linux/drivers/infiniband/hw/bnxt_re/qplib_rcfw.c

/*
 * Broadcom NetXtreme-E RoCE driver.
 *
 * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
 * Broadcom refers to Broadcom Limited and/or its subsidiaries.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * BSD license below:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Description: RDMA Controller HW interface
 */

#define dev_fmt(fmt)

#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/prefetch.h>
#include <linux/delay.h>

#include "roce_hsi.h"
#include "qplib_res.h"
#include "qplib_rcfw.h"
#include "qplib_sp.h"
#include "qplib_fp.h"
#include "qplib_tlv.h"

static void bnxt_qplib_service_creq(struct tasklet_struct *t);

/**
 * bnxt_qplib_map_rc  -  map return type based on opcode
 * @opcode:  roce slow path opcode
 *
 * case #1
 * Firmware initiated error recovery is a safe state machine and
 * driver can consider all the underlying rdma resources are free.
 * In this state, it is safe to return success for opcodes related to
 * destroying rdma resources (like destroy qp, destroy cq etc.).
 *
 * case #2
 * If driver detect potential firmware stall, it is not safe state machine
 * and the driver can not consider all the underlying rdma resources are
 * freed.
 * In this state, it is not safe to return success for opcodes related to
 * destroying rdma resources (like destroy qp, destroy cq etc.).
 *
 * Scope of this helper function is only for case #1.
 *
 * Returns:
 * 0 to communicate success to caller.
 * Non zero error code to communicate failure to caller.
 */
static int bnxt_qplib_map_rc(u8 opcode)
{}

/**
 * bnxt_re_is_fw_stalled   -	Check firmware health
 * @rcfw:     rcfw channel instance of rdev
 * @cookie:   cookie to track the command
 *
 * If firmware has not responded any rcfw command within
 * rcfw->max_timeout, consider firmware as stalled.
 *
 * Returns:
 * 0 if firmware is responding
 * -ENODEV if firmware is not responding
 */
static int bnxt_re_is_fw_stalled(struct bnxt_qplib_rcfw *rcfw,
				 u16 cookie)
{}

/**
 * __wait_for_resp   -	Don't hold the cpu context and wait for response
 * @rcfw:    rcfw channel instance of rdev
 * @cookie:  cookie to track the command
 *
 * Wait for command completion in sleepable context.
 *
 * Returns:
 * 0 if command is completed by firmware.
 * Non zero error code for rest of the case.
 */
static int __wait_for_resp(struct bnxt_qplib_rcfw *rcfw, u16 cookie)
{
	struct bnxt_qplib_cmdq_ctx *cmdq;
	struct bnxt_qplib_crsqe *crsqe;
	int ret;

	cmdq = &rcfw->cmdq;
	crsqe = &rcfw->crsqe_tbl[cookie];

	do {
		if (test_bit(ERR_DEVICE_DETACHED, &cmdq->flags))
			return bnxt_qplib_map_rc(crsqe->opcode);
		if (test_bit(FIRMWARE_STALL_DETECTED, &cmdq->flags))
			return -ETIMEDOUT;

		wait_event_timeout(cmdq->waitq,
				   !crsqe->is_in_used ||
				   test_bit(ERR_DEVICE_DETACHED, &cmdq->flags),
				   msecs_to_jiffies(rcfw->max_timeout * 1000));

		if (!crsqe->is_in_used)
			return 0;

		bnxt_qplib_service_creq(&rcfw->creq.creq_tasklet);

		if (!crsqe->is_in_used)
			return 0;

		ret = bnxt_re_is_fw_stalled(rcfw, cookie);
		if (ret)
			return ret;

	} while (true);
};

/**
 * __block_for_resp   -	hold the cpu context and wait for response
 * @rcfw:    rcfw channel instance of rdev
 * @cookie:  cookie to track the command
 *
 * This function will hold the cpu (non-sleepable context) and
 * wait for command completion. Maximum holding interval is 8 second.
 *
 * Returns:
 * -ETIMEOUT if command is not completed in specific time interval.
 * 0 if command is completed by firmware.
 */
static int __block_for_resp(struct bnxt_qplib_rcfw *rcfw, u16 cookie)
{
	struct bnxt_qplib_cmdq_ctx *cmdq = &rcfw->cmdq;
	struct bnxt_qplib_crsqe *crsqe;
	unsigned long issue_time = 0;

	issue_time = jiffies;
	crsqe = &rcfw->crsqe_tbl[cookie];

	do {
		if (test_bit(ERR_DEVICE_DETACHED, &cmdq->flags))
			return bnxt_qplib_map_rc(crsqe->opcode);
		if (test_bit(FIRMWARE_STALL_DETECTED, &cmdq->flags))
			return -ETIMEDOUT;

		udelay(1);

		bnxt_qplib_service_creq(&rcfw->creq.creq_tasklet);
		if (!crsqe->is_in_used)
			return 0;

	} while (time_before(jiffies, issue_time + (8 * HZ)));

	return -ETIMEDOUT;
};

/*  __send_message_no_waiter -	get cookie and post the message.
 * @rcfw:   rcfw channel instance of rdev
 * @msg:    qplib message internal
 *
 * This function will just post and don't bother about completion.
 * Current design of this function is -
 * user must hold the completion queue hwq->lock.
 * user must have used existing completion and free the resources.
 * this function will not check queue full condition.
 * this function will explicitly set is_waiter_alive=false.
 * current use case is - send destroy_ah if create_ah is return
 * after waiter of create_ah is lost. It can be extended for other
 * use case as well.
 *
 * Returns: Nothing
 *
 */
static void __send_message_no_waiter(struct bnxt_qplib_rcfw *rcfw,
				     struct bnxt_qplib_cmdqmsg *msg)
{}

static int __send_message(struct bnxt_qplib_rcfw *rcfw,
			  struct bnxt_qplib_cmdqmsg *msg, u8 opcode)
{}

/**
 * __poll_for_resp   -	self poll completion for rcfw command
 * @rcfw:     rcfw channel instance of rdev
 * @cookie:   cookie to track the command
 *
 * It works same as __wait_for_resp except this function will
 * do self polling in sort interval since interrupt is disabled.
 * This function can not be called from non-sleepable context.
 *
 * Returns:
 * -ETIMEOUT if command is not completed in specific time interval.
 * 0 if command is completed by firmware.
 */
static int __poll_for_resp(struct bnxt_qplib_rcfw *rcfw, u16 cookie)
{
	struct bnxt_qplib_cmdq_ctx *cmdq = &rcfw->cmdq;
	struct bnxt_qplib_crsqe *crsqe;
	unsigned long issue_time;
	int ret;

	issue_time = jiffies;
	crsqe = &rcfw->crsqe_tbl[cookie];

	do {
		if (test_bit(ERR_DEVICE_DETACHED, &cmdq->flags))
			return bnxt_qplib_map_rc(crsqe->opcode);
		if (test_bit(FIRMWARE_STALL_DETECTED, &cmdq->flags))
			return -ETIMEDOUT;

		usleep_range(1000, 1001);

		bnxt_qplib_service_creq(&rcfw->creq.creq_tasklet);
		if (!crsqe->is_in_used)
			return 0;
		if (jiffies_to_msecs(jiffies - issue_time) >
		    (rcfw->max_timeout * 1000)) {
			ret = bnxt_re_is_fw_stalled(rcfw, cookie);
			if (ret)
				return ret;
		}
	} while (true);
};

static int __send_message_basic_sanity(struct bnxt_qplib_rcfw *rcfw,
				       struct bnxt_qplib_cmdqmsg *msg,
				       u8 opcode)
{}

/* This function will just post and do not bother about completion */
static void __destroy_timedout_ah(struct bnxt_qplib_rcfw *rcfw,
				  struct creq_create_ah_resp *create_ah_resp)
{}

/**
 * __bnxt_qplib_rcfw_send_message   -	qplib interface to send
 * and complete rcfw command.
 * @rcfw:   rcfw channel instance of rdev
 * @msg:    qplib message internal
 *
 * This function does not account shadow queue depth. It will send
 * all the command unconditionally as long as send queue is not full.
 *
 * Returns:
 * 0 if command completed by firmware.
 * Non zero if the command is not completed by firmware.
 */
static int __bnxt_qplib_rcfw_send_message(struct bnxt_qplib_rcfw *rcfw,
					  struct bnxt_qplib_cmdqmsg *msg)
{}

/**
 * bnxt_qplib_rcfw_send_message   -	qplib interface to send
 * and complete rcfw command.
 * @rcfw:   rcfw channel instance of rdev
 * @msg:    qplib message internal
 *
 * Driver interact with Firmware through rcfw channel/slow path in two ways.
 * a. Blocking rcfw command send. In this path, driver cannot hold
 * the context for longer period since it is holding cpu until
 * command is not completed.
 * b. Non-blocking rcfw command send. In this path, driver can hold the
 * context for longer period. There may be many pending command waiting
 * for completion because of non-blocking nature.
 *
 * Driver will use shadow queue depth. Current queue depth of 8K
 * (due to size of rcfw message there can be actual ~4K rcfw outstanding)
 * is not optimal for rcfw command processing in firmware.
 *
 * Restrict at max #RCFW_CMD_NON_BLOCKING_SHADOW_QD Non-Blocking rcfw commands.
 * Allow all blocking commands until there is no queue full.
 *
 * Returns:
 * 0 if command completed by firmware.
 * Non zero if the command is not completed by firmware.
 */
int bnxt_qplib_rcfw_send_message(struct bnxt_qplib_rcfw *rcfw,
				 struct bnxt_qplib_cmdqmsg *msg)
{}

/* Completions */
static int bnxt_qplib_process_func_event(struct bnxt_qplib_rcfw *rcfw,
					 struct creq_func_event *func_event)
{}

static int bnxt_qplib_process_qp_event(struct bnxt_qplib_rcfw *rcfw,
				       struct creq_qp_event *qp_event,
				       u32 *num_wait)
{}

/* SP - CREQ Completion handlers */
static void bnxt_qplib_service_creq(struct tasklet_struct *t)
{}

static irqreturn_t bnxt_qplib_creq_irq(int irq, void *dev_instance)
{}

/* RCFW */
int bnxt_qplib_deinit_rcfw(struct bnxt_qplib_rcfw *rcfw)
{}

int bnxt_qplib_init_rcfw(struct bnxt_qplib_rcfw *rcfw,
			 struct bnxt_qplib_ctx *ctx, int is_virtfn)
{}

void bnxt_qplib_free_rcfw_channel(struct bnxt_qplib_rcfw *rcfw)
{}

int bnxt_qplib_alloc_rcfw_channel(struct bnxt_qplib_res *res,
				  struct bnxt_qplib_rcfw *rcfw,
				  struct bnxt_qplib_ctx *ctx,
				  int qp_tbl_sz)
{}

void bnxt_qplib_rcfw_stop_irq(struct bnxt_qplib_rcfw *rcfw, bool kill)
{}

void bnxt_qplib_disable_rcfw_channel(struct bnxt_qplib_rcfw *rcfw)
{}

int bnxt_qplib_rcfw_start_irq(struct bnxt_qplib_rcfw *rcfw, int msix_vector,
			      bool need_init)
{}

static int bnxt_qplib_map_cmdq_mbox(struct bnxt_qplib_rcfw *rcfw)
{}

static int bnxt_qplib_map_creq_db(struct bnxt_qplib_rcfw *rcfw, u32 reg_offt)
{}

static void bnxt_qplib_start_rcfw(struct bnxt_qplib_rcfw *rcfw)
{}

int bnxt_qplib_enable_rcfw_channel(struct bnxt_qplib_rcfw *rcfw,
				   int msix_vector,
				   int cp_bar_reg_off,
				   aeq_handler_t aeq_handler)
{}