linux/drivers/md/bcache/bcache.h

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHE_H
#define _BCACHE_H

/*
 * SOME HIGH LEVEL CODE DOCUMENTATION:
 *
 * Bcache mostly works with cache sets, cache devices, and backing devices.
 *
 * Support for multiple cache devices hasn't quite been finished off yet, but
 * it's about 95% plumbed through. A cache set and its cache devices is sort of
 * like a md raid array and its component devices. Most of the code doesn't care
 * about individual cache devices, the main abstraction is the cache set.
 *
 * Multiple cache devices is intended to give us the ability to mirror dirty
 * cached data and metadata, without mirroring clean cached data.
 *
 * Backing devices are different, in that they have a lifetime independent of a
 * cache set. When you register a newly formatted backing device it'll come up
 * in passthrough mode, and then you can attach and detach a backing device from
 * a cache set at runtime - while it's mounted and in use. Detaching implicitly
 * invalidates any cached data for that backing device.
 *
 * A cache set can have multiple (many) backing devices attached to it.
 *
 * There's also flash only volumes - this is the reason for the distinction
 * between struct cached_dev and struct bcache_device. A flash only volume
 * works much like a bcache device that has a backing device, except the
 * "cached" data is always dirty. The end result is that we get thin
 * provisioning with very little additional code.
 *
 * Flash only volumes work but they're not production ready because the moving
 * garbage collector needs more work. More on that later.
 *
 * BUCKETS/ALLOCATION:
 *
 * Bcache is primarily designed for caching, which means that in normal
 * operation all of our available space will be allocated. Thus, we need an
 * efficient way of deleting things from the cache so we can write new things to
 * it.
 *
 * To do this, we first divide the cache device up into buckets. A bucket is the
 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
 * works efficiently.
 *
 * Each bucket has a 16 bit priority, and an 8 bit generation associated with
 * it. The gens and priorities for all the buckets are stored contiguously and
 * packed on disk (in a linked list of buckets - aside from the superblock, all
 * of bcache's metadata is stored in buckets).
 *
 * The priority is used to implement an LRU. We reset a bucket's priority when
 * we allocate it or on cache it, and every so often we decrement the priority
 * of each bucket. It could be used to implement something more sophisticated,
 * if anyone ever gets around to it.
 *
 * The generation is used for invalidating buckets. Each pointer also has an 8
 * bit generation embedded in it; for a pointer to be considered valid, its gen
 * must match the gen of the bucket it points into.  Thus, to reuse a bucket all
 * we have to do is increment its gen (and write its new gen to disk; we batch
 * this up).
 *
 * Bcache is entirely COW - we never write twice to a bucket, even buckets that
 * contain metadata (including btree nodes).
 *
 * THE BTREE:
 *
 * Bcache is in large part design around the btree.
 *
 * At a high level, the btree is just an index of key -> ptr tuples.
 *
 * Keys represent extents, and thus have a size field. Keys also have a variable
 * number of pointers attached to them (potentially zero, which is handy for
 * invalidating the cache).
 *
 * The key itself is an inode:offset pair. The inode number corresponds to a
 * backing device or a flash only volume. The offset is the ending offset of the
 * extent within the inode - not the starting offset; this makes lookups
 * slightly more convenient.
 *
 * Pointers contain the cache device id, the offset on that device, and an 8 bit
 * generation number. More on the gen later.
 *
 * Index lookups are not fully abstracted - cache lookups in particular are
 * still somewhat mixed in with the btree code, but things are headed in that
 * direction.
 *
 * Updates are fairly well abstracted, though. There are two different ways of
 * updating the btree; insert and replace.
 *
 * BTREE_INSERT will just take a list of keys and insert them into the btree -
 * overwriting (possibly only partially) any extents they overlap with. This is
 * used to update the index after a write.
 *
 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
 * overwriting a key that matches another given key. This is used for inserting
 * data into the cache after a cache miss, and for background writeback, and for
 * the moving garbage collector.
 *
 * There is no "delete" operation; deleting things from the index is
 * accomplished by either by invalidating pointers (by incrementing a bucket's
 * gen) or by inserting a key with 0 pointers - which will overwrite anything
 * previously present at that location in the index.
 *
 * This means that there are always stale/invalid keys in the btree. They're
 * filtered out by the code that iterates through a btree node, and removed when
 * a btree node is rewritten.
 *
 * BTREE NODES:
 *
 * Our unit of allocation is a bucket, and we can't arbitrarily allocate and
 * free smaller than a bucket - so, that's how big our btree nodes are.
 *
 * (If buckets are really big we'll only use part of the bucket for a btree node
 * - no less than 1/4th - but a bucket still contains no more than a single
 * btree node. I'd actually like to change this, but for now we rely on the
 * bucket's gen for deleting btree nodes when we rewrite/split a node.)
 *
 * Anyways, btree nodes are big - big enough to be inefficient with a textbook
 * btree implementation.
 *
 * The way this is solved is that btree nodes are internally log structured; we
 * can append new keys to an existing btree node without rewriting it. This
 * means each set of keys we write is sorted, but the node is not.
 *
 * We maintain this log structure in memory - keeping 1Mb of keys sorted would
 * be expensive, and we have to distinguish between the keys we have written and
 * the keys we haven't. So to do a lookup in a btree node, we have to search
 * each sorted set. But we do merge written sets together lazily, so the cost of
 * these extra searches is quite low (normally most of the keys in a btree node
 * will be in one big set, and then there'll be one or two sets that are much
 * smaller).
 *
 * This log structure makes bcache's btree more of a hybrid between a
 * conventional btree and a compacting data structure, with some of the
 * advantages of both.
 *
 * GARBAGE COLLECTION:
 *
 * We can't just invalidate any bucket - it might contain dirty data or
 * metadata. If it once contained dirty data, other writes might overwrite it
 * later, leaving no valid pointers into that bucket in the index.
 *
 * Thus, the primary purpose of garbage collection is to find buckets to reuse.
 * It also counts how much valid data it each bucket currently contains, so that
 * allocation can reuse buckets sooner when they've been mostly overwritten.
 *
 * It also does some things that are really internal to the btree
 * implementation. If a btree node contains pointers that are stale by more than
 * some threshold, it rewrites the btree node to avoid the bucket's generation
 * wrapping around. It also merges adjacent btree nodes if they're empty enough.
 *
 * THE JOURNAL:
 *
 * Bcache's journal is not necessary for consistency; we always strictly
 * order metadata writes so that the btree and everything else is consistent on
 * disk in the event of an unclean shutdown, and in fact bcache had writeback
 * caching (with recovery from unclean shutdown) before journalling was
 * implemented.
 *
 * Rather, the journal is purely a performance optimization; we can't complete a
 * write until we've updated the index on disk, otherwise the cache would be
 * inconsistent in the event of an unclean shutdown. This means that without the
 * journal, on random write workloads we constantly have to update all the leaf
 * nodes in the btree, and those writes will be mostly empty (appending at most
 * a few keys each) - highly inefficient in terms of amount of metadata writes,
 * and it puts more strain on the various btree resorting/compacting code.
 *
 * The journal is just a log of keys we've inserted; on startup we just reinsert
 * all the keys in the open journal entries. That means that when we're updating
 * a node in the btree, we can wait until a 4k block of keys fills up before
 * writing them out.
 *
 * For simplicity, we only journal updates to leaf nodes; updates to parent
 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
 * the complexity to deal with journalling them (in particular, journal replay)
 * - updates to non leaf nodes just happen synchronously (see btree_split()).
 */

#define pr_fmt(fmt)

#include <linux/bio.h>
#include <linux/closure.h>
#include <linux/kobject.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/rbtree.h>
#include <linux/rwsem.h>
#include <linux/refcount.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include <linux/kthread.h>

#include "bcache_ondisk.h"
#include "bset.h"
#include "util.h"

struct bucket {};

/*
 * I'd use bitfields for these, but I don't trust the compiler not to screw me
 * as multiple threads touch struct bucket without locking
 */

BITMASK(GC_MARK,	 struct bucket, gc_mark, 0, 2);
#define GC_MARK_RECLAIMABLE
#define GC_MARK_DIRTY
#define GC_MARK_METADATA
#define GC_SECTORS_USED_SIZE
#define MAX_GC_SECTORS_USED
BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, GC_SECTORS_USED_SIZE);
BITMASK(GC_MOVE, struct bucket, gc_mark, 15, 1);

#include "journal.h"
#include "stats.h"
struct search;
struct btree;
struct keybuf;

struct keybuf_key {};

struct keybuf {};

struct bcache_device {};

struct io {};

enum stop_on_failure {};

struct cached_dev {};

enum alloc_reserve {};

struct cache {};

struct gc_stat {};

/*
 * Flag bits, for how the cache set is shutting down, and what phase it's at:
 *
 * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
 * all the backing devices first (their cached data gets invalidated, and they
 * won't automatically reattach).
 *
 * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
 * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
 * flushing dirty data).
 *
 * CACHE_SET_RUNNING means all cache devices have been registered and journal
 * replay is complete.
 *
 * CACHE_SET_IO_DISABLE is set when bcache is stopping the whold cache set, all
 * external and internal I/O should be denied when this flag is set.
 *
 */
#define CACHE_SET_UNREGISTERING
#define CACHE_SET_STOPPING
#define CACHE_SET_RUNNING
#define CACHE_SET_IO_DISABLE

struct cache_set {};

struct bbio {};

#define BTREE_PRIO
#define INITIAL_PRIO

#define btree_bytes(c)
#define btree_blocks(b)

#define btree_default_blocks(c)

#define bucket_bytes(ca)
#define block_bytes(ca)

static inline unsigned int meta_bucket_pages(struct cache_sb *sb)
{}

static inline unsigned int meta_bucket_bytes(struct cache_sb *sb)
{}

#define prios_per_bucket(ca)

#define prio_buckets(ca)

static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
{}

static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
{}

static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
{}

static inline size_t PTR_BUCKET_NR(struct cache_set *c,
				   const struct bkey *k,
				   unsigned int ptr)
{}

static inline struct bucket *PTR_BUCKET(struct cache_set *c,
					const struct bkey *k,
					unsigned int ptr)
{}

static inline uint8_t gen_after(uint8_t a, uint8_t b)
{}

static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
				unsigned int i)
{}

static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
				 unsigned int i)
{}

/* Btree key macros */

/*
 * This is used for various on disk data structures - cache_sb, prio_set, bset,
 * jset: The checksum is _always_ the first 8 bytes of these structs
 */
#define csum_set(i)

/* Error handling macros */

#define btree_bug(b, ...)

#define cache_bug(c, ...)

#define btree_bug_on(cond, b, ...)

#define cache_bug_on(cond, c, ...)

#define cache_set_err_on(cond, c, ...)

/* Looping macros */

#define for_each_bucket(b, ca)

static inline void cached_dev_put(struct cached_dev *dc)
{}

static inline bool cached_dev_get(struct cached_dev *dc)
{}

/*
 * bucket_gc_gen() returns the difference between the bucket's current gen and
 * the oldest gen of any pointer into that bucket in the btree (last_gc).
 */

static inline uint8_t bucket_gc_gen(struct bucket *b)
{}

#define BUCKET_GC_GEN_MAX

#define kobj_attribute_write(n, fn)

#define kobj_attribute_rw(n, show, store)

static inline void wake_up_allocators(struct cache_set *c)
{}

static inline void closure_bio_submit(struct cache_set *c,
				      struct bio *bio,
				      struct closure *cl)
{}

/*
 * Prevent the kthread exits directly, and make sure when kthread_stop()
 * is called to stop a kthread, it is still alive. If a kthread might be
 * stopped by CACHE_SET_IO_DISABLE bit set, wait_for_kthread_stop() is
 * necessary before the kthread returns.
 */
static inline void wait_for_kthread_stop(void)
{}

/* Forward declarations */

void bch_count_backing_io_errors(struct cached_dev *dc, struct bio *bio);
void bch_count_io_errors(struct cache *ca, blk_status_t error,
			 int is_read, const char *m);
void bch_bbio_count_io_errors(struct cache_set *c, struct bio *bio,
			      blk_status_t error, const char *m);
void bch_bbio_endio(struct cache_set *c, struct bio *bio,
		    blk_status_t error, const char *m);
void bch_bbio_free(struct bio *bio, struct cache_set *c);
struct bio *bch_bbio_alloc(struct cache_set *c);

void __bch_submit_bbio(struct bio *bio, struct cache_set *c);
void bch_submit_bbio(struct bio *bio, struct cache_set *c,
		     struct bkey *k, unsigned int ptr);

uint8_t bch_inc_gen(struct cache *ca, struct bucket *b);
void bch_rescale_priorities(struct cache_set *c, int sectors);

bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b);
void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b);

void __bch_bucket_free(struct cache *ca, struct bucket *b);
void bch_bucket_free(struct cache_set *c, struct bkey *k);

long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait);
int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
			   struct bkey *k, bool wait);
int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
			 struct bkey *k, bool wait);
bool bch_alloc_sectors(struct cache_set *c, struct bkey *k,
		       unsigned int sectors, unsigned int write_point,
		       unsigned int write_prio, bool wait);
bool bch_cached_dev_error(struct cached_dev *dc);

__printf(2, 3)
bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...);

int bch_prio_write(struct cache *ca, bool wait);
void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent);

extern struct workqueue_struct *bcache_wq;
extern struct workqueue_struct *bch_journal_wq;
extern struct workqueue_struct *bch_flush_wq;
extern struct mutex bch_register_lock;
extern struct list_head bch_cache_sets;

extern const struct kobj_type bch_cached_dev_ktype;
extern const struct kobj_type bch_flash_dev_ktype;
extern const struct kobj_type bch_cache_set_ktype;
extern const struct kobj_type bch_cache_set_internal_ktype;
extern const struct kobj_type bch_cache_ktype;

void bch_cached_dev_release(struct kobject *kobj);
void bch_flash_dev_release(struct kobject *kobj);
void bch_cache_set_release(struct kobject *kobj);
void bch_cache_release(struct kobject *kobj);

int bch_uuid_write(struct cache_set *c);
void bcache_write_super(struct cache_set *c);

int bch_flash_dev_create(struct cache_set *c, uint64_t size);

int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
			  uint8_t *set_uuid);
void bch_cached_dev_detach(struct cached_dev *dc);
int bch_cached_dev_run(struct cached_dev *dc);
void bcache_device_stop(struct bcache_device *d);

void bch_cache_set_unregister(struct cache_set *c);
void bch_cache_set_stop(struct cache_set *c);

struct cache_set *bch_cache_set_alloc(struct cache_sb *sb);
void bch_btree_cache_free(struct cache_set *c);
int bch_btree_cache_alloc(struct cache_set *c);
void bch_moving_init_cache_set(struct cache_set *c);
int bch_open_buckets_alloc(struct cache_set *c);
void bch_open_buckets_free(struct cache_set *c);

int bch_cache_allocator_start(struct cache *ca);

void bch_debug_exit(void);
void bch_debug_init(void);
void bch_request_exit(void);
int bch_request_init(void);
void bch_btree_exit(void);
int bch_btree_init(void);

#endif /* _BCACHE_H */