// SPDX-License-Identifier: GPL-2.0-only /* gain-time-scale conversion helpers for IIO light sensors * * Copyright (c) 2023 Matti Vaittinen <[email protected]> */ #include <linux/device.h> #include <linux/errno.h> #include <linux/export.h> #include <linux/minmax.h> #include <linux/module.h> #include <linux/overflow.h> #include <linux/slab.h> #include <linux/sort.h> #include <linux/types.h> #include <linux/units.h> #include <linux/iio/iio-gts-helper.h> #include <linux/iio/types.h> /** * iio_gts_get_gain - Convert scale to total gain * * Internal helper for converting scale to total gain. * * @max: Maximum linearized scale. As an example, when scale is created * in magnitude of NANOs and max scale is 64.1 - The linearized * scale is 64 100 000 000. * @scale: Linearized scale to compute the gain for. * * Return: (floored) gain corresponding to the scale. -EINVAL if scale * is invalid. */ static int iio_gts_get_gain(const u64 max, const u64 scale) { … } /** * gain_get_scale_fraction - get the gain or time based on scale and known one * * @max: Maximum linearized scale. As an example, when scale is created * in magnitude of NANOs and max scale is 64.1 - The linearized * scale is 64 100 000 000. * @scale: Linearized scale to compute the gain/time for. * @known: Either integration time or gain depending on which one is known * @unknown: Pointer to variable where the computed gain/time is stored * * Internal helper for computing unknown fraction of total gain. * Compute either gain or time based on scale and either the gain or time * depending on which one is known. * * Return: 0 on success. */ static int gain_get_scale_fraction(const u64 max, u64 scale, int known, int *unknown) { … } static int iio_gts_delinearize(u64 lin_scale, unsigned long scaler, int *scale_whole, int *scale_nano) { … } static int iio_gts_linearize(int scale_whole, int scale_nano, unsigned long scaler, u64 *lin_scale) { … } /** * iio_gts_total_gain_to_scale - convert gain to scale * @gts: Gain time scale descriptor * @total_gain: the gain to be converted * @scale_int: Pointer to integral part of the scale (typically val1) * @scale_nano: Pointer to fractional part of the scale (nano or ppb) * * Convert the total gain value to scale. NOTE: This does not separate gain * generated by HW-gain or integration time. It is up to caller to decide what * part of the total gain is due to integration time and what due to HW-gain. * * Return: 0 on success. Negative errno on failure. */ int iio_gts_total_gain_to_scale(struct iio_gts *gts, int total_gain, int *scale_int, int *scale_nano) { … } EXPORT_SYMBOL_NS_GPL(…); /** * iio_gts_purge_avail_scale_table - free-up the available scale tables * @gts: Gain time scale descriptor * * Free the space reserved by iio_gts_build_avail_scale_table(). */ static void iio_gts_purge_avail_scale_table(struct iio_gts *gts) { … } static int iio_gts_gain_cmp(const void *a, const void *b) { … } static int gain_to_scaletables(struct iio_gts *gts, int **gains, int **scales) { … } /** * iio_gts_build_avail_scale_table - create tables of available scales * @gts: Gain time scale descriptor * * Build the tables which can represent the available scales based on the * originally given gain and time tables. When both time and gain tables are * given this results: * 1. A set of tables representing available scales for each supported * integration time. * 2. A single table listing all the unique scales that any combination of * supported gains and times can provide. * * NOTE: Space allocated for the tables must be freed using * iio_gts_purge_avail_scale_table() when the tables are no longer needed. * * Return: 0 on success. */ static int iio_gts_build_avail_scale_table(struct iio_gts *gts) { … } static void iio_gts_us_to_int_micro(int *time_us, int *int_micro_times, int num_times) { … } /** * iio_gts_build_avail_time_table - build table of available integration times * @gts: Gain time scale descriptor * * Build the table which can represent the available times to be returned * to users using the read_avail-callback. * * NOTE: Space allocated for the tables must be freed using * iio_gts_purge_avail_time_table() when the tables are no longer needed. * * Return: 0 on success. */ static int iio_gts_build_avail_time_table(struct iio_gts *gts) { … } /** * iio_gts_purge_avail_time_table - free-up the available integration time table * @gts: Gain time scale descriptor * * Free the space reserved by iio_gts_build_avail_time_table(). */ static void iio_gts_purge_avail_time_table(struct iio_gts *gts) { … } /** * iio_gts_build_avail_tables - create tables of available scales and int times * @gts: Gain time scale descriptor * * Build the tables which can represent the available scales and available * integration times. Availability tables are built based on the originally * given gain and given time tables. * * When both time and gain tables are * given this results: * 1. A set of sorted tables representing available scales for each supported * integration time. * 2. A single sorted table listing all the unique scales that any combination * of supported gains and times can provide. * 3. A sorted table of supported integration times * * After these tables are built one can use the iio_gts_all_avail_scales(), * iio_gts_avail_scales_for_time() and iio_gts_avail_times() helpers to * implement the read_avail operations. * * NOTE: Space allocated for the tables must be freed using * iio_gts_purge_avail_tables() when the tables are no longer needed. * * Return: 0 on success. */ static int iio_gts_build_avail_tables(struct iio_gts *gts) { … } /** * iio_gts_purge_avail_tables - free-up the availability tables * @gts: Gain time scale descriptor * * Free the space reserved by iio_gts_build_avail_tables(). Frees both the * integration time and scale tables. */ static void iio_gts_purge_avail_tables(struct iio_gts *gts) { … } static void devm_iio_gts_avail_all_drop(void *res) { … } /** * devm_iio_gts_build_avail_tables - manged add availability tables * @dev: Pointer to the device whose lifetime tables are bound * @gts: Gain time scale descriptor * * Build the tables which can represent the available scales and available * integration times. Availability tables are built based on the originally * given gain and given time tables. * * When both time and gain tables are given this results: * 1. A set of sorted tables representing available scales for each supported * integration time. * 2. A single sorted table listing all the unique scales that any combination * of supported gains and times can provide. * 3. A sorted table of supported integration times * * After these tables are built one can use the iio_gts_all_avail_scales(), * iio_gts_avail_scales_for_time() and iio_gts_avail_times() helpers to * implement the read_avail operations. * * The tables are automatically released upon device detach. * * Return: 0 on success. */ static int devm_iio_gts_build_avail_tables(struct device *dev, struct iio_gts *gts) { … } static int sanity_check_time(const struct iio_itime_sel_mul *t) { … } static int sanity_check_gain(const struct iio_gain_sel_pair *g) { … } static int iio_gts_sanity_check(struct iio_gts *gts) { … } static int iio_init_iio_gts(int max_scale_int, int max_scale_nano, const struct iio_gain_sel_pair *gain_tbl, int num_gain, const struct iio_itime_sel_mul *tim_tbl, int num_times, struct iio_gts *gts) { … } /** * devm_iio_init_iio_gts - Initialize the gain-time-scale helper * @dev: Pointer to the device whose lifetime gts resources are * bound * @max_scale_int: integer part of the maximum scale value * @max_scale_nano: fraction part of the maximum scale value * @gain_tbl: table describing supported gains * @num_gain: number of gains in the gain table * @tim_tbl: table describing supported integration times. Provide * the integration time table sorted so that the preferred * integration time is in the first array index. The search * functions like the * iio_gts_find_time_and_gain_sel_for_scale() start search * from first provided time. * @num_times: number of times in the time table * @gts: pointer to the helper struct * * Initialize the gain-time-scale helper for use. Note, gains, times, selectors * and multipliers must be positive. Negative values are reserved for error * checking. The total gain (maximum gain * maximum time multiplier) must not * overflow int. The allocated resources will be released upon device detach. * * Return: 0 on success. */ int devm_iio_init_iio_gts(struct device *dev, int max_scale_int, int max_scale_nano, const struct iio_gain_sel_pair *gain_tbl, int num_gain, const struct iio_itime_sel_mul *tim_tbl, int num_times, struct iio_gts *gts) { … } EXPORT_SYMBOL_NS_GPL(…); /** * iio_gts_all_avail_scales - helper for listing all available scales * @gts: Gain time scale descriptor * @vals: Returned array of supported scales * @type: Type of returned scale values * @length: Amount of returned values in array * * Return: a value suitable to be returned from read_avail or a negative error. */ int iio_gts_all_avail_scales(struct iio_gts *gts, const int **vals, int *type, int *length) { … } EXPORT_SYMBOL_NS_GPL(…); /** * iio_gts_avail_scales_for_time - list scales for integration time * @gts: Gain time scale descriptor * @time: Integration time for which the scales are listed * @vals: Returned array of supported scales * @type: Type of returned scale values * @length: Amount of returned values in array * * Drivers which do not allow scale setting to change integration time can * use this helper to list only the scales which are valid for given integration * time. * * Return: a value suitable to be returned from read_avail or a negative error. */ int iio_gts_avail_scales_for_time(struct iio_gts *gts, int time, const int **vals, int *type, int *length) { … } EXPORT_SYMBOL_NS_GPL(…); /** * iio_gts_avail_times - helper for listing available integration times * @gts: Gain time scale descriptor * @vals: Returned array of supported times * @type: Type of returned scale values * @length: Amount of returned values in array * * Return: a value suitable to be returned from read_avail or a negative error. */ int iio_gts_avail_times(struct iio_gts *gts, const int **vals, int *type, int *length) { … } EXPORT_SYMBOL_NS_GPL(…); /** * iio_gts_find_sel_by_gain - find selector corresponding to a HW-gain * @gts: Gain time scale descriptor * @gain: HW-gain for which matching selector is searched for * * Return: a selector matching given HW-gain or -EINVAL if selector was * not found. */ int iio_gts_find_sel_by_gain(struct iio_gts *gts, int gain) { … } EXPORT_SYMBOL_NS_GPL(…); /** * iio_gts_find_gain_by_sel - find HW-gain corresponding to a selector * @gts: Gain time scale descriptor * @sel: selector for which matching HW-gain is searched for * * Return: a HW-gain matching given selector or -EINVAL if HW-gain was not * found. */ int iio_gts_find_gain_by_sel(struct iio_gts *gts, int sel) { … } EXPORT_SYMBOL_NS_GPL(…); /** * iio_gts_get_min_gain - find smallest valid HW-gain * @gts: Gain time scale descriptor * * Return: The smallest HW-gain -EINVAL if no HW-gains were in the tables. */ int iio_gts_get_min_gain(struct iio_gts *gts) { … } EXPORT_SYMBOL_NS_GPL(…); /** * iio_find_closest_gain_low - Find the closest lower matching gain * @gts: Gain time scale descriptor * @gain: HW-gain for which the closest match is searched * @in_range: indicate if the @gain was actually in the range of * supported gains. * * Search for closest supported gain that is lower than or equal to the * gain given as a parameter. This is usable for drivers which do not require * user to request exact matching gain but rather for rounding to a supported * gain value which is equal or lower (setting lower gain is typical for * avoiding saturation) * * Return: The closest matching supported gain or -EINVAL if @gain * was smaller than the smallest supported gain. */ int iio_find_closest_gain_low(struct iio_gts *gts, int gain, bool *in_range) { … } EXPORT_SYMBOL_NS_GPL(…); static int iio_gts_get_int_time_gain_multiplier_by_sel(struct iio_gts *gts, int sel) { … } /** * iio_gts_find_gain_for_scale_using_time - Find gain by time and scale * @gts: Gain time scale descriptor * @time_sel: Integration time selector corresponding to the time gain is * searched for * @scale_int: Integral part of the scale (typically val1) * @scale_nano: Fractional part of the scale (nano or ppb) * @gain: Pointer to value where gain is stored. * * In some cases the light sensors may want to find a gain setting which * corresponds given scale and integration time. Sensors which fill the * gain and time tables may use this helper to retrieve the gain. * * Return: 0 on success. -EINVAL if gain matching the parameters is not * found. */ static int iio_gts_find_gain_for_scale_using_time(struct iio_gts *gts, int time_sel, int scale_int, int scale_nano, int *gain) { … } /** * iio_gts_find_gain_sel_for_scale_using_time - Fetch gain selector. * @gts: Gain time scale descriptor * @time_sel: Integration time selector corresponding to the time gain is * searched for * @scale_int: Integral part of the scale (typically val1) * @scale_nano: Fractional part of the scale (nano or ppb) * @gain_sel: Pointer to value where gain selector is stored. * * See iio_gts_find_gain_for_scale_using_time() for more information */ int iio_gts_find_gain_sel_for_scale_using_time(struct iio_gts *gts, int time_sel, int scale_int, int scale_nano, int *gain_sel) { … } EXPORT_SYMBOL_NS_GPL(…); static int iio_gts_get_total_gain(struct iio_gts *gts, int gain, int time) { … } static int iio_gts_get_scale_linear(struct iio_gts *gts, int gain, int time, u64 *scale) { … } /** * iio_gts_get_scale - get scale based on integration time and HW-gain * @gts: Gain time scale descriptor * @gain: HW-gain for which the scale is computed * @time: Integration time for which the scale is computed * @scale_int: Integral part of the scale (typically val1) * @scale_nano: Fractional part of the scale (nano or ppb) * * Compute scale matching the integration time and HW-gain given as parameter. * * Return: 0 on success. */ int iio_gts_get_scale(struct iio_gts *gts, int gain, int time, int *scale_int, int *scale_nano) { … } EXPORT_SYMBOL_NS_GPL(…); /** * iio_gts_find_new_gain_sel_by_old_gain_time - compensate for time change * @gts: Gain time scale descriptor * @old_gain: Previously set gain * @old_time_sel: Selector corresponding previously set time * @new_time_sel: Selector corresponding new time to be set * @new_gain: Pointer to value where new gain is to be written * * We may want to mitigate the scale change caused by setting a new integration * time (for a light sensor) by also updating the (HW)gain. This helper computes * new gain value to maintain the scale with new integration time. * * Return: 0 if an exactly matching supported new gain was found. When a * non-zero value is returned, the @new_gain will be set to a negative or * positive value. The negative value means that no gain could be computed. * Positive value will be the "best possible new gain there could be". There * can be two reasons why finding the "best possible" new gain is not deemed * successful. 1) This new value cannot be supported by the hardware. 2) The new * gain required to maintain the scale would not be an integer. In this case, * the "best possible" new gain will be a floored optimal gain, which may or * may not be supported by the hardware. */ int iio_gts_find_new_gain_sel_by_old_gain_time(struct iio_gts *gts, int old_gain, int old_time_sel, int new_time_sel, int *new_gain) { … } EXPORT_SYMBOL_NS_GPL(…); /** * iio_gts_find_new_gain_by_old_gain_time - compensate for time change * @gts: Gain time scale descriptor * @old_gain: Previously set gain * @old_time: Selector corresponding previously set time * @new_time: Selector corresponding new time to be set * @new_gain: Pointer to value where new gain is to be written * * We may want to mitigate the scale change caused by setting a new integration * time (for a light sensor) by also updating the (HW)gain. This helper computes * new gain value to maintain the scale with new integration time. * * Return: 0 if an exactly matching supported new gain was found. When a * non-zero value is returned, the @new_gain will be set to a negative or * positive value. The negative value means that no gain could be computed. * Positive value will be the "best possible new gain there could be". There * can be two reasons why finding the "best possible" new gain is not deemed * successful. 1) This new value cannot be supported by the hardware. 2) The new * gain required to maintain the scale would not be an integer. In this case, * the "best possible" new gain will be a floored optimal gain, which may or * may not be supported by the hardware. */ int iio_gts_find_new_gain_by_old_gain_time(struct iio_gts *gts, int old_gain, int old_time, int new_time, int *new_gain) { … } EXPORT_SYMBOL_NS_GPL(…); MODULE_LICENSE(…) …; MODULE_AUTHOR(…) …; MODULE_DESCRIPTION(…) …;