// SPDX-License-Identifier: GPL-2.0 /* * i8253 PIT clocksource */ #include <linux/clockchips.h> #include <linux/init.h> #include <linux/io.h> #include <linux/spinlock.h> #include <linux/timex.h> #include <linux/module.h> #include <linux/i8253.h> #include <linux/smp.h> /* * Protects access to I/O ports * * 0040-0043 : timer0, i8253 / i8254 * 0061-0061 : NMI Control Register which contains two speaker control bits. */ DEFINE_RAW_SPINLOCK(…); EXPORT_SYMBOL(…); /* * Handle PIT quirk in pit_shutdown() where zeroing the counter register * restarts the PIT, negating the shutdown. On platforms with the quirk, * platform specific code can set this to false. */ bool i8253_clear_counter_on_shutdown __ro_after_init = …; #ifdef CONFIG_CLKSRC_I8253 /* * Since the PIT overflows every tick, its not very useful * to just read by itself. So use jiffies to emulate a free * running counter: */ static u64 i8253_read(struct clocksource *cs) { static int old_count; static u32 old_jifs; unsigned long flags; int count; u32 jifs; raw_spin_lock_irqsave(&i8253_lock, flags); /* * Although our caller may have the read side of jiffies_lock, * this is now a seqlock, and we are cheating in this routine * by having side effects on state that we cannot undo if * there is a collision on the seqlock and our caller has to * retry. (Namely, old_jifs and old_count.) So we must treat * jiffies as volatile despite the lock. We read jiffies * before latching the timer count to guarantee that although * the jiffies value might be older than the count (that is, * the counter may underflow between the last point where * jiffies was incremented and the point where we latch the * count), it cannot be newer. */ jifs = jiffies; outb_p(0x00, PIT_MODE); /* latch the count ASAP */ count = inb_p(PIT_CH0); /* read the latched count */ count |= inb_p(PIT_CH0) << 8; /* VIA686a test code... reset the latch if count > max + 1 */ if (count > PIT_LATCH) { outb_p(0x34, PIT_MODE); outb_p(PIT_LATCH & 0xff, PIT_CH0); outb_p(PIT_LATCH >> 8, PIT_CH0); count = PIT_LATCH - 1; } /* * It's possible for count to appear to go the wrong way for a * couple of reasons: * * 1. The timer counter underflows, but we haven't handled the * resulting interrupt and incremented jiffies yet. * 2. Hardware problem with the timer, not giving us continuous time, * the counter does small "jumps" upwards on some Pentium systems, * (see c't 95/10 page 335 for Neptun bug.) * * Previous attempts to handle these cases intelligently were * buggy, so we just do the simple thing now. */ if (count > old_count && jifs == old_jifs) count = old_count; old_count = count; old_jifs = jifs; raw_spin_unlock_irqrestore(&i8253_lock, flags); count = (PIT_LATCH - 1) - count; return (u64)(jifs * PIT_LATCH) + count; } static struct clocksource i8253_cs = { .name = "pit", .rating = 110, .read = i8253_read, .mask = CLOCKSOURCE_MASK(32), }; int __init clocksource_i8253_init(void) { return clocksource_register_hz(&i8253_cs, PIT_TICK_RATE); } #endif #ifdef CONFIG_CLKEVT_I8253 static int pit_shutdown(struct clock_event_device *evt) { … } static int pit_set_oneshot(struct clock_event_device *evt) { … } static int pit_set_periodic(struct clock_event_device *evt) { … } /* * Program the next event in oneshot mode * * Delta is given in PIT ticks */ static int pit_next_event(unsigned long delta, struct clock_event_device *evt) { … } /* * On UP the PIT can serve all of the possible timer functions. On SMP systems * it can be solely used for the global tick. */ struct clock_event_device i8253_clockevent = …; /* * Initialize the conversion factor and the min/max deltas of the clock event * structure and register the clock event source with the framework. */ void __init clockevent_i8253_init(bool oneshot) { … } #endif