/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ /* * Copyright (C) 2005-2014, 2023-2024 Intel Corporation */ /* * Please use this file (commands.h) only for uCode API definitions. * Please use iwl-xxxx-hw.h for hardware-related definitions. * Please use dev.h for driver implementation definitions. */ #ifndef __iwl_commands_h__ #define __iwl_commands_h__ #include <linux/ieee80211.h> #include <linux/types.h> enum { … }; /* * Minimum number of queues. MAX_NUM is defined in hw specific files. * Set the minimum to accommodate * - 4 standard TX queues * - the command queue * - 4 PAN TX queues * - the PAN multicast queue, and * - the AUX (TX during scan dwell) queue. */ #define IWL_MIN_NUM_QUEUES … /* * Command queue depends on iPAN support. */ #define IWL_DEFAULT_CMD_QUEUE_NUM … #define IWL_IPAN_CMD_QUEUE_NUM … #define IWL_TX_FIFO_BK … #define IWL_TX_FIFO_BE … #define IWL_TX_FIFO_VI … #define IWL_TX_FIFO_VO … #define IWL_TX_FIFO_BK_IPAN … #define IWL_TX_FIFO_BE_IPAN … #define IWL_TX_FIFO_VI_IPAN … #define IWL_TX_FIFO_VO_IPAN … /* re-uses the VO FIFO, uCode will properly flush/schedule */ #define IWL_TX_FIFO_AUX … #define IWL_TX_FIFO_UNUSED … #define IWLAGN_CMD_FIFO_NUM … /* * This queue number is required for proper operation * because the ucode will stop/start the scheduler as * required. */ #define IWL_IPAN_MCAST_QUEUE … /****************************************************************************** * (0) * Commonly used structures and definitions: * Command header, rate_n_flags, txpower * *****************************************************************************/ /* * iwlagn rate_n_flags bit fields * * rate_n_flags format is used in following iwlagn commands: * REPLY_RX (response only) * REPLY_RX_MPDU (response only) * REPLY_TX (both command and response) * REPLY_TX_LINK_QUALITY_CMD * * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"): * 2-0: 0) 6 Mbps * 1) 12 Mbps * 2) 18 Mbps * 3) 24 Mbps * 4) 36 Mbps * 5) 48 Mbps * 6) 54 Mbps * 7) 60 Mbps * * 4-3: 0) Single stream (SISO) * 1) Dual stream (MIMO) * 2) Triple stream (MIMO) * * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data * * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"): * 3-0: 0xD) 6 Mbps * 0xF) 9 Mbps * 0x5) 12 Mbps * 0x7) 18 Mbps * 0x9) 24 Mbps * 0xB) 36 Mbps * 0x1) 48 Mbps * 0x3) 54 Mbps * * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"): * 6-0: 10) 1 Mbps * 20) 2 Mbps * 55) 5.5 Mbps * 110) 11 Mbps */ #define RATE_MCS_CODE_MSK … #define RATE_MCS_SPATIAL_POS … #define RATE_MCS_SPATIAL_MSK … #define RATE_MCS_HT_DUP_POS … #define RATE_MCS_HT_DUP_MSK … /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */ #define RATE_MCS_RATE_MSK … /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */ #define RATE_MCS_FLAGS_POS … #define RATE_MCS_HT_POS … #define RATE_MCS_HT_MSK … /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */ #define RATE_MCS_CCK_POS … #define RATE_MCS_CCK_MSK … /* Bit 10: (1) Use Green Field preamble */ #define RATE_MCS_GF_POS … #define RATE_MCS_GF_MSK … /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */ #define RATE_MCS_HT40_POS … #define RATE_MCS_HT40_MSK … /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */ #define RATE_MCS_DUP_POS … #define RATE_MCS_DUP_MSK … /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */ #define RATE_MCS_SGI_POS … #define RATE_MCS_SGI_MSK … /* * rate_n_flags Tx antenna masks * bit14:16 */ #define RATE_MCS_ANT_POS … #define RATE_MCS_ANT_A_MSK … #define RATE_MCS_ANT_B_MSK … #define RATE_MCS_ANT_C_MSK … #define RATE_MCS_ANT_AB_MSK … #define RATE_MCS_ANT_ABC_MSK … #define RATE_ANT_NUM … #define POWER_TABLE_NUM_ENTRIES … #define POWER_TABLE_NUM_HT_OFDM_ENTRIES … #define POWER_TABLE_CCK_ENTRY … #define IWL_PWR_NUM_HT_OFDM_ENTRIES … #define IWL_PWR_CCK_ENTRIES … /* * struct tx_power_dual_stream * * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH * * Same format as iwl_tx_power_dual_stream, but __le32 */ struct tx_power_dual_stream { … } __packed; /* * Command REPLY_TX_POWER_DBM_CMD = 0x98 * struct iwlagn_tx_power_dbm_cmd */ #define IWLAGN_TX_POWER_AUTO … #define IWLAGN_TX_POWER_NO_CLOSED … struct iwlagn_tx_power_dbm_cmd { … } __packed; /* * Command TX_ANT_CONFIGURATION_CMD = 0x98 * This command is used to configure valid Tx antenna. * By default uCode concludes the valid antenna according to the radio flavor. * This command enables the driver to override/modify this conclusion. */ struct iwl_tx_ant_config_cmd { … } __packed; /****************************************************************************** * (0a) * Alive and Error Commands & Responses: * *****************************************************************************/ #define UCODE_VALID_OK … /* * REPLY_ALIVE = 0x1 (response only, not a command) * * uCode issues this "alive" notification once the runtime image is ready * to receive commands from the driver. This is the *second* "alive" * notification that the driver will receive after rebooting uCode; * this "alive" is indicated by subtype field != 9. * * See comments documenting "BSM" (bootstrap state machine). * * This response includes two pointers to structures within the device's * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging: * * 1) log_event_table_ptr indicates base of the event log. This traces * a 256-entry history of uCode execution within a circular buffer. * Its header format is: * * __le32 log_size; log capacity (in number of entries) * __le32 type; (1) timestamp with each entry, (0) no timestamp * __le32 wraps; # times uCode has wrapped to top of circular buffer * __le32 write_index; next circular buffer entry that uCode would fill * * The header is followed by the circular buffer of log entries. Entries * with timestamps have the following format: * * __le32 event_id; range 0 - 1500 * __le32 timestamp; low 32 bits of TSF (of network, if associated) * __le32 data; event_id-specific data value * * Entries without timestamps contain only event_id and data. * * * 2) error_event_table_ptr indicates base of the error log. This contains * information about any uCode error that occurs. For agn, the format * of the error log is defined by struct iwl_error_event_table. * * The Linux driver can print both logs to the system log when a uCode error * occurs. */ /* * Note: This structure is read from the device with IO accesses, * and the reading already does the endian conversion. As it is * read with u32-sized accesses, any members with a different size * need to be ordered correctly though! */ struct iwl_error_event_table { … } __packed; struct iwl_alive_resp { … } __packed; /* * REPLY_ERROR = 0x2 (response only, not a command) */ struct iwl_error_resp { … } __packed; /****************************************************************************** * (1) * RXON Commands & Responses: * *****************************************************************************/ /* * Rx config defines & structure */ /* rx_config device types */ enum { … }; #define RXON_RX_CHAIN_DRIVER_FORCE_MSK … #define RXON_RX_CHAIN_DRIVER_FORCE_POS … #define RXON_RX_CHAIN_VALID_MSK … #define RXON_RX_CHAIN_VALID_POS … #define RXON_RX_CHAIN_FORCE_SEL_MSK … #define RXON_RX_CHAIN_FORCE_SEL_POS … #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK … #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS … #define RXON_RX_CHAIN_CNT_MSK … #define RXON_RX_CHAIN_CNT_POS … #define RXON_RX_CHAIN_MIMO_CNT_MSK … #define RXON_RX_CHAIN_MIMO_CNT_POS … #define RXON_RX_CHAIN_MIMO_FORCE_MSK … #define RXON_RX_CHAIN_MIMO_FORCE_POS … /* rx_config flags */ /* band & modulation selection */ #define RXON_FLG_BAND_24G_MSK … #define RXON_FLG_CCK_MSK … /* auto detection enable */ #define RXON_FLG_AUTO_DETECT_MSK … /* TGg protection when tx */ #define RXON_FLG_TGG_PROTECT_MSK … /* cck short slot & preamble */ #define RXON_FLG_SHORT_SLOT_MSK … #define RXON_FLG_SHORT_PREAMBLE_MSK … /* antenna selection */ #define RXON_FLG_DIS_DIV_MSK … #define RXON_FLG_ANT_SEL_MSK … #define RXON_FLG_ANT_A_MSK … #define RXON_FLG_ANT_B_MSK … /* radar detection enable */ #define RXON_FLG_RADAR_DETECT_MSK … #define RXON_FLG_TGJ_NARROW_BAND_MSK … /* rx response to host with 8-byte TSF * (according to ON_AIR deassertion) */ #define RXON_FLG_TSF2HOST_MSK … /* HT flags */ #define RXON_FLG_CTRL_CHANNEL_LOC_POS … #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK … #define RXON_FLG_HT_OPERATING_MODE_POS … #define RXON_FLG_HT_PROT_MSK … #define RXON_FLG_HT40_PROT_MSK … #define RXON_FLG_CHANNEL_MODE_POS … #define RXON_FLG_CHANNEL_MODE_MSK … /* channel mode */ enum { … }; #define RXON_FLG_CHANNEL_MODE_LEGACY … #define RXON_FLG_CHANNEL_MODE_PURE_40 … #define RXON_FLG_CHANNEL_MODE_MIXED … /* CTS to self (if spec allows) flag */ #define RXON_FLG_SELF_CTS_EN … /* rx_config filter flags */ /* accept all data frames */ #define RXON_FILTER_PROMISC_MSK … /* pass control & management to host */ #define RXON_FILTER_CTL2HOST_MSK … /* accept multi-cast */ #define RXON_FILTER_ACCEPT_GRP_MSK … /* don't decrypt uni-cast frames */ #define RXON_FILTER_DIS_DECRYPT_MSK … /* don't decrypt multi-cast frames */ #define RXON_FILTER_DIS_GRP_DECRYPT_MSK … /* STA is associated */ #define RXON_FILTER_ASSOC_MSK … /* transfer to host non bssid beacons in associated state */ #define RXON_FILTER_BCON_AWARE_MSK … /* * REPLY_RXON = 0x10 (command, has simple generic response) * * RXON tunes the radio tuner to a service channel, and sets up a number * of parameters that are used primarily for Rx, but also for Tx operations. * * NOTE: When tuning to a new channel, driver must set the * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent * info within the device, including the station tables, tx retry * rate tables, and txpower tables. Driver must build a new station * table and txpower table before transmitting anything on the RXON * channel. * * NOTE: All RXONs wipe clean the internal txpower table. Driver must * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10), * regardless of whether RXON_FILTER_ASSOC_MSK is set. */ struct iwl_rxon_cmd { … } __packed; /* * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response) */ struct iwl_rxon_assoc_cmd { … } __packed; #define IWL_CONN_MAX_LISTEN_INTERVAL … #define IWL_MAX_UCODE_BEACON_INTERVAL … /* * REPLY_RXON_TIMING = 0x14 (command, has simple generic response) */ struct iwl_rxon_time_cmd { … } __packed; /* * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response) */ /** * struct iwl5000_channel_switch_cmd * @band: 0- 5.2GHz, 1- 2.4GHz * @expect_beacon: 0- resume transmits after channel switch * 1- wait for beacon to resume transmits * @channel: new channel number * @rxon_flags: Rx on flags * @rxon_filter_flags: filtering parameters * @switch_time: switch time in extended beacon format * @reserved: reserved bytes */ struct iwl5000_channel_switch_cmd { … } __packed; /** * struct iwl6000_channel_switch_cmd * @band: 0- 5.2GHz, 1- 2.4GHz * @expect_beacon: 0- resume transmits after channel switch * 1- wait for beacon to resume transmits * @channel: new channel number * @rxon_flags: Rx on flags * @rxon_filter_flags: filtering parameters * @switch_time: switch time in extended beacon format * @reserved: reserved bytes */ struct iwl6000_channel_switch_cmd { … } __packed; /* * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command) */ struct iwl_csa_notification { … } __packed; /****************************************************************************** * (2) * Quality-of-Service (QOS) Commands & Responses: * *****************************************************************************/ /** * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd * * @cw_min: Contention window, start value in numbers of slots. * Should be a power-of-2, minus 1. Device's default is 0x0f. * @cw_max: Contention window, max value in numbers of slots. * Should be a power-of-2, minus 1. Device's default is 0x3f. * @aifsn: Number of slots in Arbitration Interframe Space (before * performing random backoff timing prior to Tx). Device default 1. * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0. * @reserved1: reserved for alignment * * Device will automatically increase contention window by (2*CW) + 1 for each * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW * value, to cap the CW value. */ struct iwl_ac_qos { … } __packed; /* QoS flags defines */ #define QOS_PARAM_FLG_UPDATE_EDCA_MSK … #define QOS_PARAM_FLG_TGN_MSK … #define QOS_PARAM_FLG_TXOP_TYPE_MSK … /* Number of Access Categories (AC) (EDCA), queues 0..3 */ #define AC_NUM … /* * REPLY_QOS_PARAM = 0x13 (command, has simple generic response) * * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs * 0: Background, 1: Best Effort, 2: Video, 3: Voice. */ struct iwl_qosparam_cmd { … } __packed; /****************************************************************************** * (3) * Add/Modify Stations Commands & Responses: * *****************************************************************************/ /* * Multi station support */ /* Special, dedicated locations within device's station table */ #define IWL_AP_ID … #define IWL_AP_ID_PAN … #define IWL_STA_ID … #define IWLAGN_PAN_BCAST_ID … #define IWLAGN_BROADCAST_ID … #define IWLAGN_STATION_COUNT … #define IWL_TID_NON_QOS … #define STA_FLG_TX_RATE_MSK … #define STA_FLG_PWR_SAVE_MSK … #define STA_FLG_PAN_STATION … #define STA_FLG_RTS_MIMO_PROT_MSK … #define STA_FLG_AGG_MPDU_8US_MSK … #define STA_FLG_MAX_AGG_SIZE_POS … #define STA_FLG_MAX_AGG_SIZE_MSK … #define STA_FLG_HT40_EN_MSK … #define STA_FLG_MIMO_DIS_MSK … #define STA_FLG_AGG_MPDU_DENSITY_POS … #define STA_FLG_AGG_MPDU_DENSITY_MSK … /* Use in mode field. 1: modify existing entry, 0: add new station entry */ #define STA_CONTROL_MODIFY_MSK … /* key flags __le16*/ #define STA_KEY_FLG_ENCRYPT_MSK … #define STA_KEY_FLG_NO_ENC … #define STA_KEY_FLG_WEP … #define STA_KEY_FLG_CCMP … #define STA_KEY_FLG_TKIP … #define STA_KEY_FLG_KEYID_POS … #define STA_KEY_FLG_INVALID … /* wep key is either from global key (0) or from station info array (1) */ #define STA_KEY_FLG_MAP_KEY_MSK … /* wep key in STA: 5-bytes (0) or 13-bytes (1) */ #define STA_KEY_FLG_KEY_SIZE_MSK … #define STA_KEY_MULTICAST_MSK … #define STA_KEY_MAX_NUM … #define STA_KEY_MAX_NUM_PAN … /* must not match WEP_INVALID_OFFSET */ #define IWLAGN_HW_KEY_DEFAULT … /* Flags indicate whether to modify vs. don't change various station params */ #define STA_MODIFY_KEY_MASK … #define STA_MODIFY_TID_DISABLE_TX … #define STA_MODIFY_TX_RATE_MSK … #define STA_MODIFY_ADDBA_TID_MSK … #define STA_MODIFY_DELBA_TID_MSK … #define STA_MODIFY_SLEEP_TX_COUNT_MSK … /* agn */ struct iwl_keyinfo { … } __packed; /** * struct sta_id_modify * @addr: station's MAC address * @reserved1: reserved for alignment * @sta_id: index of station in uCode's station table * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change * @reserved2: reserved for alignment * * Driver selects unused table index when adding new station, * or the index to a pre-existing station entry when modifying that station. * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP). * * modify_mask flags select which parameters to modify vs. leave alone. */ struct sta_id_modify { … } __packed; /* * REPLY_ADD_STA = 0x18 (command) * * The device contains an internal table of per-station information, * with info on security keys, aggregation parameters, and Tx rates for * initial Tx attempt and any retries (agn devices uses * REPLY_TX_LINK_QUALITY_CMD, * * REPLY_ADD_STA sets up the table entry for one station, either creating * a new entry, or modifying a pre-existing one. * * NOTE: RXON command (without "associated" bit set) wipes the station table * clean. Moving into RF_KILL state does this also. Driver must set up * new station table before transmitting anything on the RXON channel * (except active scans or active measurements; those commands carry * their own txpower/rate setup data). * * When getting started on a new channel, driver must set up the * IWL_BROADCAST_ID entry (last entry in the table). For a client * station in a BSS, once an AP is selected, driver sets up the AP STA * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP * are all that are needed for a BSS client station. If the device is * used as AP, or in an IBSS network, driver must set up station table * entries for all STAs in network, starting with index IWL_STA_ID. */ struct iwl_addsta_cmd { … } __packed; #define ADD_STA_SUCCESS_MSK … #define ADD_STA_NO_ROOM_IN_TABLE … #define ADD_STA_NO_BLOCK_ACK_RESOURCE … #define ADD_STA_MODIFY_NON_EXIST_STA … /* * REPLY_ADD_STA = 0x18 (response) */ struct iwl_add_sta_resp { … } __packed; #define REM_STA_SUCCESS_MSK … /* * REPLY_REM_STA = 0x19 (response) */ struct iwl_rem_sta_resp { … } __packed; /* * REPLY_REM_STA = 0x19 (command) */ struct iwl_rem_sta_cmd { … } __packed; /* WiFi queues mask */ #define IWL_SCD_BK_MSK … #define IWL_SCD_BE_MSK … #define IWL_SCD_VI_MSK … #define IWL_SCD_VO_MSK … #define IWL_SCD_MGMT_MSK … /* PAN queues mask */ #define IWL_PAN_SCD_BK_MSK … #define IWL_PAN_SCD_BE_MSK … #define IWL_PAN_SCD_VI_MSK … #define IWL_PAN_SCD_VO_MSK … #define IWL_PAN_SCD_MGMT_MSK … #define IWL_PAN_SCD_MULTICAST_MSK … #define IWL_AGG_TX_QUEUE_MSK … #define IWL_DROP_ALL … /* * REPLY_TXFIFO_FLUSH = 0x1e(command and response) * * When using full FIFO flush this command checks the scheduler HW block WR/RD * pointers to check if all the frames were transferred by DMA into the * relevant TX FIFO queue. Only when the DMA is finished and the queue is * empty the command can finish. * This command is used to flush the TXFIFO from transmit commands, it may * operate on single or multiple queues, the command queue can't be flushed by * this command. The command response is returned when all the queue flush * operations are done. Each TX command flushed return response with the FLUSH * status set in the TX response status. When FIFO flush operation is used, * the flush operation ends when both the scheduler DMA done and TXFIFO empty * are set. * * @queue_control: bit mask for which queues to flush * @flush_control: flush controls * 0: Dump single MSDU * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable. * 2: Dump all FIFO */ struct iwl_txfifo_flush_cmd_v3 { … } __packed; struct iwl_txfifo_flush_cmd_v2 { … } __packed; /* * REPLY_WEP_KEY = 0x20 */ struct iwl_wep_key { … } __packed; struct iwl_wep_cmd { … } __packed; #define WEP_KEY_WEP_TYPE … #define WEP_KEYS_MAX … #define WEP_INVALID_OFFSET … #define WEP_KEY_LEN_64 … #define WEP_KEY_LEN_128 … /****************************************************************************** * (4) * Rx Responses: * *****************************************************************************/ #define RX_RES_STATUS_NO_CRC32_ERROR … #define RX_RES_STATUS_NO_RXE_OVERFLOW … #define RX_RES_PHY_FLAGS_BAND_24_MSK … #define RX_RES_PHY_FLAGS_MOD_CCK_MSK … #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK … #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK … #define RX_RES_PHY_FLAGS_ANTENNA_MSK … #define RX_RES_PHY_FLAGS_ANTENNA_POS … #define RX_RES_PHY_FLAGS_AGG_MSK … #define RX_RES_STATUS_SEC_TYPE_MSK … #define RX_RES_STATUS_SEC_TYPE_NONE … #define RX_RES_STATUS_SEC_TYPE_WEP … #define RX_RES_STATUS_SEC_TYPE_CCMP … #define RX_RES_STATUS_SEC_TYPE_TKIP … #define RX_RES_STATUS_SEC_TYPE_ERR … #define RX_RES_STATUS_STATION_FOUND … #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH … #define RX_RES_STATUS_DECRYPT_TYPE_MSK … #define RX_RES_STATUS_NOT_DECRYPT … #define RX_RES_STATUS_DECRYPT_OK … #define RX_RES_STATUS_BAD_ICV_MIC … #define RX_RES_STATUS_BAD_KEY_TTAK … #define RX_MPDU_RES_STATUS_ICV_OK … #define RX_MPDU_RES_STATUS_MIC_OK … #define RX_MPDU_RES_STATUS_TTAK_OK … #define RX_MPDU_RES_STATUS_DEC_DONE_MSK … #define IWLAGN_RX_RES_PHY_CNT … #define IWLAGN_RX_RES_AGC_IDX … #define IWLAGN_RX_RES_RSSI_AB_IDX … #define IWLAGN_RX_RES_RSSI_C_IDX … #define IWLAGN_OFDM_AGC_MSK … #define IWLAGN_OFDM_AGC_BIT_POS … #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK … #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK … #define IWLAGN_OFDM_RSSI_A_BIT_POS … #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK … #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK … #define IWLAGN_OFDM_RSSI_B_BIT_POS … #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK … #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK … #define IWLAGN_OFDM_RSSI_C_BIT_POS … struct iwlagn_non_cfg_phy { … } __packed; /* * REPLY_RX = 0xc3 (response only, not a command) * Used only for legacy (non 11n) frames. */ struct iwl_rx_phy_res { … } __packed; struct iwl_rx_mpdu_res_start { … } __packed; /****************************************************************************** * (5) * Tx Commands & Responses: * * Driver must place each REPLY_TX command into one of the prioritized Tx * queues in host DRAM, shared between driver and device (see comments for * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode * are preparing to transmit, the device pulls the Tx command over the PCI * bus via one of the device's Tx DMA channels, to fill an internal FIFO * from which data will be transmitted. * * uCode handles all timing and protocol related to control frames * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler * handle reception of block-acks; uCode updates the host driver via * REPLY_COMPRESSED_BA. * * uCode handles retrying Tx when an ACK is expected but not received. * This includes trying lower data rates than the one requested in the Tx * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn). * * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD. * This command must be executed after every RXON command, before Tx can occur. *****************************************************************************/ /* REPLY_TX Tx flags field */ /* * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it * before this frame. if CTS-to-self required check * RXON_FLG_SELF_CTS_EN status. */ #define TX_CMD_FLG_PROT_REQUIRE_MSK … /* 1: Expect ACK from receiving station * 0: Don't expect ACK (MAC header's duration field s/b 0) * Set this for unicast frames, but not broadcast/multicast. */ #define TX_CMD_FLG_ACK_MSK … /* For agn devices: * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD). * Tx command's initial_rate_index indicates first rate to try; * uCode walks through table for additional Tx attempts. * 0: Use Tx rate/MCS from Tx command's rate_n_flags field. * This rate will be used for all Tx attempts; it will not be scaled. */ #define TX_CMD_FLG_STA_RATE_MSK … /* 1: Expect immediate block-ack. * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */ #define TX_CMD_FLG_IMM_BA_RSP_MASK … /* Tx antenna selection field; reserved (0) for agn devices. */ #define TX_CMD_FLG_ANT_SEL_MSK … /* 1: Ignore Bluetooth priority for this frame. * 0: Delay Tx until Bluetooth device is done (normal usage). */ #define TX_CMD_FLG_IGNORE_BT … /* 1: uCode overrides sequence control field in MAC header. * 0: Driver provides sequence control field in MAC header. * Set this for management frames, non-QOS data frames, non-unicast frames, * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */ #define TX_CMD_FLG_SEQ_CTL_MSK … /* 1: This frame is non-last MPDU; more fragments are coming. * 0: Last fragment, or not using fragmentation. */ #define TX_CMD_FLG_MORE_FRAG_MSK … /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame. * 0: No TSF required in outgoing frame. * Set this for transmitting beacons and probe responses. */ #define TX_CMD_FLG_TSF_MSK … /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword * alignment of frame's payload data field. * 0: No pad * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4 * field (but not both). Driver must align frame data (i.e. data following * MAC header) to DWORD boundary. */ #define TX_CMD_FLG_MH_PAD_MSK … /* accelerate aggregation support * 0 - no CCMP encryption; 1 - CCMP encryption */ #define TX_CMD_FLG_AGG_CCMP_MSK … /* HCCA-AP - disable duration overwriting. */ #define TX_CMD_FLG_DUR_MSK … /* * TX command security control */ #define TX_CMD_SEC_WEP … #define TX_CMD_SEC_CCM … #define TX_CMD_SEC_TKIP … #define TX_CMD_SEC_MSK … #define TX_CMD_SEC_SHIFT … #define TX_CMD_SEC_KEY128 … /* * REPLY_TX = 0x1c (command) */ /* * Used for managing Tx retries when expecting block-acks. * Driver should set these fields to 0. */ struct iwl_dram_scratch { … } __packed; struct iwl_tx_cmd { … } __packed; /* * TX command response is sent after *agn* transmission attempts. * * both postpone and abort status are expected behavior from uCode. there is * no special operation required from driver; except for RFKILL_FLUSH, * which required tx flush host command to flush all the tx frames in queues */ enum { … }; #define TX_PACKET_MODE_REGULAR … #define TX_PACKET_MODE_BURST_SEQ … #define TX_PACKET_MODE_BURST_FIRST … enum { … }; enum { … }; /* ******************************* * TX aggregation status ******************************* */ enum { … }; #define AGG_TX_STATUS_MSK … #define AGG_TX_TRY_MSK … #define AGG_TX_TRY_POS … #define AGG_TX_STATE_LAST_SENT_MSK … /* # tx attempts for first frame in aggregation */ #define AGG_TX_STATE_TRY_CNT_POS … #define AGG_TX_STATE_TRY_CNT_MSK … /* Command ID and sequence number of Tx command for this frame */ #define AGG_TX_STATE_SEQ_NUM_POS … #define AGG_TX_STATE_SEQ_NUM_MSK … /* * REPLY_TX = 0x1c (response) * * This response may be in one of two slightly different formats, indicated * by the frame_count field: * * 1) No aggregation (frame_count == 1). This reports Tx results for * a single frame. Multiple attempts, at various bit rates, may have * been made for this frame. * * 2) Aggregation (frame_count > 1). This reports Tx results for * 2 or more frames that used block-acknowledge. All frames were * transmitted at same rate. Rate scaling may have been used if first * frame in this new agg block failed in previous agg block(s). * * Note that, for aggregation, ACK (block-ack) status is not delivered here; * block-ack has not been received by the time the agn device records * this status. * This status relates to reasons the tx might have been blocked or aborted * within the sending station (this agn device), rather than whether it was * received successfully by the destination station. */ struct agg_tx_status { … } __packed; /* refer to ra_tid */ #define IWLAGN_TX_RES_TID_POS … #define IWLAGN_TX_RES_TID_MSK … #define IWLAGN_TX_RES_RA_POS … #define IWLAGN_TX_RES_RA_MSK … struct iwlagn_tx_resp { … } __packed; /* * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command) * * Reports Block-Acknowledge from recipient station */ struct iwl_compressed_ba_resp { … } __packed; /* * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response) * */ /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */ #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK … /* # of EDCA prioritized tx fifos */ #define LINK_QUAL_AC_NUM … /* # entries in rate scale table to support Tx retries */ #define LINK_QUAL_MAX_RETRY_NUM … /* Tx antenna selection values */ #define LINK_QUAL_ANT_A_MSK … #define LINK_QUAL_ANT_B_MSK … #define LINK_QUAL_ANT_MSK … /* * struct iwl_link_qual_general_params * * Used in REPLY_TX_LINK_QUALITY_CMD */ struct iwl_link_qual_general_params { … } __packed; #define LINK_QUAL_AGG_TIME_LIMIT_DEF … #define LINK_QUAL_AGG_TIME_LIMIT_MAX … #define LINK_QUAL_AGG_TIME_LIMIT_MIN … #define LINK_QUAL_AGG_DISABLE_START_DEF … #define LINK_QUAL_AGG_DISABLE_START_MAX … #define LINK_QUAL_AGG_DISABLE_START_MIN … #define LINK_QUAL_AGG_FRAME_LIMIT_DEF … #define LINK_QUAL_AGG_FRAME_LIMIT_MAX … #define LINK_QUAL_AGG_FRAME_LIMIT_MIN … /* * struct iwl_link_qual_agg_params * * Used in REPLY_TX_LINK_QUALITY_CMD */ struct iwl_link_qual_agg_params { … } __packed; /* * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response) * * For agn devices * * Each station in the agn device's internal station table has its own table * of 16 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when * an ACK is not received. This command replaces the entire table for * one station. * * NOTE: Station must already be in agn device's station table. * Use REPLY_ADD_STA. * * The rate scaling procedures described below work well. Of course, other * procedures are possible, and may work better for particular environments. * * * FILLING THE RATE TABLE * * Given a particular initial rate and mode, as determined by the rate * scaling algorithm described below, the Linux driver uses the following * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the * Link Quality command: * * * 1) If using High-throughput (HT) (SISO or MIMO) initial rate: * a) Use this same initial rate for first 3 entries. * b) Find next lower available rate using same mode (SISO or MIMO), * use for next 3 entries. If no lower rate available, switch to * legacy mode (no HT40 channel, no MIMO, no short guard interval). * c) If using MIMO, set command's mimo_delimiter to number of entries * using MIMO (3 or 6). * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel, * no MIMO, no short guard interval), at the next lower bit rate * (e.g. if second HT bit rate was 54, try 48 legacy), and follow * legacy procedure for remaining table entries. * * 2) If using legacy initial rate: * a) Use the initial rate for only one entry. * b) For each following entry, reduce the rate to next lower available * rate, until reaching the lowest available rate. * c) When reducing rate, also switch antenna selection. * d) Once lowest available rate is reached, repeat this rate until * rate table is filled (16 entries), switching antenna each entry. * * * ACCUMULATING HISTORY * * The rate scaling algorithm for agn devices, as implemented in Linux driver, * uses two sets of frame Tx success history: One for the current/active * modulation mode, and one for a speculative/search mode that is being * attempted. If the speculative mode turns out to be more effective (i.e. * actual transfer rate is better), then the driver continues to use the * speculative mode as the new current active mode. * * Each history set contains, separately for each possible rate, data for a * sliding window of the 62 most recent tx attempts at that rate. The data * includes a shifting bitmap of success(1)/failure(0), and sums of successful * and attempted frames, from which the driver can additionally calculate a * success ratio (success / attempted) and number of failures * (attempted - success), and control the size of the window (attempted). * The driver uses the bit map to remove successes from the success sum, as * the oldest tx attempts fall out of the window. * * When the agn device makes multiple tx attempts for a given frame, each * attempt might be at a different rate, and have different modulation * characteristics (e.g. antenna, fat channel, short guard interval), as set * up in the rate scaling table in the Link Quality command. The driver must * determine which rate table entry was used for each tx attempt, to determine * which rate-specific history to update, and record only those attempts that * match the modulation characteristics of the history set. * * When using block-ack (aggregation), all frames are transmitted at the same * rate, since there is no per-attempt acknowledgment from the destination * station. The Tx response struct iwl_tx_resp indicates the Tx rate in * rate_n_flags field. After receiving a block-ack, the driver can update * history for the entire block all at once. * * * FINDING BEST STARTING RATE: * * When working with a selected initial modulation mode (see below), the * driver attempts to find a best initial rate. The initial rate is the * first entry in the Link Quality command's rate table. * * 1) Calculate actual throughput (success ratio * expected throughput, see * table below) for current initial rate. Do this only if enough frames * have been attempted to make the value meaningful: at least 6 failed * tx attempts, or at least 8 successes. If not enough, don't try rate * scaling yet. * * 2) Find available rates adjacent to current initial rate. Available means: * a) supported by hardware && * b) supported by association && * c) within any constraints selected by user * * 3) Gather measured throughputs for adjacent rates. These might not have * enough history to calculate a throughput. That's okay, we might try * using one of them anyway! * * 4) Try decreasing rate if, for current rate: * a) success ratio is < 15% || * b) lower adjacent rate has better measured throughput || * c) higher adjacent rate has worse throughput, and lower is unmeasured * * As a sanity check, if decrease was determined above, leave rate * unchanged if: * a) lower rate unavailable * b) success ratio at current rate > 85% (very good) * c) current measured throughput is better than expected throughput * of lower rate (under perfect 100% tx conditions, see table below) * * 5) Try increasing rate if, for current rate: * a) success ratio is < 15% || * b) both adjacent rates' throughputs are unmeasured (try it!) || * b) higher adjacent rate has better measured throughput || * c) lower adjacent rate has worse throughput, and higher is unmeasured * * As a sanity check, if increase was determined above, leave rate * unchanged if: * a) success ratio at current rate < 70%. This is not particularly * good performance; higher rate is sure to have poorer success. * * 6) Re-evaluate the rate after each tx frame. If working with block- * acknowledge, history and statistics may be calculated for the entire * block (including prior history that fits within the history windows), * before re-evaluation. * * FINDING BEST STARTING MODULATION MODE: * * After working with a modulation mode for a "while" (and doing rate scaling), * the driver searches for a new initial mode in an attempt to improve * throughput. The "while" is measured by numbers of attempted frames: * * For legacy mode, search for new mode after: * 480 successful frames, or 160 failed frames * For high-throughput modes (SISO or MIMO), search for new mode after: * 4500 successful frames, or 400 failed frames * * Mode switch possibilities are (3 for each mode): * * For legacy: * Change antenna, try SISO (if HT association), try MIMO (if HT association) * For SISO: * Change antenna, try MIMO, try shortened guard interval (SGI) * For MIMO: * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI) * * When trying a new mode, use the same bit rate as the old/current mode when * trying antenna switches and shortened guard interval. When switching to * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate * for which the expected throughput (under perfect conditions) is about the * same or slightly better than the actual measured throughput delivered by * the old/current mode. * * Actual throughput can be estimated by multiplying the expected throughput * by the success ratio (successful / attempted tx frames). Frame size is * not considered in this calculation; it assumes that frame size will average * out to be fairly consistent over several samples. The following are * metric values for expected throughput assuming 100% success ratio. * Only G band has support for CCK rates: * * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60 * * G: 7 13 35 58 40 57 72 98 121 154 177 186 186 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293 * * After the new mode has been tried for a short while (minimum of 6 failed * frames or 8 successful frames), compare success ratio and actual throughput * estimate of the new mode with the old. If either is better with the new * mode, continue to use the new mode. * * Continue comparing modes until all 3 possibilities have been tried. * If moving from legacy to HT, try all 3 possibilities from the new HT * mode. After trying all 3, a best mode is found. Continue to use this mode * for the longer "while" described above (e.g. 480 successful frames for * legacy), and then repeat the search process. * */ struct iwl_link_quality_cmd { … } __packed; /* * BT configuration enable flags: * bit 0 - 1: BT channel announcement enabled * 0: disable * bit 1 - 1: priority of BT device enabled * 0: disable * bit 2 - 1: BT 2 wire support enabled * 0: disable */ #define BT_COEX_DISABLE … #define BT_ENABLE_CHANNEL_ANNOUNCE … #define BT_ENABLE_PRIORITY … #define BT_ENABLE_2_WIRE … #define BT_COEX_DISABLE … #define BT_COEX_ENABLE … #define BT_LEAD_TIME_MIN … #define BT_LEAD_TIME_DEF … #define BT_LEAD_TIME_MAX … #define BT_MAX_KILL_MIN … #define BT_MAX_KILL_DEF … #define BT_MAX_KILL_MAX … #define BT_DURATION_LIMIT_DEF … #define BT_DURATION_LIMIT_MAX … #define BT_DURATION_LIMIT_MIN … #define BT_ON_THRESHOLD_DEF … #define BT_ON_THRESHOLD_MAX … #define BT_ON_THRESHOLD_MIN … #define BT_FRAG_THRESHOLD_DEF … #define BT_FRAG_THRESHOLD_MAX … #define BT_FRAG_THRESHOLD_MIN … #define BT_AGG_THRESHOLD_DEF … #define BT_AGG_THRESHOLD_MAX … #define BT_AGG_THRESHOLD_MIN … /* * REPLY_BT_CONFIG = 0x9b (command, has simple generic response) * * agn devices support hardware handshake with Bluetooth device on * same platform. Bluetooth device alerts wireless device when it will Tx; * wireless device can delay or kill its own Tx to accommodate. */ struct iwl_bt_cmd { … } __packed; #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION … #define IWLAGN_BT_FLAG_COEX_MODE_MASK … #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT … #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED … #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W … #define IWLAGN_BT_FLAG_COEX_MODE_3W … #define IWLAGN_BT_FLAG_COEX_MODE_4W … #define IWLAGN_BT_FLAG_UCODE_DEFAULT … /* Disable Sync PSPoll on SCO/eSCO */ #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE … #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD … #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD … #define IWLAGN_BT_PRIO_BOOST_MAX … #define IWLAGN_BT_PRIO_BOOST_MIN … #define IWLAGN_BT_PRIO_BOOST_DEFAULT … #define IWLAGN_BT_PRIO_BOOST_DEFAULT32 … #define IWLAGN_BT_MAX_KILL_DEFAULT … #define IWLAGN_BT3_T7_DEFAULT … enum iwl_bt_kill_idx { … }; #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT … #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT … #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO … #define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE … #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT … #define IWLAGN_BT3_T2_DEFAULT … #define IWLAGN_BT_VALID_ENABLE_FLAGS … #define IWLAGN_BT_VALID_BOOST … #define IWLAGN_BT_VALID_MAX_KILL … #define IWLAGN_BT_VALID_3W_TIMERS … #define IWLAGN_BT_VALID_KILL_ACK_MASK … #define IWLAGN_BT_VALID_KILL_CTS_MASK … #define IWLAGN_BT_VALID_REDUCED_TX_PWR … #define IWLAGN_BT_VALID_3W_LUT … #define IWLAGN_BT_ALL_VALID_MSK … #define IWLAGN_BT_REDUCED_TX_PWR … #define IWLAGN_BT_DECISION_LUT_SIZE … struct iwl_basic_bt_cmd { … }; struct iwl_bt_cmd_v1 { … }; struct iwl_bt_cmd_v2 { … }; #define IWLAGN_BT_SCO_ACTIVE … struct iwlagn_bt_sco_cmd { … }; /****************************************************************************** * (6) * Spectrum Management (802.11h) Commands, Responses, Notifications: * *****************************************************************************/ /* * Spectrum Management */ #define MEASUREMENT_FILTER_FLAG … struct iwl_measure_channel { … } __packed; /* * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command) */ struct iwl_spectrum_cmd { … } __packed; /* * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response) */ struct iwl_spectrum_resp { … } __packed; enum iwl_measurement_state { … }; enum iwl_measurement_status { … }; #define NUM_ELEMENTS_IN_HISTOGRAM … struct iwl_measurement_histogram { … } __packed; /* clear channel availability counters */ struct iwl_measurement_cca_counters { … } __packed; enum iwl_measure_type { … }; /* * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command) */ struct iwl_spectrum_notification { … } __packed; /****************************************************************************** * (7) * Power Management Commands, Responses, Notifications: * *****************************************************************************/ /* * struct iwl_powertable_cmd - Power Table Command * @flags: See below: * * POWER_TABLE_CMD = 0x77 (command, has simple generic response) * * PM allow: * bit 0 - '0' Driver not allow power management * '1' Driver allow PM (use rest of parameters) * * uCode send sleep notifications: * bit 1 - '0' Don't send sleep notification * '1' send sleep notification (SEND_PM_NOTIFICATION) * * Sleep over DTIM * bit 2 - '0' PM have to walk up every DTIM * '1' PM could sleep over DTIM till listen Interval. * * PCI power managed * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1) * '1' !(PCI_CFG_LINK_CTRL & 0x1) * * Fast PD * bit 4 - '1' Put radio to sleep when receiving frame for others * * Force sleep Modes * bit 31/30- '00' use both mac/xtal sleeps * '01' force Mac sleep * '10' force xtal sleep * '11' Illegal set * * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then * ucode assume sleep over DTIM is allowed and we don't need to wake up * for every DTIM. */ #define IWL_POWER_VEC_SIZE … #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK … #define IWL_POWER_POWER_SAVE_ENA_MSK … #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK … #define IWL_POWER_SLEEP_OVER_DTIM_MSK … #define IWL_POWER_PCI_PM_MSK … #define IWL_POWER_FAST_PD … #define IWL_POWER_BEACON_FILTERING … #define IWL_POWER_SHADOW_REG_ENA … #define IWL_POWER_CT_KILL_SET … #define IWL_POWER_BT_SCO_ENA … #define IWL_POWER_ADVANCE_PM_ENA_MSK … struct iwl_powertable_cmd { … } __packed; /* * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command) * all devices identical. */ struct iwl_sleep_notification { … } __packed; /* Sleep states. all devices identical. */ enum { … }; /* * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response) */ #define CARD_STATE_CMD_DISABLE … #define CARD_STATE_CMD_ENABLE … #define CARD_STATE_CMD_HALT … struct iwl_card_state_cmd { … } __packed; /* * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command) */ struct iwl_card_state_notif { … } __packed; #define HW_CARD_DISABLED … #define SW_CARD_DISABLED … #define CT_CARD_DISABLED … #define RXON_CARD_DISABLED … struct iwl_ct_kill_config { … } __packed; /* 1000, and 6x00 */ struct iwl_ct_kill_throttling_config { … } __packed; /****************************************************************************** * (8) * Scan Commands, Responses, Notifications: * *****************************************************************************/ #define SCAN_CHANNEL_TYPE_PASSIVE … #define SCAN_CHANNEL_TYPE_ACTIVE … /* * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table * * One for each channel in the scan list. * Each channel can independently select: * 1) SSID for directed active scans * 2) Txpower setting (for rate specified within Tx command) * 3) How long to stay on-channel (behavior may be modified by quiet_time, * quiet_plcp_th, good_CRC_th) * * To avoid uCode errors, make sure the following are true (see comments * under struct iwl_scan_cmd about max_out_time and quiet_time): * 1) If using passive_dwell (i.e. passive_dwell != 0): * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0) * 2) quiet_time <= active_dwell * 3) If restricting off-channel time (i.e. max_out_time !=0): * passive_dwell < max_out_time * active_dwell < max_out_time */ struct iwl_scan_channel { … } __packed; /* set number of direct probes __le32 type */ #define IWL_SCAN_PROBE_MASK(n) … /* * struct iwl_ssid_ie - directed scan network information element * * Up to 20 of these may appear in REPLY_SCAN_CMD, * selected by "type" bit field in struct iwl_scan_channel; * each channel may select different ssids from among the 20 entries. * SSID IEs get transmitted in reverse order of entry. */ struct iwl_ssid_ie { … } __packed; #define PROBE_OPTION_MAX … #define TX_CMD_LIFE_TIME_INFINITE … #define IWL_GOOD_CRC_TH_DISABLED … #define IWL_GOOD_CRC_TH_DEFAULT … #define IWL_GOOD_CRC_TH_NEVER … #define IWL_MAX_CMD_SIZE … /* * REPLY_SCAN_CMD = 0x80 (command) * * The hardware scan command is very powerful; the driver can set it up to * maintain (relatively) normal network traffic while doing a scan in the * background. The max_out_time and suspend_time control the ratio of how * long the device stays on an associated network channel ("service channel") * vs. how long it's away from the service channel, i.e. tuned to other channels * for scanning. * * max_out_time is the max time off-channel (in usec), and suspend_time * is how long (in "extended beacon" format) that the scan is "suspended" * after returning to the service channel. That is, suspend_time is the * time that we stay on the service channel, doing normal work, between * scan segments. The driver may set these parameters differently to support * scanning when associated vs. not associated, and light vs. heavy traffic * loads when associated. * * After receiving this command, the device's scan engine does the following; * * 1) Sends SCAN_START notification to driver * 2) Checks to see if it has time to do scan for one channel * 3) Sends NULL packet, with power-save (PS) bit set to 1, * to tell AP that we're going off-channel * 4) Tunes to first channel in scan list, does active or passive scan * 5) Sends SCAN_RESULT notification to driver * 6) Checks to see if it has time to do scan on *next* channel in list * 7) Repeats 4-6 until it no longer has time to scan the next channel * before max_out_time expires * 8) Returns to service channel * 9) Sends NULL packet with PS=0 to tell AP that we're back * 10) Stays on service channel until suspend_time expires * 11) Repeats entire process 2-10 until list is complete * 12) Sends SCAN_COMPLETE notification * * For fast, efficient scans, the scan command also has support for staying on * a channel for just a short time, if doing active scanning and getting no * responses to the transmitted probe request. This time is controlled by * quiet_time, and the number of received packets below which a channel is * considered "quiet" is controlled by quiet_plcp_threshold. * * For active scanning on channels that have regulatory restrictions against * blindly transmitting, the scan can listen before transmitting, to make sure * that there is already legitimate activity on the channel. If enough * packets are cleanly received on the channel (controlled by good_CRC_th, * typical value 1), the scan engine starts transmitting probe requests. * * Driver must use separate scan commands for 2.4 vs. 5 GHz bands. * * To avoid uCode errors, see timing restrictions described under * struct iwl_scan_channel. */ enum iwl_scan_flags { … }; struct iwl_scan_cmd { … } __packed; /* Can abort will notify by complete notification with abort status. */ #define CAN_ABORT_STATUS … /* complete notification statuses */ #define ABORT_STATUS … /* * REPLY_SCAN_CMD = 0x80 (response) */ struct iwl_scanreq_notification { … } __packed; /* * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command) */ struct iwl_scanstart_notification { … } __packed; #define SCAN_OWNER_STATUS … #define MEASURE_OWNER_STATUS … #define IWL_PROBE_STATUS_OK … #define IWL_PROBE_STATUS_TX_FAILED … /* error statuses combined with TX_FAILED */ #define IWL_PROBE_STATUS_FAIL_TTL … #define IWL_PROBE_STATUS_FAIL_BT … #define NUMBER_OF_STATISTICS … /* * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command) */ struct iwl_scanresults_notification { … } __packed; /* * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command) */ struct iwl_scancomplete_notification { … } __packed; /****************************************************************************** * (9) * IBSS/AP Commands and Notifications: * *****************************************************************************/ enum iwl_ibss_manager { … }; /* * BEACON_NOTIFICATION = 0x90 (notification only, not a command) */ struct iwlagn_beacon_notif { … } __packed; /* * REPLY_TX_BEACON = 0x91 (command, has simple generic response) */ struct iwl_tx_beacon_cmd { … } __packed; /****************************************************************************** * (10) * Statistics Commands and Notifications: * *****************************************************************************/ #define IWL_TEMP_CONVERT … #define SUP_RATE_11A_MAX_NUM_CHANNELS … #define SUP_RATE_11B_MAX_NUM_CHANNELS … #define SUP_RATE_11G_MAX_NUM_CHANNELS … /* Used for passing to driver number of successes and failures per rate */ struct rate_histogram { … } __packed; /* statistics command response */ struct statistics_dbg { … } __packed; struct statistics_rx_phy { … } __packed; struct statistics_rx_ht_phy { … } __packed; #define INTERFERENCE_DATA_AVAILABLE … struct statistics_rx_non_phy { … } __packed; struct statistics_rx_non_phy_bt { … } __packed; struct statistics_rx { … } __packed; struct statistics_rx_bt { … } __packed; /** * struct statistics_tx_power - current tx power * * @ant_a: current tx power on chain a in 1/2 dB step * @ant_b: current tx power on chain b in 1/2 dB step * @ant_c: current tx power on chain c in 1/2 dB step * @reserved: reserved for alignment */ struct statistics_tx_power { … } __packed; struct statistics_tx_non_phy_agg { … } __packed; struct statistics_tx { … } __packed; struct statistics_div { … } __packed; struct statistics_general_common { … } __packed; struct statistics_bt_activity { … } __packed; struct statistics_general { … } __packed; struct statistics_general_bt { … } __packed; #define UCODE_STATISTICS_CLEAR_MSK … #define UCODE_STATISTICS_FREQUENCY_MSK … #define UCODE_STATISTICS_NARROW_BAND_MSK … /* * REPLY_STATISTICS_CMD = 0x9c, * all devices identical. * * This command triggers an immediate response containing uCode statistics. * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below. * * If the CLEAR_STATS configuration flag is set, uCode will clear its * internal copy of the statistics (counters) after issuing the response. * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below). * * If the DISABLE_NOTIF configuration flag is set, uCode will not issue * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself. */ #define IWL_STATS_CONF_CLEAR_STATS … #define IWL_STATS_CONF_DISABLE_NOTIF … struct iwl_statistics_cmd { … } __packed; /* * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command) * * By default, uCode issues this notification after receiving a beacon * while associated. To disable this behavior, set DISABLE_NOTIF flag in the * REPLY_STATISTICS_CMD 0x9c, above. * * Statistics counters continue to increment beacon after beacon, but are * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD * 0x9c with CLEAR_STATS bit set (see above). * * uCode also issues this notification during scans. uCode clears statistics * appropriately so that each notification contains statistics for only the * one channel that has just been scanned. */ #define STATISTICS_REPLY_FLG_BAND_24G_MSK … #define STATISTICS_REPLY_FLG_HT40_MODE_MSK … struct iwl_notif_statistics { … } __packed; struct iwl_bt_notif_statistics { … } __packed; /* * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command) * * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed * in regardless of how many missed beacons, which mean when driver receive the * notification, inside the command, it can find all the beacons information * which include number of total missed beacons, number of consecutive missed * beacons, number of beacons received and number of beacons expected to * receive. * * If uCode detected consecutive_missed_beacons > 5, it will reset the radio * in order to bring the radio/PHY back to working state; which has no relation * to when driver will perform sensitivity calibration. * * Driver should set it own missed_beacon_threshold to decide when to perform * sensitivity calibration based on number of consecutive missed beacons in * order to improve overall performance, especially in noisy environment. * */ #define IWL_MISSED_BEACON_THRESHOLD_MIN … #define IWL_MISSED_BEACON_THRESHOLD_DEF … #define IWL_MISSED_BEACON_THRESHOLD_MAX … struct iwl_missed_beacon_notif { … } __packed; /****************************************************************************** * (11) * Rx Calibration Commands: * * With the uCode used for open source drivers, most Tx calibration (except * for Tx Power) and most Rx calibration is done by uCode during the * "initialize" phase of uCode boot. Driver must calibrate only: * * 1) Tx power (depends on temperature), described elsewhere * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas) * 3) Receiver sensitivity (to optimize signal detection) * *****************************************************************************/ /* * SENSITIVITY_CMD = 0xa8 (command, has simple generic response) * * This command sets up the Rx signal detector for a sensitivity level that * is high enough to lock onto all signals within the associated network, * but low enough to ignore signals that are below a certain threshold, so as * not to have too many "false alarms". False alarms are signals that the * Rx DSP tries to lock onto, but then discards after determining that they * are noise. * * The optimum number of false alarms is between 5 and 50 per 200 TUs * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e. * time listening, not transmitting). Driver must adjust sensitivity so that * the ratio of actual false alarms to actual Rx time falls within this range. * * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each * received beacon. These provide information to the driver to analyze the * sensitivity. Don't analyze statistics that come in from scanning, or any * other non-associated-network source. Pertinent statistics include: * * From "general" statistics (struct statistics_rx_non_phy): * * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level) * Measure of energy of desired signal. Used for establishing a level * below which the device does not detect signals. * * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB) * Measure of background noise in silent period after beacon. * * channel_load * uSecs of actual Rx time during beacon period (varies according to * how much time was spent transmitting). * * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately: * * false_alarm_cnt * Signal locks abandoned early (before phy-level header). * * plcp_err * Signal locks abandoned late (during phy-level header). * * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from * beacon to beacon, i.e. each value is an accumulation of all errors * before and including the latest beacon. Values will wrap around to 0 * after counting up to 2^32 - 1. Driver must differentiate vs. * previous beacon's values to determine # false alarms in the current * beacon period. * * Total number of false alarms = false_alarms + plcp_errs * * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd * (notice that the start points for OFDM are at or close to settings for * maximum sensitivity): * * START / MIN / MAX * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270 * * If actual rate of OFDM false alarms (+ plcp_errors) is too high * (greater than 50 for each 204.8 msecs listening), reduce sensitivity * by *adding* 1 to all 4 of the table entries above, up to the max for * each entry. Conversely, if false alarm rate is too low (less than 5 * for each 204.8 msecs listening), *subtract* 1 from each entry to * increase sensitivity. * * For CCK sensitivity, keep track of the following: * * 1). 20-beacon history of maximum background noise, indicated by * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the * 3 receivers. For any given beacon, the "silence reference" is * the maximum of last 60 samples (20 beacons * 3 receivers). * * 2). 10-beacon history of strongest signal level, as indicated * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers, * i.e. the strength of the signal through the best receiver at the * moment. These measurements are "upside down", with lower values * for stronger signals, so max energy will be *minimum* value. * * Then for any given beacon, the driver must determine the *weakest* * of the strongest signals; this is the minimum level that needs to be * successfully detected, when using the best receiver at the moment. * "Max cck energy" is the maximum (higher value means lower energy!) * of the last 10 minima. Once this is determined, driver must add * a little margin by adding "6" to it. * * 3). Number of consecutive beacon periods with too few false alarms. * Reset this to 0 at the first beacon period that falls within the * "good" range (5 to 50 false alarms per 204.8 milliseconds rx). * * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd * (notice that the start points for CCK are at maximum sensitivity): * * START / MIN / MAX * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100 * * If actual rate of CCK false alarms (+ plcp_errors) is too high * (greater than 50 for each 204.8 msecs listening), method for reducing * sensitivity is: * * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX, * up to max 400. * * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160, * sensitivity has been reduced a significant amount; bring it up to * a moderate 161. Otherwise, *add* 3, up to max 200. * * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160, * sensitivity has been reduced only a moderate or small amount; * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX, * down to min 0. Otherwise (if gain has been significantly reduced), * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value. * * b) Save a snapshot of the "silence reference". * * If actual rate of CCK false alarms (+ plcp_errors) is too low * (less than 5 for each 204.8 msecs listening), method for increasing * sensitivity is used only if: * * 1a) Previous beacon did not have too many false alarms * 1b) AND difference between previous "silence reference" and current * "silence reference" (prev - current) is 2 or more, * OR 2) 100 or more consecutive beacon periods have had rate of * less than 5 false alarms per 204.8 milliseconds rx time. * * Method for increasing sensitivity: * * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX, * down to min 125. * * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX, * down to min 200. * * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100. * * If actual rate of CCK false alarms (+ plcp_errors) is within good range * (between 5 and 50 for each 204.8 msecs listening): * * 1) Save a snapshot of the silence reference. * * 2) If previous beacon had too many CCK false alarms (+ plcp_errors), * give some extra margin to energy threshold by *subtracting* 8 * from value in HD_MIN_ENERGY_CCK_DET_INDEX. * * For all cases (too few, too many, good range), make sure that the CCK * detection threshold (energy) is below the energy level for robust * detection over the past 10 beacon periods, the "Max cck energy". * Lower values mean higher energy; this means making sure that the value * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy". * */ /* * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd) */ #define HD_TABLE_SIZE … #define HD_MIN_ENERGY_CCK_DET_INDEX … #define HD_MIN_ENERGY_OFDM_DET_INDEX … #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX … #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX … #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX … #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX … #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX … #define HD_BARKER_CORR_TH_ADD_MIN_INDEX … #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX … #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX … #define HD_OFDM_ENERGY_TH_IN_INDEX … /* * Additional table entries in enhance SENSITIVITY_CMD */ #define HD_INA_NON_SQUARE_DET_OFDM_INDEX … #define HD_INA_NON_SQUARE_DET_CCK_INDEX … #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX … #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX … #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX … #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX … #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX … #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX … #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX … #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX … #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX … #define HD_RESERVED … /* number of entries for enhanced tbl */ #define ENHANCE_HD_TABLE_SIZE … /* number of additional entries for enhanced tbl */ #define ENHANCE_HD_TABLE_ENTRIES … #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 … #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 … #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 … #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 … #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 … #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 … #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 … #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 … #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 … #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 … #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 … #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 … #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 … #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 … #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 … #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 … #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 … #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 … #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 … #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 … #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 … #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 … /* Control field in struct iwl_sensitivity_cmd */ #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE … #define SENSITIVITY_CMD_CONTROL_WORK_TABLE … /** * struct iwl_sensitivity_cmd * @control: (1) updates working table, (0) updates default table * @table: energy threshold values, use HD_* as index into table * * Always use "1" in "control" to update uCode's working table and DSP. */ struct iwl_sensitivity_cmd { … } __packed; /* * */ struct iwl_enhance_sensitivity_cmd { … } __packed; /* * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response) * * This command sets the relative gains of agn device's 3 radio receiver chains. * * After the first association, driver should accumulate signal and noise * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20 * beacons from the associated network (don't collect statistics that come * in from scanning, or any other non-network source). * * DISCONNECTED ANTENNA: * * Driver should determine which antennas are actually connected, by comparing * average beacon signal levels for the 3 Rx chains. Accumulate (add) the * following values over 20 beacons, one accumulator for each of the chains * a/b/c, from struct statistics_rx_non_phy: * * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB) * * Find the strongest signal from among a/b/c. Compare the other two to the * strongest. If any signal is more than 15 dB (times 20, unless you * divide the accumulated values by 20) below the strongest, the driver * considers that antenna to be disconnected, and should not try to use that * antenna/chain for Rx or Tx. If both A and B seem to be disconnected, * driver should declare the stronger one as connected, and attempt to use it * (A and B are the only 2 Tx chains!). * * * RX BALANCE: * * Driver should balance the 3 receivers (but just the ones that are connected * to antennas, see above) for gain, by comparing the average signal levels * detected during the silence after each beacon (background noise). * Accumulate (add) the following values over 20 beacons, one accumulator for * each of the chains a/b/c, from struct statistics_rx_non_phy: * * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB) * * Find the weakest background noise level from among a/b/c. This Rx chain * will be the reference, with 0 gain adjustment. Attenuate other channels by * finding noise difference: * * (accum_noise[i] - accum_noise[reference]) / 30 * * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB. * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the * driver should limit the difference results to a range of 0-3 (0-4.5 dB), * and set bit 2 to indicate "reduce gain". The value for the reference * (weakest) chain should be "0". * * diff_gain_[abc] bit fields: * 2: (1) reduce gain, (0) increase gain * 1-0: amount of gain, units of 1.5 dB */ /* Phy calibration command for series */ enum { … }; /* This enum defines the bitmap of various calibrations to enable in both * init ucode and runtime ucode through CALIBRATION_CFG_CMD. */ enum iwl_ucode_calib_cfg { … }; #define IWL_CALIB_INIT_CFG_ALL … #define IWL_CALIB_RT_CFG_ALL … #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK … struct iwl_calib_cfg_elmnt_s { … } __packed; struct iwl_calib_cfg_status_s { … } __packed; struct iwl_calib_cfg_cmd { … } __packed; struct iwl_calib_hdr { … } __packed; struct iwl_calib_cmd { … } __packed; struct iwl_calib_xtal_freq_cmd { … } __packed; #define DEFAULT_RADIO_SENSOR_OFFSET … struct iwl_calib_temperature_offset_cmd { … } __packed; struct iwl_calib_temperature_offset_v2_cmd { … } __packed; /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */ struct iwl_calib_chain_noise_reset_cmd { … }; /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */ struct iwl_calib_chain_noise_gain_cmd { … } __packed; /****************************************************************************** * (12) * Miscellaneous Commands: * *****************************************************************************/ /* * LEDs Command & Response * REPLY_LEDS_CMD = 0x48 (command, has simple generic response) * * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field), * this command turns it on or off, or sets up a periodic blinking cycle. */ struct iwl_led_cmd { … } __packed; /* * station priority table entries * also used as potential "events" value for both * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD */ /* * COEX events entry flag masks * RP - Requested Priority * WP - Win Medium Priority: priority assigned when the contention has been won */ #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG … #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG … #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG … #define COEX_CU_UNASSOC_IDLE_RP … #define COEX_CU_UNASSOC_MANUAL_SCAN_RP … #define COEX_CU_UNASSOC_AUTO_SCAN_RP … #define COEX_CU_CALIBRATION_RP … #define COEX_CU_PERIODIC_CALIBRATION_RP … #define COEX_CU_CONNECTION_ESTAB_RP … #define COEX_CU_ASSOCIATED_IDLE_RP … #define COEX_CU_ASSOC_MANUAL_SCAN_RP … #define COEX_CU_ASSOC_AUTO_SCAN_RP … #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP … #define COEX_CU_RF_ON_RP … #define COEX_CU_RF_OFF_RP … #define COEX_CU_STAND_ALONE_DEBUG_RP … #define COEX_CU_IPAN_ASSOC_LEVEL_RP … #define COEX_CU_RSRVD1_RP … #define COEX_CU_RSRVD2_RP … #define COEX_CU_UNASSOC_IDLE_WP … #define COEX_CU_UNASSOC_MANUAL_SCAN_WP … #define COEX_CU_UNASSOC_AUTO_SCAN_WP … #define COEX_CU_CALIBRATION_WP … #define COEX_CU_PERIODIC_CALIBRATION_WP … #define COEX_CU_CONNECTION_ESTAB_WP … #define COEX_CU_ASSOCIATED_IDLE_WP … #define COEX_CU_ASSOC_MANUAL_SCAN_WP … #define COEX_CU_ASSOC_AUTO_SCAN_WP … #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP … #define COEX_CU_RF_ON_WP … #define COEX_CU_RF_OFF_WP … #define COEX_CU_STAND_ALONE_DEBUG_WP … #define COEX_CU_IPAN_ASSOC_LEVEL_WP … #define COEX_CU_RSRVD1_WP … #define COEX_CU_RSRVD2_WP … #define COEX_UNASSOC_IDLE_FLAGS … #define COEX_UNASSOC_MANUAL_SCAN_FLAGS … #define COEX_UNASSOC_AUTO_SCAN_FLAGS … #define COEX_CALIBRATION_FLAGS … #define COEX_PERIODIC_CALIBRATION_FLAGS … /* * COEX_CONNECTION_ESTAB: * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network. */ #define COEX_CONNECTION_ESTAB_FLAGS … #define COEX_ASSOCIATED_IDLE_FLAGS … #define COEX_ASSOC_MANUAL_SCAN_FLAGS … #define COEX_ASSOC_AUTO_SCAN_FLAGS … #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS … #define COEX_RF_ON_FLAGS … #define COEX_RF_OFF_FLAGS … #define COEX_STAND_ALONE_DEBUG_FLAGS … #define COEX_IPAN_ASSOC_LEVEL_FLAGS … #define COEX_RSRVD1_FLAGS … #define COEX_RSRVD2_FLAGS … /* * COEX_CU_RF_ON is the event wrapping all radio ownership. * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network. */ #define COEX_CU_RF_ON_FLAGS … enum { … }; /* * Coexistence WIFI/WIMAX Command * COEX_PRIORITY_TABLE_CMD = 0x5a * */ struct iwl_wimax_coex_event_entry { … } __packed; /* COEX flag masks */ /* Station table is valid */ #define COEX_FLAGS_STA_TABLE_VALID_MSK … /* UnMask wake up src at unassociated sleep */ #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK … /* UnMask wake up src at associated sleep */ #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK … /* Enable CoEx feature. */ #define COEX_FLAGS_COEX_ENABLE_MSK … struct iwl_wimax_coex_cmd { … } __packed; /* * Coexistence MEDIUM NOTIFICATION * COEX_MEDIUM_NOTIFICATION = 0x5b * * notification from uCode to host to indicate medium changes * */ /* * status field * bit 0 - 2: medium status * bit 3: medium change indication * bit 4 - 31: reserved */ /* status option values, (0 - 2 bits) */ #define COEX_MEDIUM_BUSY … #define COEX_MEDIUM_ACTIVE … #define COEX_MEDIUM_PRE_RELEASE … #define COEX_MEDIUM_MSK … /* send notification status (1 bit) */ #define COEX_MEDIUM_CHANGED … #define COEX_MEDIUM_CHANGED_MSK … #define COEX_MEDIUM_SHIFT … struct iwl_coex_medium_notification { … } __packed; /* * Coexistence EVENT Command * COEX_EVENT_CMD = 0x5c * * send from host to uCode for coex event request. */ /* flags options */ #define COEX_EVENT_REQUEST_MSK … struct iwl_coex_event_cmd { … } __packed; struct iwl_coex_event_resp { … } __packed; /****************************************************************************** * Bluetooth Coexistence commands * *****************************************************************************/ /* * BT Status notification * REPLY_BT_COEX_PROFILE_NOTIF = 0xce */ enum iwl_bt_coex_profile_traffic_load { … }; #define BT_SESSION_ACTIVITY_1_UART_MSG … #define BT_SESSION_ACTIVITY_2_UART_MSG … /* BT UART message - Share Part (BT -> WiFi) */ #define BT_UART_MSG_FRAME1MSGTYPE_POS … #define BT_UART_MSG_FRAME1MSGTYPE_MSK … #define BT_UART_MSG_FRAME1SSN_POS … #define BT_UART_MSG_FRAME1SSN_MSK … #define BT_UART_MSG_FRAME1UPDATEREQ_POS … #define BT_UART_MSG_FRAME1UPDATEREQ_MSK … #define BT_UART_MSG_FRAME1RESERVED_POS … #define BT_UART_MSG_FRAME1RESERVED_MSK … #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS … #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK … #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS … #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK … #define BT_UART_MSG_FRAME2CHLSEQN_POS … #define BT_UART_MSG_FRAME2CHLSEQN_MSK … #define BT_UART_MSG_FRAME2INBAND_POS … #define BT_UART_MSG_FRAME2INBAND_MSK … #define BT_UART_MSG_FRAME2RESERVED_POS … #define BT_UART_MSG_FRAME2RESERVED_MSK … #define BT_UART_MSG_FRAME3SCOESCO_POS … #define BT_UART_MSG_FRAME3SCOESCO_MSK … #define BT_UART_MSG_FRAME3SNIFF_POS … #define BT_UART_MSG_FRAME3SNIFF_MSK … #define BT_UART_MSG_FRAME3A2DP_POS … #define BT_UART_MSG_FRAME3A2DP_MSK … #define BT_UART_MSG_FRAME3ACL_POS … #define BT_UART_MSG_FRAME3ACL_MSK … #define BT_UART_MSG_FRAME3MASTER_POS … #define BT_UART_MSG_FRAME3MASTER_MSK … #define BT_UART_MSG_FRAME3OBEX_POS … #define BT_UART_MSG_FRAME3OBEX_MSK … #define BT_UART_MSG_FRAME3RESERVED_POS … #define BT_UART_MSG_FRAME3RESERVED_MSK … #define BT_UART_MSG_FRAME4IDLEDURATION_POS … #define BT_UART_MSG_FRAME4IDLEDURATION_MSK … #define BT_UART_MSG_FRAME4RESERVED_POS … #define BT_UART_MSG_FRAME4RESERVED_MSK … #define BT_UART_MSG_FRAME5TXACTIVITY_POS … #define BT_UART_MSG_FRAME5TXACTIVITY_MSK … #define BT_UART_MSG_FRAME5RXACTIVITY_POS … #define BT_UART_MSG_FRAME5RXACTIVITY_MSK … #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS … #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK … #define BT_UART_MSG_FRAME5RESERVED_POS … #define BT_UART_MSG_FRAME5RESERVED_MSK … #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS … #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK … #define BT_UART_MSG_FRAME6DISCOVERABLE_POS … #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK … #define BT_UART_MSG_FRAME6RESERVED_POS … #define BT_UART_MSG_FRAME6RESERVED_MSK … #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS … #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK … #define BT_UART_MSG_FRAME7PAGE_POS … #define BT_UART_MSG_FRAME7PAGE_MSK … #define BT_UART_MSG_FRAME7INQUIRY_POS … #define BT_UART_MSG_FRAME7INQUIRY_MSK … #define BT_UART_MSG_FRAME7CONNECTABLE_POS … #define BT_UART_MSG_FRAME7CONNECTABLE_MSK … #define BT_UART_MSG_FRAME7RESERVED_POS … #define BT_UART_MSG_FRAME7RESERVED_MSK … /* BT Session Activity 2 UART message (BT -> WiFi) */ #define BT_UART_MSG_2_FRAME1RESERVED1_POS … #define BT_UART_MSG_2_FRAME1RESERVED1_MSK … #define BT_UART_MSG_2_FRAME1RESERVED2_POS … #define BT_UART_MSG_2_FRAME1RESERVED2_MSK … #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS … #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK … #define BT_UART_MSG_2_FRAME2RESERVED_POS … #define BT_UART_MSG_2_FRAME2RESERVED_MSK … #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS … #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK … #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS … #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK … #define BT_UART_MSG_2_FRAME3LEMASTER_POS … #define BT_UART_MSG_2_FRAME3LEMASTER_MSK … #define BT_UART_MSG_2_FRAME3RESERVED_POS … #define BT_UART_MSG_2_FRAME3RESERVED_MSK … #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS … #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK … #define BT_UART_MSG_2_FRAME4NUMLECONN_POS … #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK … #define BT_UART_MSG_2_FRAME4RESERVED_POS … #define BT_UART_MSG_2_FRAME4RESERVED_MSK … #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS … #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK … #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS … #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK … #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS … #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK … #define BT_UART_MSG_2_FRAME5RESERVED_POS … #define BT_UART_MSG_2_FRAME5RESERVED_MSK … #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS … #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK … #define BT_UART_MSG_2_FRAME6RFU_POS … #define BT_UART_MSG_2_FRAME6RFU_MSK … #define BT_UART_MSG_2_FRAME6RESERVED_POS … #define BT_UART_MSG_2_FRAME6RESERVED_MSK … #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS … #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK … #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS … #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK … #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS … #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK … #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS … #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK … #define BT_UART_MSG_2_FRAME7RESERVED_POS … #define BT_UART_MSG_2_FRAME7RESERVED_MSK … #define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD … #define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD … struct iwl_bt_uart_msg { … } __packed; struct iwl_bt_coex_profile_notif { … } __packed; #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS … #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK … #define IWL_BT_COEX_PRIO_TBL_PRIO_POS … #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK … #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS … #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK … #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT … /* * BT Coexistence Priority table * REPLY_BT_COEX_PRIO_TABLE = 0xcc */ enum bt_coex_prio_table_events { … }; enum bt_coex_prio_table_priorities { … }; struct iwl_bt_coex_prio_table_cmd { … } __packed; #define IWL_BT_COEX_ENV_CLOSE … #define IWL_BT_COEX_ENV_OPEN … /* * BT Protection Envelope * REPLY_BT_COEX_PROT_ENV = 0xcd */ struct iwl_bt_coex_prot_env_cmd { … } __packed; /* * REPLY_D3_CONFIG */ enum iwlagn_d3_wakeup_filters { … }; struct iwlagn_d3_config_cmd { … } __packed; /* * REPLY_WOWLAN_PATTERNS */ #define IWLAGN_WOWLAN_MIN_PATTERN_LEN … #define IWLAGN_WOWLAN_MAX_PATTERN_LEN … struct iwlagn_wowlan_pattern { … } __packed; #define IWLAGN_WOWLAN_MAX_PATTERNS … struct iwlagn_wowlan_patterns_cmd { … } __packed; /* * REPLY_WOWLAN_WAKEUP_FILTER */ enum iwlagn_wowlan_wakeup_filters { … }; struct iwlagn_wowlan_wakeup_filter_cmd { … }; /* * REPLY_WOWLAN_TSC_RSC_PARAMS */ #define IWLAGN_NUM_RSC … struct tkip_sc { … } __packed; struct iwlagn_tkip_rsc_tsc { … } __packed; struct aes_sc { … } __packed; struct iwlagn_aes_rsc_tsc { … } __packed; iwlagn_all_tsc_rsc; struct iwlagn_wowlan_rsc_tsc_params_cmd { … } __packed; /* * REPLY_WOWLAN_TKIP_PARAMS */ #define IWLAGN_MIC_KEY_SIZE … #define IWLAGN_P1K_SIZE … struct iwlagn_mic_keys { … } __packed; struct iwlagn_p1k_cache { … } __packed; #define IWLAGN_NUM_RX_P1K_CACHE … struct iwlagn_wowlan_tkip_params_cmd { … } __packed; /* * REPLY_WOWLAN_KEK_KCK_MATERIAL */ #define IWLAGN_KCK_MAX_SIZE … #define IWLAGN_KEK_MAX_SIZE … struct iwlagn_wowlan_kek_kck_material_cmd { … } __packed; #define RF_KILL_INDICATOR_FOR_WOWLAN … /* * REPLY_WOWLAN_GET_STATUS = 0xe5 */ struct iwlagn_wowlan_status { … } __packed; /* * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification) */ /* * Minimum slot time in TU */ #define IWL_MIN_SLOT_TIME … /** * struct iwl_wipan_slot * @width: Time in TU * @type: * 0 - BSS * 1 - PAN * @reserved: reserved for alignment */ struct iwl_wipan_slot { … } __packed; #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS … #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET … #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE … #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF … #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE … /** * struct iwl_wipan_params_cmd * @flags: * bit0: reserved * bit1: CP leave channel with CTS * bit2: CP leave channel qith Quiet * bit3: slotted mode * 1 - work in slotted mode * 0 - work in non slotted mode * bit4: filter beacon notification * bit5: full tx slotted mode. if this flag is set, * uCode will perform leaving channel methods in context switch * also when working in same channel mode * @num_slots: 1 - 10 * @slots: per-slot data * @reserved: reserved for alignment */ struct iwl_wipan_params_cmd { … } __packed; /* * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9 * * TODO: Figure out what this is used for, * it can only switch between 2.4 GHz * channels!! */ struct iwl_wipan_p2p_channel_switch_cmd { … }; /* * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc * * This is used by the device to notify us of the * NoA schedule it determined so we can forward it * to userspace for inclusion in probe responses. * * In beacons, the NoA schedule is simply appended * to the frame we give the device. */ struct iwl_wipan_noa_descriptor { … } __packed; struct iwl_wipan_noa_attribute { … } __packed; struct iwl_wipan_noa_notification { … } __packed; #endif /* __iwl_commands_h__ */