/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */ /* * hcd.h - DesignWare HS OTG Controller host-mode declarations * * Copyright (C) 2004-2013 Synopsys, Inc. */ #ifndef __DWC2_HCD_H__ #define __DWC2_HCD_H__ /* * This file contains the structures, constants, and interfaces for the * Host Contoller Driver (HCD) * * The Host Controller Driver (HCD) is responsible for translating requests * from the USB Driver into the appropriate actions on the DWC_otg controller. * It isolates the USBD from the specifics of the controller by providing an * API to the USBD. */ struct dwc2_qh; /** * struct dwc2_host_chan - Software host channel descriptor * * @hc_num: Host channel number, used for register address lookup * @dev_addr: Address of the device * @ep_num: Endpoint of the device * @ep_is_in: Endpoint direction * @speed: Device speed. One of the following values: * - USB_SPEED_LOW * - USB_SPEED_FULL * - USB_SPEED_HIGH * @ep_type: Endpoint type. One of the following values: * - USB_ENDPOINT_XFER_CONTROL: 0 * - USB_ENDPOINT_XFER_ISOC: 1 * - USB_ENDPOINT_XFER_BULK: 2 * - USB_ENDPOINT_XFER_INTR: 3 * @max_packet: Max packet size in bytes * @data_pid_start: PID for initial transaction. * 0: DATA0 * 1: DATA2 * 2: DATA1 * 3: MDATA (non-Control EP), * SETUP (Control EP) * @multi_count: Number of additional periodic transactions per * (micro)frame * @xfer_buf: Pointer to current transfer buffer position * @xfer_dma: DMA address of xfer_buf * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not * DWORD aligned * @xfer_len: Total number of bytes to transfer * @xfer_count: Number of bytes transferred so far * @start_pkt_count: Packet count at start of transfer * @xfer_started: True if the transfer has been started * @do_ping: True if a PING request should be issued on this channel * @error_state: True if the error count for this transaction is non-zero * @halt_on_queue: True if this channel should be halted the next time a * request is queued for the channel. This is necessary in * slave mode if no request queue space is available when * an attempt is made to halt the channel. * @halt_pending: True if the host channel has been halted, but the core * is not finished flushing queued requests * @do_split: Enable split for the channel * @complete_split: Enable complete split * @hub_addr: Address of high speed hub for the split * @hub_port: Port of the low/full speed device for the split * @xact_pos: Split transaction position. One of the following values: * - DWC2_HCSPLT_XACTPOS_MID * - DWC2_HCSPLT_XACTPOS_BEGIN * - DWC2_HCSPLT_XACTPOS_END * - DWC2_HCSPLT_XACTPOS_ALL * @requests: Number of requests issued for this channel since it was * assigned to the current transfer (not counting PINGs) * @schinfo: Scheduling micro-frame bitmap * @ntd: Number of transfer descriptors for the transfer * @halt_status: Reason for halting the host channel * @hcint: Contents of the HCINT register when the interrupt came * @qh: QH for the transfer being processed by this channel * @hc_list_entry: For linking to list of host channels * @desc_list_addr: Current QH's descriptor list DMA address * @desc_list_sz: Current QH's descriptor list size * @split_order_list_entry: List entry for keeping track of the order of splits * * This structure represents the state of a single host channel when acting in * host mode. It contains the data items needed to transfer packets to an * endpoint via a host channel. */ struct dwc2_host_chan { … }; struct dwc2_hcd_pipe_info { … }; struct dwc2_hcd_iso_packet_desc { … }; struct dwc2_qtd; struct dwc2_hcd_urb { … }; /* Phases for control transfers */ enum dwc2_control_phase { … }; /* Transaction types */ enum dwc2_transaction_type { … }; /* The number of elements per LS bitmap (per port on multi_tt) */ #define DWC2_ELEMENTS_PER_LS_BITMAP … /** * struct dwc2_tt - dwc2 data associated with a usb_tt * * @refcount: Number of Queue Heads (QHs) holding a reference. * @usb_tt: Pointer back to the official usb_tt. * @periodic_bitmaps: Bitmap for which parts of the 1ms frame are accounted * for already. Each is DWC2_ELEMENTS_PER_LS_BITMAP * elements (so sizeof(long) times that in bytes). * * This structure is stored in the hcpriv of the official usb_tt. */ struct dwc2_tt { … }; /** * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus. * * @start_schedule_us: The start time on the main bus schedule. Note that * the main bus schedule is tightly packed and this * time should be interpreted as tightly packed (so * uFrame 0 starts at 0 us, uFrame 1 starts at 100 us * instead of 125 us). * @duration_us: How long this transfer goes. */ struct dwc2_hs_transfer_time { … }; /** * struct dwc2_qh - Software queue head structure * * @hsotg: The HCD state structure for the DWC OTG controller * @ep_type: Endpoint type. One of the following values: * - USB_ENDPOINT_XFER_CONTROL * - USB_ENDPOINT_XFER_BULK * - USB_ENDPOINT_XFER_INT * - USB_ENDPOINT_XFER_ISOC * @ep_is_in: Endpoint direction * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor * @maxp_mult: Multiplier for maxp * @dev_speed: Device speed. One of the following values: * - USB_SPEED_LOW * - USB_SPEED_FULL * - USB_SPEED_HIGH * @data_toggle: Determines the PID of the next data packet for * non-controltransfers. Ignored for control transfers. * One of the following values: * - DWC2_HC_PID_DATA0 * - DWC2_HC_PID_DATA1 * @ping_state: Ping state * @do_split: Full/low speed endpoint on high-speed hub requires split * @td_first: Index of first activated isochronous transfer descriptor * @td_last: Index of last activated isochronous transfer descriptor * @host_us: Bandwidth in microseconds per transfer as seen by host * @device_us: Bandwidth in microseconds per transfer as seen by device * @host_interval: Interval between transfers as seen by the host. If * the host is high speed and the device is low speed this * will be 8 times device interval. * @device_interval: Interval between transfers as seen by the device. * interval. * @next_active_frame: (Micro)frame _before_ we next need to put something on * the bus. We'll move the qh to active here. If the * host is in high speed mode this will be a uframe. If * the host is in low speed mode this will be a full frame. * @start_active_frame: If we are partway through a split transfer, this will be * what next_active_frame was when we started. Otherwise * it should always be the same as next_active_frame. * @num_hs_transfers: Number of transfers in hs_transfers. * Normally this is 1 but can be more than one for splits. * Always >= 1 unless the host is in low/full speed mode. * @hs_transfers: Transfers that are scheduled as seen by the high speed * bus. Not used if host is in low or full speed mode (but * note that it IS USED if the device is low or full speed * as long as the HOST is in high speed mode). * @ls_start_schedule_slice: Start time (in slices) on the low speed bus * schedule that's being used by this device. This * will be on the periodic_bitmap in a * "struct dwc2_tt". Not used if this device is high * speed. Note that this is in "schedule slice" which * is tightly packed. * @ntd: Actual number of transfer descriptors in a list * @dw_align_buf: Used instead of original buffer if its physical address * is not dword-aligned * @dw_align_buf_dma: DMA address for dw_align_buf * @qtd_list: List of QTDs for this QH * @channel: Host channel currently processing transfers for this QH * @qh_list_entry: Entry for QH in either the periodic or non-periodic * schedule * @desc_list: List of transfer descriptors * @desc_list_dma: Physical address of desc_list * @desc_list_sz: Size of descriptors list * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer * descriptor and indicates original XferSize value for the * descriptor * @unreserve_timer: Timer for releasing periodic reservation. * @wait_timer: Timer used to wait before re-queuing. * @dwc_tt: Pointer to our tt info (or NULL if no tt). * @ttport: Port number within our tt. * @tt_buffer_dirty True if clear_tt_buffer_complete is pending * @unreserve_pending: True if we planned to unreserve but haven't yet. * @schedule_low_speed: True if we have a low/full speed component (either the * host is in low/full speed mode or do_split). * @want_wait: We should wait before re-queuing; only matters for non- * periodic transfers and is ignored for periodic ones. * @wait_timer_cancel: Set to true to cancel the wait_timer. * * @tt_buffer_dirty: True if EP's TT buffer is not clean. * A Queue Head (QH) holds the static characteristics of an endpoint and * maintains a list of transfers (QTDs) for that endpoint. A QH structure may * be entered in either the non-periodic or periodic schedule. */ struct dwc2_qh { … }; /** * struct dwc2_qtd - Software queue transfer descriptor (QTD) * * @control_phase: Current phase for control transfers (Setup, Data, or * Status) * @in_process: Indicates if this QTD is currently processed by HW * @data_toggle: Determines the PID of the next data packet for the * data phase of control transfers. Ignored for other * transfer types. One of the following values: * - DWC2_HC_PID_DATA0 * - DWC2_HC_PID_DATA1 * @complete_split: Keeps track of the current split type for FS/LS * endpoints on a HS Hub * @isoc_split_pos: Position of the ISOC split in full/low speed * @isoc_frame_index: Index of the next frame descriptor for an isochronous * transfer. A frame descriptor describes the buffer * position and length of the data to be transferred in the * next scheduled (micro)frame of an isochronous transfer. * It also holds status for that transaction. The frame * index starts at 0. * @isoc_split_offset: Position of the ISOC split in the buffer for the * current frame * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT * @error_count: Holds the number of bus errors that have occurred for * a transaction within this transfer * @n_desc: Number of DMA descriptors for this QTD * @isoc_frame_index_last: Last activated frame (packet) index, used in * descriptor DMA mode only * @num_naks: Number of NAKs received on this QTD. * @urb: URB for this transfer * @qh: Queue head for this QTD * @qtd_list_entry: For linking to the QH's list of QTDs * @isoc_td_first: Index of first activated isochronous transfer * descriptor in Descriptor DMA mode * @isoc_td_last: Index of last activated isochronous transfer * descriptor in Descriptor DMA mode * * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control, * interrupt, or isochronous transfer. A single QTD is created for each URB * (of one of these types) submitted to the HCD. The transfer associated with * a QTD may require one or multiple transactions. * * A QTD is linked to a Queue Head, which is entered in either the * non-periodic or periodic schedule for execution. When a QTD is chosen for * execution, some or all of its transactions may be executed. After * execution, the state of the QTD is updated. The QTD may be retired if all * its transactions are complete or if an error occurred. Otherwise, it * remains in the schedule so more transactions can be executed later. */ struct dwc2_qtd { … }; #ifdef DEBUG struct hc_xfer_info { … }; #endif u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg); /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */ static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg) { … } /* * Inline used to disable one channel interrupt. Channel interrupts are * disabled when the channel is halted or released by the interrupt handler. * There is no need to handle further interrupts of that type until the * channel is re-assigned. In fact, subsequent handling may cause crashes * because the channel structures are cleaned up when the channel is released. */ static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr) { … } void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan); void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, enum dwc2_halt_status halt_status); void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan); /* * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they * are read as 1, they won't clear when written back. */ static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg) { … } static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe) { … } static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe) { … } static inline u16 dwc2_hcd_get_maxp(struct dwc2_hcd_pipe_info *pipe) { … } static inline u16 dwc2_hcd_get_maxp_mult(struct dwc2_hcd_pipe_info *pipe) { … } static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe) { … } static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe) { … } static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe) { … } static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe) { … } static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe) { … } static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe) { … } static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe) { … } int dwc2_hcd_init(struct dwc2_hsotg *hsotg); void dwc2_hcd_remove(struct dwc2_hsotg *hsotg); /* Transaction Execution Functions */ enum dwc2_transaction_type dwc2_hcd_select_transactions( struct dwc2_hsotg *hsotg); void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg, enum dwc2_transaction_type tr_type); /* Schedule Queue Functions */ /* Implemented in hcd_queue.c */ struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg, struct dwc2_hcd_urb *urb, gfp_t mem_flags); void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, int sched_csplit); void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb); int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, struct dwc2_qh *qh); /* Unlinks and frees a QTD */ static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, struct dwc2_qh *qh) { … } /* Descriptor DMA support functions */ void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, int chnum, enum dwc2_halt_status halt_status); int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, gfp_t mem_flags); void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh); /* Check if QH is non-periodic */ #define dwc2_qh_is_non_per(_qh_ptr_) … #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC static inline bool dbg_hc(struct dwc2_host_chan *hc) { … } static inline bool dbg_qh(struct dwc2_qh *qh) { … } static inline bool dbg_urb(struct urb *urb) { … } static inline bool dbg_perio(void) { … } #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */ static inline bool dbg_hc(struct dwc2_host_chan *hc) { return hc->ep_type == USB_ENDPOINT_XFER_BULK || hc->ep_type == USB_ENDPOINT_XFER_CONTROL; } static inline bool dbg_qh(struct dwc2_qh *qh) { return qh->ep_type == USB_ENDPOINT_XFER_BULK || qh->ep_type == USB_ENDPOINT_XFER_CONTROL; } static inline bool dbg_urb(struct urb *urb) { return usb_pipetype(urb->pipe) == PIPE_BULK || usb_pipetype(urb->pipe) == PIPE_CONTROL; } static inline bool dbg_perio(void) { return false; } #endif /* * Returns true if frame1 index is greater than frame2 index. The comparison * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the * frame number when the max index frame number is reached. */ static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2) { … } /* * Returns true if frame1 is less than or equal to frame2. The comparison is * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the * frame number when the max frame number is reached. */ static inline int dwc2_frame_num_le(u16 frame1, u16 frame2) { … } /* * Returns true if frame1 is greater than frame2. The comparison is done * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame * number when the max frame number is reached. */ static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2) { … } /* * Increments frame by the amount specified by inc. The addition is done * modulo HFNUM_MAX_FRNUM. Returns the incremented value. */ static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc) { … } static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec) { … } static inline u16 dwc2_full_frame_num(u16 frame) { … } static inline u16 dwc2_micro_frame_num(u16 frame) { … } /* * Returns the Core Interrupt Status register contents, ANDed with the Core * Interrupt Mask register contents */ static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg) { … } static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb) { … } static inline u32 dwc2_hcd_urb_get_actual_length( struct dwc2_hcd_urb *dwc2_urb) { … } static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb) { … } static inline void dwc2_hcd_urb_set_iso_desc_params( struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset, u32 length) { … } static inline u32 dwc2_hcd_urb_get_iso_desc_status( struct dwc2_hcd_urb *dwc2_urb, int desc_num) { … } static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length( struct dwc2_hcd_urb *dwc2_urb, int desc_num) { … } static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg, struct usb_host_endpoint *ep) { … } static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg, struct usb_host_endpoint *ep) { … } void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, int chnum, struct dwc2_qtd *qtd); /* HCD Core API */ /** * dwc2_handle_hcd_intr() - Called on every hardware interrupt * * @hsotg: The DWC2 HCD * * Returns IRQ_HANDLED if interrupt is handled * Return IRQ_NONE if interrupt is not handled */ irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg); /** * dwc2_hcd_stop() - Halts the DWC_otg host mode operation * * @hsotg: The DWC2 HCD */ void dwc2_hcd_stop(struct dwc2_hsotg *hsotg); /** * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host, * and 0 otherwise * * @hsotg: The DWC2 HCD */ int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg); /** * dwc2_hcd_dump_state() - Dumps hsotg state * * @hsotg: The DWC2 HCD * * NOTE: This function will be removed once the peripheral controller code * is integrated and the driver is stable */ void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg); /* URB interface */ /* Transfer flags */ #define URB_GIVEBACK_ASAP … #define URB_SEND_ZERO_PACKET … /* Host driver callbacks */ struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context, gfp_t mem_flags, int *ttport); void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt); int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context); void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, int status); #endif /* __DWC2_HCD_H__ */