linux/net/ipv4/tcp_lp.c

// SPDX-License-Identifier: GPL-2.0-only
/*
 * TCP Low Priority (TCP-LP)
 *
 * TCP Low Priority is a distributed algorithm whose goal is to utilize only
 *   the excess network bandwidth as compared to the ``fair share`` of
 *   bandwidth as targeted by TCP.
 *
 * As of 2.6.13, Linux supports pluggable congestion control algorithms.
 * Due to the limitation of the API, we take the following changes from
 * the original TCP-LP implementation:
 *   o We use newReno in most core CA handling. Only add some checking
 *     within cong_avoid.
 *   o Error correcting in remote HZ, therefore remote HZ will be keeped
 *     on checking and updating.
 *   o Handling calculation of One-Way-Delay (OWD) within rtt_sample, since
 *     OWD have a similar meaning as RTT. Also correct the buggy formular.
 *   o Handle reaction for Early Congestion Indication (ECI) within
 *     pkts_acked, as mentioned within pseudo code.
 *   o OWD is handled in relative format, where local time stamp will in
 *     tcp_time_stamp format.
 *
 * Original Author:
 *   Aleksandar Kuzmanovic <[email protected]>
 * Available from:
 *   http://www.ece.rice.edu/~akuzma/Doc/akuzma/TCP-LP.pdf
 * Original implementation for 2.4.19:
 *   http://www-ece.rice.edu/networks/TCP-LP/
 *
 * 2.6.x module Authors:
 *   Wong Hoi Sing, Edison <[email protected]>
 *   Hung Hing Lun, Mike <[email protected]>
 * SourceForge project page:
 *   http://tcp-lp-mod.sourceforge.net/
 */

#include <linux/module.h>
#include <net/tcp.h>

/* resolution of owd */
#define LP_RESOL

/**
 * enum tcp_lp_state
 * @LP_VALID_RHZ: is remote HZ valid?
 * @LP_VALID_OWD: is OWD valid?
 * @LP_WITHIN_THR: are we within threshold?
 * @LP_WITHIN_INF: are we within inference?
 *
 * TCP-LP's state flags.
 * We create this set of state flag mainly for debugging.
 */
enum tcp_lp_state {};

/**
 * struct lp
 * @flag: TCP-LP state flag
 * @sowd: smoothed OWD << 3
 * @owd_min: min OWD
 * @owd_max: max OWD
 * @owd_max_rsv: reserved max owd
 * @remote_hz: estimated remote HZ
 * @remote_ref_time: remote reference time
 * @local_ref_time: local reference time
 * @last_drop: time for last active drop
 * @inference: current inference
 *
 * TCP-LP's private struct.
 * We get the idea from original TCP-LP implementation where only left those we
 * found are really useful.
 */
struct lp {};

/**
 * tcp_lp_init
 * @sk: socket to initialize congestion control algorithm for
 *
 * Init all required variables.
 * Clone the handling from Vegas module implementation.
 */
static void tcp_lp_init(struct sock *sk)
{}

/**
 * tcp_lp_cong_avoid
 * @sk: socket to avoid congesting
 *
 * Implementation of cong_avoid.
 * Will only call newReno CA when away from inference.
 * From TCP-LP's paper, this will be handled in additive increasement.
 */
static void tcp_lp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
{}

/**
 * tcp_lp_remote_hz_estimator
 * @sk: socket which needs an estimate for the remote HZs
 *
 * Estimate remote HZ.
 * We keep on updating the estimated value, where original TCP-LP
 * implementation only guest it for once and use forever.
 */
static u32 tcp_lp_remote_hz_estimator(struct sock *sk)
{}

/**
 * tcp_lp_owd_calculator
 * @sk: socket to calculate one way delay for
 *
 * Calculate one way delay (in relative format).
 * Original implement OWD as minus of remote time difference to local time
 * difference directly. As this time difference just simply equal to RTT, when
 * the network status is stable, remote RTT will equal to local RTT, and result
 * OWD into zero.
 * It seems to be a bug and so we fixed it.
 */
static u32 tcp_lp_owd_calculator(struct sock *sk)
{}

/**
 * tcp_lp_rtt_sample
 * @sk: socket to add a rtt sample to
 * @rtt: round trip time, which is ignored!
 *
 * Implementation or rtt_sample.
 * Will take the following action,
 *   1. calc OWD,
 *   2. record the min/max OWD,
 *   3. calc smoothed OWD (SOWD).
 * Most ideas come from the original TCP-LP implementation.
 */
static void tcp_lp_rtt_sample(struct sock *sk, u32 rtt)
{}

/**
 * tcp_lp_pkts_acked
 * @sk: socket requiring congestion avoidance calculations
 *
 * Implementation of pkts_acked.
 * Deal with active drop under Early Congestion Indication.
 * Only drop to half and 1 will be handle, because we hope to use back
 * newReno in increase case.
 * We work it out by following the idea from TCP-LP's paper directly
 */
static void tcp_lp_pkts_acked(struct sock *sk, const struct ack_sample *sample)
{}

static struct tcp_congestion_ops tcp_lp __read_mostly =;

static int __init tcp_lp_register(void)
{}

static void __exit tcp_lp_unregister(void)
{}

module_init();
module_exit(tcp_lp_unregister);

MODULE_AUTHOR();
MODULE_LICENSE();
MODULE_DESCRIPTION();