
 */
#define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG
#define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG
#define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG

#define COEX_CU_UNASSOC_IDLE_RP
#define COEX_CU_UNASSOC_MANUAL_SCAN_RP
#define COEX_CU_UNASSOC_AUTO_SCAN_RP
#define COEX_CU_CALIBRATION_RP
#define COEX_CU_PERIODIC_CALIBRATION_RP
#define COEX_CU_CONNECTION_ESTAB_RP
#define COEX_CU_ASSOCIATED_IDLE_RP
#define COEX_CU_ASSOC_MANUAL_SCAN_RP
#define COEX_CU_ASSOC_AUTO_SCAN_RP
#define COEX_CU_ASSOC_ACTIVE_LEVEL_RP
#define COEX_CU_RF_ON_RP
#define COEX_CU_RF_OFF_RP
#define COEX_CU_STAND_ALONE_DEBUG_RP
#define COEX_CU_IPAN_ASSOC_LEVEL_RP
#define COEX_CU_RSRVD1_RP
#define COEX_CU_RSRVD2_RP

#define COEX_CU_UNASSOC_IDLE_WP
#define COEX_CU_UNASSOC_MANUAL_SCAN_WP
#define COEX_CU_UNASSOC_AUTO_SCAN_WP
#define COEX_CU_CALIBRATION_WP
#define COEX_CU_PERIODIC_CALIBRATION_WP
#define COEX_CU_CONNECTION_ESTAB_WP
#define COEX_CU_ASSOCIATED_IDLE_WP
#define COEX_CU_ASSOC_MANUAL_SCAN_WP
#define COEX_CU_ASSOC_AUTO_SCAN_WP
#define COEX_CU_ASSOC_ACTIVE_LEVEL_WP
#define COEX_CU_RF_ON_WP
#define COEX_CU_RF_OFF_WP
#define COEX_CU_STAND_ALONE_DEBUG_WP
#define COEX_CU_IPAN_ASSOC_LEVEL_WP
#define COEX_CU_RSRVD1_WP
#define COEX_CU_RSRVD2_WP

#define COEX_UNASSOC_IDLE_FLAGS
#define COEX_UNASSOC_MANUAL_SCAN_FLAGS
#define COEX_UNASSOC_AUTO_SCAN_FLAGS
#define COEX_CALIBRATION_FLAGS
#define COEX_PERIODIC_CALIBRATION_FLAGS
/*
 * COEX_CONNECTION_ESTAB:
 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
 */
#define COEX_CONNECTION_ESTAB_FLAGS
#define COEX_ASSOCIATED_IDLE_FLAGS
#define COEX_ASSOC_MANUAL_SCAN_FLAGS
#define COEX_ASSOC_AUTO_SCAN_FLAGS
#define COEX_ASSOC_ACTIVE_LEVEL_FLAGS
#define COEX_RF_ON_FLAGS
#define COEX_RF_OFF_FLAGS
#define COEX_STAND_ALONE_DEBUG_FLAGS
#define COEX_IPAN_ASSOC_LEVEL_FLAGS
#define COEX_RSRVD1_FLAGS
#define COEX_RSRVD2_FLAGS
/*
 * COEX_CU_RF_ON is the event wrapping all radio ownership.
 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
 */
#define COEX_CU_RF_ON_FLAGS


enum {};

/*
 * Coexistence WIFI/WIMAX  Command
 * COEX_PRIORITY_TABLE_CMD = 0x5a
 *
 */
struct iwl_wimax_coex_event_entry {} __packed;

/* COEX flag masks */

/* Station table is valid */
#define COEX_FLAGS_STA_TABLE_VALID_MSK
/* UnMask wake up src at unassociated sleep */
#define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK
/* UnMask wake up src at associated sleep */
#define COEX_FLAGS_ASSOC_WA_UNMASK_MSK
/* Enable CoEx feature. */
#define COEX_FLAGS_COEX_ENABLE_MSK

struct iwl_wimax_coex_cmd {} __packed;

/*
 * Coexistence MEDIUM NOTIFICATION
 * COEX_MEDIUM_NOTIFICATION = 0x5b
 *
 * notification from uCode to host to indicate medium changes
 *
 */
/*
 * status field
 * bit 0 - 2: medium status
 * bit 3: medium change indication
 * bit 4 - 31: reserved
 */
/* status option values, (0 - 2 bits) */
#define COEX_MEDIUM_BUSY
#define COEX_MEDIUM_ACTIVE
#define COEX_MEDIUM_PRE_RELEASE
#define COEX_MEDIUM_MSK

/* send notification status (1 bit) */
#define COEX_MEDIUM_CHANGED
#define COEX_MEDIUM_CHANGED_MSK
#define COEX_MEDIUM_SHIFT

struct iwl_coex_medium_notification {} __packed;

/*
 * Coexistence EVENT  Command
 * COEX_EVENT_CMD = 0x5c
 *
 * send from host to uCode for coex event request.
 */
/* flags options */
#define COEX_EVENT_REQUEST_MSK

struct iwl_coex_event_cmd {} __packed;

struct iwl_coex_event_resp {} __packed;


/******************************************************************************
 * Bluetooth Coexistence commands
 *
 *****************************************************************************/

/*
 * BT Status notification
 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
 */
enum iwl_bt_coex_profile_traffic_load {};

#define BT_SESSION_ACTIVITY_1_UART_MSG
#define BT_SESSION_ACTIVITY_2_UART_MSG

/* BT UART message - Share Part (BT -> WiFi) */
#define BT_UART_MSG_FRAME1MSGTYPE_POS
#define BT_UART_MSG_FRAME1MSGTYPE_MSK
#define BT_UART_MSG_FRAME1SSN_POS
#define BT_UART_MSG_FRAME1SSN_MSK
#define BT_UART_MSG_FRAME1UPDATEREQ_POS
#define BT_UART_MSG_FRAME1UPDATEREQ_MSK
#define BT_UART_MSG_FRAME1RESERVED_POS
#define BT_UART_MSG_FRAME1RESERVED_MSK

#define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS
#define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK
#define BT_UART_MSG_FRAME2TRAFFICLOAD_POS
#define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK
#define BT_UART_MSG_FRAME2CHLSEQN_POS
#define BT_UART_MSG_FRAME2CHLSEQN_MSK
#define BT_UART_MSG_FRAME2INBAND_POS
#define BT_UART_MSG_FRAME2INBAND_MSK
#define BT_UART_MSG_FRAME2RESERVED_POS
#define BT_UART_MSG_FRAME2RESERVED_MSK

#define BT_UART_MSG_FRAME3SCOESCO_POS
#define BT_UART_MSG_FRAME3SCOESCO_MSK
#define BT_UART_MSG_FRAME3SNIFF_POS
#define BT_UART_MSG_FRAME3SNIFF_MSK
#define BT_UART_MSG_FRAME3A2DP_POS
#define BT_UART_MSG_FRAME3A2DP_MSK
#define BT_UART_MSG_FRAME3ACL_POS
#define BT_UART_MSG_FRAME3ACL_MSK
#define BT_UART_MSG_FRAME3MASTER_POS
#define BT_UART_MSG_FRAME3MASTER_MSK
#define BT_UART_MSG_FRAME3OBEX_POS
#define BT_UART_MSG_FRAME3OBEX_MSK
#define BT_UART_MSG_FRAME3RESERVED_POS
#define BT_UART_MSG_FRAME3RESERVED_MSK

#define BT_UART_MSG_FRAME4IDLEDURATION_POS
#define BT_UART_MSG_FRAME4IDLEDURATION_MSK
#define BT_UART_MSG_FRAME4RESERVED_POS
#define BT_UART_MSG_FRAME4RESERVED_MSK

#define BT_UART_MSG_FRAME5TXACTIVITY_POS
#define BT_UART_MSG_FRAME5TXACTIVITY_MSK
#define BT_UART_MSG_FRAME5RXACTIVITY_POS
#define BT_UART_MSG_FRAME5RXACTIVITY_MSK
#define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS
#define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK
#define BT_UART_MSG_FRAME5RESERVED_POS
#define BT_UART_MSG_FRAME5RESERVED_MSK

#define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS
#define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK
#define BT_UART_MSG_FRAME6DISCOVERABLE_POS
#define BT_UART_MSG_FRAME6DISCOVERABLE_MSK
#define BT_UART_MSG_FRAME6RESERVED_POS
#define BT_UART_MSG_FRAME6RESERVED_MSK

#define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS
#define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK
#define BT_UART_MSG_FRAME7PAGE_POS
#define BT_UART_MSG_FRAME7PAGE_MSK
#define BT_UART_MSG_FRAME7INQUIRY_POS
#define BT_UART_MSG_FRAME7INQUIRY_MSK
#define BT_UART_MSG_FRAME7CONNECTABLE_POS
#define BT_UART_MSG_FRAME7CONNECTABLE_MSK
#define BT_UART_MSG_FRAME7RESERVED_POS
#define BT_UART_MSG_FRAME7RESERVED_MSK

/* BT Session Activity 2 UART message (BT -> WiFi) */
#define BT_UART_MSG_2_FRAME1RESERVED1_POS
#define BT_UART_MSG_2_FRAME1RESERVED1_MSK
#define BT_UART_MSG_2_FRAME1RESERVED2_POS
#define BT_UART_MSG_2_FRAME1RESERVED2_MSK

#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS
#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK
#define BT_UART_MSG_2_FRAME2RESERVED_POS
#define BT_UART_MSG_2_FRAME2RESERVED_MSK

#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS
#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK
#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS
#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK
#define BT_UART_MSG_2_FRAME3LEMASTER_POS
#define BT_UART_MSG_2_FRAME3LEMASTER_MSK
#define BT_UART_MSG_2_FRAME3RESERVED_POS
#define BT_UART_MSG_2_FRAME3RESERVED_MSK

#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS
#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK
#define BT_UART_MSG_2_FRAME4NUMLECONN_POS
#define BT_UART_MSG_2_FRAME4NUMLECONN_MSK
#define BT_UART_MSG_2_FRAME4RESERVED_POS
#define BT_UART_MSG_2_FRAME4RESERVED_MSK

#define BT_UART_MSG_2_FRAME5BTMINRSSI_POS
#define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK
#define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS
#define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK
#define BT_UART_MSG_2_FRAME5LEADVERMODE_POS
#define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK
#define BT_UART_MSG_2_FRAME5RESERVED_POS
#define BT_UART_MSG_2_FRAME5RESERVED_MSK

#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS
#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK
#define BT_UART_MSG_2_FRAME6RFU_POS
#define BT_UART_MSG_2_FRAME6RFU_MSK
#define BT_UART_MSG_2_FRAME6RESERVED_POS
#define BT_UART_MSG_2_FRAME6RESERVED_MSK

#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS
#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK
#define BT_UART_MSG_2_FRAME7LEPROFILE1_POS
#define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK
#define BT_UART_MSG_2_FRAME7LEPROFILE2_POS
#define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK
#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS
#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK
#define BT_UART_MSG_2_FRAME7RESERVED_POS
#define BT_UART_MSG_2_FRAME7RESERVED_MSK


#define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD
#define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD

struct iwl_bt_uart_msg {} __packed;

struct iwl_bt_coex_profile_notif {} __packed;

#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS
#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK
#define IWL_BT_COEX_PRIO_TBL_PRIO_POS
#define IWL_BT_COEX_PRIO_TBL_PRIO_MASK
#define IWL_BT_COEX_PRIO_TBL_RESERVED_POS
#define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK
#define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT

/*
 * BT Coexistence Priority table
 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
 */
enum bt_coex_prio_table_events {};

enum bt_coex_prio_table_priorities {};

struct iwl_bt_coex_prio_table_cmd {} __packed;

#define IWL_BT_COEX_ENV_CLOSE
#define IWL_BT_COEX_ENV_OPEN
/*
 * BT Protection Envelope
 * REPLY_BT_COEX_PROT_ENV = 0xcd
 */
struct iwl_bt_coex_prot_env_cmd {} __packed;

/*
 * REPLY_D3_CONFIG
 */
enum iwlagn_d3_wakeup_filters {};

struct iwlagn_d3_config_cmd {} __packed;

/*
 * REPLY_WOWLAN_PATTERNS
 */
#define IWLAGN_WOWLAN_MIN_PATTERN_LEN
#define IWLAGN_WOWLAN_MAX_PATTERN_LEN

struct iwlagn_wowlan_pattern {} __packed;

#define IWLAGN_WOWLAN_MAX_PATTERNS

struct iwlagn_wowlan_patterns_cmd {} __packed;

/*
 * REPLY_WOWLAN_WAKEUP_FILTER
 */
enum iwlagn_wowlan_wakeup_filters {};

struct iwlagn_wowlan_wakeup_filter_cmd {};

/*
 * REPLY_WOWLAN_TSC_RSC_PARAMS
 */
#define IWLAGN_NUM_RSC

struct tkip_sc {} __packed;

struct iwlagn_tkip_rsc_tsc {} __packed;

struct aes_sc {} __packed;

struct iwlagn_aes_rsc_tsc {} __packed;

iwlagn_all_tsc_rsc;

struct iwlagn_wowlan_rsc_tsc_params_cmd {} __packed;

/*
 * REPLY_WOWLAN_TKIP_PARAMS
 */
#define IWLAGN_MIC_KEY_SIZE
#define IWLAGN_P1K_SIZE
struct iwlagn_mic_keys {} __packed;

struct iwlagn_p1k_cache {} __packed;

#define IWLAGN_NUM_RX_P1K_CACHE

struct iwlagn_wowlan_tkip_params_cmd {} __packed;

/*
 * REPLY_WOWLAN_KEK_KCK_MATERIAL
 */

#define IWLAGN_KCK_MAX_SIZE
#define IWLAGN_KEK_MAX_SIZE

struct iwlagn_wowlan_kek_kck_material_cmd {} __packed;

#define RF_KILL_INDICATOR_FOR_WOWLAN

/*
 * REPLY_WOWLAN_GET_STATUS = 0xe5
 */
struct iwlagn_wowlan_status {} __packed;

/*
 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
 */

/*
 * Minimum slot time in TU
 */
#define IWL_MIN_SLOT_TIME

/**
 * struct iwl_wipan_slot
 * @width: Time in TU
 * @type:
 *   0 - BSS
 *   1 - PAN
 * @reserved: reserved for alignment
 */
struct iwl_wipan_slot {} __packed;

#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS
#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET
#define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE
#define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF
#define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE

/**
 * struct iwl_wipan_params_cmd
 * @flags:
 *   bit0: reserved
 *   bit1: CP leave channel with CTS
 *   bit2: CP leave channel qith Quiet
 *   bit3: slotted mode
 *     1 - work in slotted mode
 *     0 - work in non slotted mode
 *   bit4: filter beacon notification
 *   bit5: full tx slotted mode. if this flag is set,
 *         uCode will perform leaving channel methods in context switch
 *         also when working in same channel mode
 * @num_slots: 1 - 10
 * @slots: per-slot data
 * @reserved: reserved for alignment
 */
struct iwl_wipan_params_cmd {} __packed;

/*
 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
 *
 * TODO: Figure out what this is used for,
 *	 it can only switch between 2.4 GHz
 *	 channels!!
 */

struct iwl_wipan_p2p_channel_switch_cmd {};

/*
 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
 *
 * This is used by the device to notify us of the
 * NoA schedule it determined so we can forward it
 * to userspace for inclusion in probe responses.
 *
 * In beacons, the NoA schedule is simply appended
 * to the frame we give the device.
 */

struct iwl_wipan_noa_descriptor {} __packed;

struct iwl_wipan_noa_attribute {} __packed;

struct iwl_wipan_noa_notification {} __packed;

#endif				/* __iwl_commands_h__ */