/* SPDX-License-Identifier: GPL-2.0+ WITH Linux-syscall-note */ /* * ipmi.h * * MontaVista IPMI interface * * Author: MontaVista Software, Inc. * Corey Minyard <[email protected]> * [email protected] * * Copyright 2002 MontaVista Software Inc. * */ #ifndef _UAPI__LINUX_IPMI_H #define _UAPI__LINUX_IPMI_H #include <linux/ipmi_msgdefs.h> #include <linux/compiler.h> /* * This file describes an interface to an IPMI driver. You have to * have a fairly good understanding of IPMI to use this, so go read * the specs first before actually trying to do anything. * * With that said, this driver provides a multi-user interface to the * IPMI driver, and it allows multiple IPMI physical interfaces below * the driver. The physical interfaces bind as a lower layer on the * driver. They appear as interfaces to the application using this * interface. * * Multi-user means that multiple applications may use the driver, * send commands, receive responses, etc. The driver keeps track of * commands the user sends and tracks the responses. The responses * will go back to the application that send the command. If the * response doesn't come back in time, the driver will return a * timeout error response to the application. Asynchronous events * from the BMC event queue will go to all users bound to the driver. * The incoming event queue in the BMC will automatically be flushed * if it becomes full and it is queried once a second to see if * anything is in it. Incoming commands to the driver will get * delivered as commands. */ /* * This is an overlay for all the address types, so it's easy to * determine the actual address type. This is kind of like addresses * work for sockets. */ #define IPMI_MAX_ADDR_SIZE … struct ipmi_addr { … }; /* * When the address is not used, the type will be set to this value. * The channel is the BMC's channel number for the channel (usually * 0), or IPMC_BMC_CHANNEL if communicating directly with the BMC. */ #define IPMI_SYSTEM_INTERFACE_ADDR_TYPE … struct ipmi_system_interface_addr { … }; /* An IPMB Address. */ #define IPMI_IPMB_ADDR_TYPE … /* Used for broadcast get device id as described in section 17.9 of the IPMI 1.5 manual. */ #define IPMI_IPMB_BROADCAST_ADDR_TYPE … struct ipmi_ipmb_addr { … }; /* * Used for messages received directly from an IPMB that have not gone * through a MC. This is for systems that sit right on an IPMB so * they can receive commands and respond to them. */ #define IPMI_IPMB_DIRECT_ADDR_TYPE … struct ipmi_ipmb_direct_addr { … }; /* * A LAN Address. This is an address to/from a LAN interface bridged * by the BMC, not an address actually out on the LAN. * * A conscious decision was made here to deviate slightly from the IPMI * spec. We do not use rqSWID and rsSWID like it shows in the * message. Instead, we use remote_SWID and local_SWID. This means * that any message (a request or response) from another device will * always have exactly the same address. If you didn't do this, * requests and responses from the same device would have different * addresses, and that's not too cool. * * In this address, the remote_SWID is always the SWID the remote * message came from, or the SWID we are sending the message to. * local_SWID is always our SWID. Note that having our SWID in the * message is a little weird, but this is required. */ #define IPMI_LAN_ADDR_TYPE … struct ipmi_lan_addr { … }; /* * Channel for talking directly with the BMC. When using this * channel, This is for the system interface address type only. FIXME * - is this right, or should we use -1? */ #define IPMI_BMC_CHANNEL … #define IPMI_NUM_CHANNELS … /* * Used to signify an "all channel" bitmask. This is more than the * actual number of channels because this is used in userland and * will cover us if the number of channels is extended. */ #define IPMI_CHAN_ALL … /* * A raw IPMI message without any addressing. This covers both * commands and responses. The completion code is always the first * byte of data in the response (as the spec shows the messages laid * out). */ struct ipmi_msg { … }; struct kernel_ipmi_msg { … }; /* * Various defines that are useful for IPMI applications. */ #define IPMI_INVALID_CMD_COMPLETION_CODE … #define IPMI_TIMEOUT_COMPLETION_CODE … #define IPMI_UNKNOWN_ERR_COMPLETION_CODE … /* * Receive types for messages coming from the receive interface. This * is used for the receive in-kernel interface and in the receive * IOCTL. * * The "IPMI_RESPONSE_RESPONSE_TYPE" is a little strange sounding, but * it allows you to get the message results when you send a response * message. */ #define IPMI_RESPONSE_RECV_TYPE … #define IPMI_ASYNC_EVENT_RECV_TYPE … #define IPMI_CMD_RECV_TYPE … #define IPMI_RESPONSE_RESPONSE_TYPE … #define IPMI_OEM_RECV_TYPE … /* Note that async events and received commands do not have a completion code as the first byte of the incoming data, unlike a response. */ /* * Modes for ipmi_set_maint_mode() and the userland IOCTL. The AUTO * setting is the default and means it will be set on certain * commands. Hard setting it on and off will override automatic * operation. */ #define IPMI_MAINTENANCE_MODE_AUTO … #define IPMI_MAINTENANCE_MODE_OFF … #define IPMI_MAINTENANCE_MODE_ON … /* * The userland interface */ /* * The userland interface for the IPMI driver is a standard character * device, with each instance of an interface registered as a minor * number under the major character device. * * The read and write calls do not work, to get messages in and out * requires ioctl calls because of the complexity of the data. select * and poll do work, so you can wait for input using the file * descriptor, you just can use read to get it. * * In general, you send a command down to the interface and receive * responses back. You can use the msgid value to correlate commands * and responses, the driver will take care of figuring out which * incoming messages are for which command and find the proper msgid * value to report. You will only receive reponses for commands you * send. Asynchronous events, however, go to all open users, so you * must be ready to handle these (or ignore them if you don't care). * * The address type depends upon the channel type. When talking * directly to the BMC (IPMC_BMC_CHANNEL), the address is ignored * (IPMI_UNUSED_ADDR_TYPE). When talking to an IPMB channel, you must * supply a valid IPMB address with the addr_type set properly. * * When talking to normal channels, the driver takes care of the * details of formatting and sending messages on that channel. You do * not, for instance, have to format a send command, you just send * whatever command you want to the channel, the driver will create * the send command, automatically issue receive command and get even * commands, and pass those up to the proper user. */ /* The magic IOCTL value for this interface. */ #define IPMI_IOC_MAGIC … /* Messages sent to the interface are this format. */ struct ipmi_req { … }; /* * Send a message to the interfaces. error values are: * - EFAULT - an address supplied was invalid. * - EINVAL - The address supplied was not valid, or the command * was not allowed. * - EMSGSIZE - The message to was too large. * - ENOMEM - Buffers could not be allocated for the command. */ #define IPMICTL_SEND_COMMAND … /* Messages sent to the interface with timing parameters are this format. */ struct ipmi_req_settime { … }; /* * Send a message to the interfaces with timing parameters. error values * are: * - EFAULT - an address supplied was invalid. * - EINVAL - The address supplied was not valid, or the command * was not allowed. * - EMSGSIZE - The message to was too large. * - ENOMEM - Buffers could not be allocated for the command. */ #define IPMICTL_SEND_COMMAND_SETTIME … /* Messages received from the interface are this format. */ struct ipmi_recv { … }; /* * Receive a message. error values: * - EAGAIN - no messages in the queue. * - EFAULT - an address supplied was invalid. * - EINVAL - The address supplied was not valid. * - EMSGSIZE - The message to was too large to fit into the message buffer, * the message will be left in the buffer. */ #define IPMICTL_RECEIVE_MSG … /* * Like RECEIVE_MSG, but if the message won't fit in the buffer, it * will truncate the contents instead of leaving the data in the * buffer. */ #define IPMICTL_RECEIVE_MSG_TRUNC … /* Register to get commands from other entities on this interface. */ struct ipmi_cmdspec { … }; /* * Register to receive a specific command. error values: * - EFAULT - an address supplied was invalid. * - EBUSY - The netfn/cmd supplied was already in use. * - ENOMEM - could not allocate memory for the entry. */ #define IPMICTL_REGISTER_FOR_CMD … /* * Unregister a registered command. error values: * - EFAULT - an address supplied was invalid. * - ENOENT - The netfn/cmd was not found registered for this user. */ #define IPMICTL_UNREGISTER_FOR_CMD … /* * Register to get commands from other entities on specific channels. * This way, you can only listen on specific channels, or have messages * from some channels go to one place and other channels to someplace * else. The chans field is a bitmask, (1 << channel) for each channel. * It may be IPMI_CHAN_ALL for all channels. */ struct ipmi_cmdspec_chans { … }; /* * Register to receive a specific command on specific channels. error values: * - EFAULT - an address supplied was invalid. * - EBUSY - One of the netfn/cmd/chans supplied was already in use. * - ENOMEM - could not allocate memory for the entry. */ #define IPMICTL_REGISTER_FOR_CMD_CHANS … /* * Unregister some netfn/cmd/chans. error values: * - EFAULT - an address supplied was invalid. * - ENOENT - None of the netfn/cmd/chans were found registered for this user. */ #define IPMICTL_UNREGISTER_FOR_CMD_CHANS … /* * Set whether this interface receives events. Note that the first * user registered for events will get all pending events for the * interface. error values: * - EFAULT - an address supplied was invalid. */ #define IPMICTL_SET_GETS_EVENTS_CMD … /* * Set and get the slave address and LUN that we will use for our * source messages. Note that this affects the interface, not just * this user, so it will affect all users of this interface. This is * so some initialization code can come in and do the OEM-specific * things it takes to determine your address (if not the BMC) and set * it for everyone else. You should probably leave the LUN alone. */ struct ipmi_channel_lun_address_set { … }; #define IPMICTL_SET_MY_CHANNEL_ADDRESS_CMD … #define IPMICTL_GET_MY_CHANNEL_ADDRESS_CMD … #define IPMICTL_SET_MY_CHANNEL_LUN_CMD … #define IPMICTL_GET_MY_CHANNEL_LUN_CMD … /* Legacy interfaces, these only set IPMB 0. */ #define IPMICTL_SET_MY_ADDRESS_CMD … #define IPMICTL_GET_MY_ADDRESS_CMD … #define IPMICTL_SET_MY_LUN_CMD … #define IPMICTL_GET_MY_LUN_CMD … /* * Get/set the default timing values for an interface. You shouldn't * generally mess with these. */ struct ipmi_timing_parms { … }; #define IPMICTL_SET_TIMING_PARMS_CMD … #define IPMICTL_GET_TIMING_PARMS_CMD … /* * Set the maintenance mode. See ipmi_set_maintenance_mode() above * for a description of what this does. */ #define IPMICTL_GET_MAINTENANCE_MODE_CMD … #define IPMICTL_SET_MAINTENANCE_MODE_CMD … #endif /* _UAPI__LINUX_IPMI_H */