linux/drivers/md/md-bitmap.h

/* SPDX-License-Identifier: GPL-2.0 */
/*
 * bitmap.h: Copyright (C) Peter T. Breuer ([email protected]) 2003
 *
 * additions: Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
 */
#ifndef BITMAP_H
#define BITMAP_H

#define BITMAP_MAJOR_LO
/* version 4 insists the bitmap is in little-endian order
 * with version 3, it is host-endian which is non-portable
 * Version 5 is currently set only for clustered devices
 */
#define BITMAP_MAJOR_HI
#define BITMAP_MAJOR_CLUSTERED
#define BITMAP_MAJOR_HOSTENDIAN

/*
 * in-memory bitmap:
 *
 * Use 16 bit block counters to track pending writes to each "chunk".
 * The 2 high order bits are special-purpose, the first is a flag indicating
 * whether a resync is needed.  The second is a flag indicating whether a
 * resync is active.
 * This means that the counter is actually 14 bits:
 *
 * +--------+--------+------------------------------------------------+
 * | resync | resync |               counter                          |
 * | needed | active |                                                |
 * |  (0-1) |  (0-1) |              (0-16383)                         |
 * +--------+--------+------------------------------------------------+
 *
 * The "resync needed" bit is set when:
 *    a '1' bit is read from storage at startup.
 *    a write request fails on some drives
 *    a resync is aborted on a chunk with 'resync active' set
 * It is cleared (and resync-active set) when a resync starts across all drives
 * of the chunk.
 *
 *
 * The "resync active" bit is set when:
 *    a resync is started on all drives, and resync_needed is set.
 *       resync_needed will be cleared (as long as resync_active wasn't already set).
 * It is cleared when a resync completes.
 *
 * The counter counts pending write requests, plus the on-disk bit.
 * When the counter is '1' and the resync bits are clear, the on-disk
 * bit can be cleared as well, thus setting the counter to 0.
 * When we set a bit, or in the counter (to start a write), if the fields is
 * 0, we first set the disk bit and set the counter to 1.
 *
 * If the counter is 0, the on-disk bit is clear and the stripe is clean
 * Anything that dirties the stripe pushes the counter to 2 (at least)
 * and sets the on-disk bit (lazily).
 * If a periodic sweep find the counter at 2, it is decremented to 1.
 * If the sweep find the counter at 1, the on-disk bit is cleared and the
 * counter goes to zero.
 *
 * Also, we'll hijack the "map" pointer itself and use it as two 16 bit block
 * counters as a fallback when "page" memory cannot be allocated:
 *
 * Normal case (page memory allocated):
 *
 *     page pointer (32-bit)
 *
 *     [ ] ------+
 *               |
 *               +-------> [   ][   ]..[   ] (4096 byte page == 2048 counters)
 *                          c1   c2    c2048
 *
 * Hijacked case (page memory allocation failed):
 *
 *     hijacked page pointer (32-bit)
 *
 *     [		  ][		  ] (no page memory allocated)
 *      counter #1 (16-bit) counter #2 (16-bit)
 *
 */

#ifdef __KERNEL__

#define PAGE_BITS
#define PAGE_BIT_SHIFT

bitmap_counter_t;
#define COUNTER_BITS
#define COUNTER_BIT_SHIFT
#define COUNTER_BYTE_SHIFT

#define NEEDED_MASK
#define RESYNC_MASK
#define COUNTER_MAX
#define NEEDED(x)
#define RESYNC(x)
#define COUNTER(x)

/* how many counters per page? */
#define PAGE_COUNTER_RATIO
/* same, except a shift value for more efficient bitops */
#define PAGE_COUNTER_SHIFT
/* same, except a mask value for more efficient bitops */
#define PAGE_COUNTER_MASK

#define BITMAP_BLOCK_SHIFT

#endif

/*
 * bitmap structures:
 */

#define BITMAP_MAGIC

/* use these for bitmap->flags and bitmap->sb->state bit-fields */
enum bitmap_state {};

/* the superblock at the front of the bitmap file -- little endian */
bitmap_super_t;

/* notes:
 * (1) This event counter is updated before the eventcounter in the md superblock
 *    When a bitmap is loaded, it is only accepted if this event counter is equal
 *    to, or one greater than, the event counter in the superblock.
 * (2) This event counter is updated when the other one is *if*and*only*if* the
 *    array is not degraded.  As bits are not cleared when the array is degraded,
 *    this represents the last time that any bits were cleared.
 *    If a device is being added that has an event count with this value or
 *    higher, it is accepted as conforming to the bitmap.
 * (3)This is the number of sectors represented by the bitmap, and is the range that
 *    resync happens across.  For raid1 and raid5/6 it is the size of individual
 *    devices.  For raid10 it is the size of the array.
 */

#ifdef __KERNEL__

/* the in-memory bitmap is represented by bitmap_pages */
struct bitmap_page {};

/* the main bitmap structure - one per mddev */
struct bitmap {};

/* the bitmap API */

/* these are used only by md/bitmap */
struct bitmap *md_bitmap_create(struct mddev *mddev, int slot);
int md_bitmap_load(struct mddev *mddev);
void md_bitmap_flush(struct mddev *mddev);
void md_bitmap_destroy(struct mddev *mddev);

void md_bitmap_print_sb(struct bitmap *bitmap);
void md_bitmap_update_sb(struct bitmap *bitmap);
void md_bitmap_status(struct seq_file *seq, struct bitmap *bitmap);

int  md_bitmap_setallbits(struct bitmap *bitmap);
void md_bitmap_write_all(struct bitmap *bitmap);

void md_bitmap_dirty_bits(struct bitmap *bitmap, unsigned long s, unsigned long e);

/* these are exported */
int md_bitmap_startwrite(struct bitmap *bitmap, sector_t offset,
			 unsigned long sectors, int behind);
void md_bitmap_endwrite(struct bitmap *bitmap, sector_t offset,
			unsigned long sectors, int success, int behind);
int md_bitmap_start_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int degraded);
void md_bitmap_end_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int aborted);
void md_bitmap_close_sync(struct bitmap *bitmap);
void md_bitmap_cond_end_sync(struct bitmap *bitmap, sector_t sector, bool force);
void md_bitmap_sync_with_cluster(struct mddev *mddev,
				 sector_t old_lo, sector_t old_hi,
				 sector_t new_lo, sector_t new_hi);

void md_bitmap_unplug(struct bitmap *bitmap);
void md_bitmap_unplug_async(struct bitmap *bitmap);
void md_bitmap_daemon_work(struct mddev *mddev);

int md_bitmap_resize(struct bitmap *bitmap, sector_t blocks,
		     int chunksize, int init);
struct bitmap *get_bitmap_from_slot(struct mddev *mddev, int slot);
int md_bitmap_copy_from_slot(struct mddev *mddev, int slot,
			     sector_t *lo, sector_t *hi, bool clear_bits);
void md_bitmap_free(struct bitmap *bitmap);
void md_bitmap_wait_behind_writes(struct mddev *mddev);

static inline bool md_bitmap_enabled(struct bitmap *bitmap)
{}

#endif

#endif