/* * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/random.h> #include <linux/export.h> #include "rds.h" /* * All of connection management is simplified by serializing it through * work queues that execute in a connection managing thread. * * TCP wants to send acks through sendpage() in response to data_ready(), * but it needs a process context to do so. * * The receive paths need to allocate but can't drop packets (!) so we have * a thread around to block allocating if the receive fast path sees an * allocation failure. */ /* Grand Unified Theory of connection life cycle: * At any point in time, the connection can be in one of these states: * DOWN, CONNECTING, UP, DISCONNECTING, ERROR * * The following transitions are possible: * ANY -> ERROR * UP -> DISCONNECTING * ERROR -> DISCONNECTING * DISCONNECTING -> DOWN * DOWN -> CONNECTING * CONNECTING -> UP * * Transition to state DISCONNECTING/DOWN: * - Inside the shutdown worker; synchronizes with xmit path * through RDS_IN_XMIT, and with connection management callbacks * via c_cm_lock. * * For receive callbacks, we rely on the underlying transport * (TCP, IB/RDMA) to provide the necessary synchronisation. */ struct workqueue_struct *rds_wq; EXPORT_SYMBOL_GPL(…); void rds_connect_path_complete(struct rds_conn_path *cp, int curr) { … } EXPORT_SYMBOL_GPL(…); void rds_connect_complete(struct rds_connection *conn) { … } EXPORT_SYMBOL_GPL(…); /* * This random exponential backoff is relied on to eventually resolve racing * connects. * * If connect attempts race then both parties drop both connections and come * here to wait for a random amount of time before trying again. Eventually * the backoff range will be so much greater than the time it takes to * establish a connection that one of the pair will establish the connection * before the other's random delay fires. * * Connection attempts that arrive while a connection is already established * are also considered to be racing connects. This lets a connection from * a rebooted machine replace an existing stale connection before the transport * notices that the connection has failed. * * We should *always* start with a random backoff; otherwise a broken connection * will always take several iterations to be re-established. */ void rds_queue_reconnect(struct rds_conn_path *cp) { … } void rds_connect_worker(struct work_struct *work) { … } void rds_send_worker(struct work_struct *work) { … } void rds_recv_worker(struct work_struct *work) { … } void rds_shutdown_worker(struct work_struct *work) { … } void rds_threads_exit(void) { … } int rds_threads_init(void) { … } /* Compare two IPv6 addresses. Return 0 if the two addresses are equal. * Return 1 if the first is greater. Return -1 if the second is greater. */ int rds_addr_cmp(const struct in6_addr *addr1, const struct in6_addr *addr2) { … } EXPORT_SYMBOL_GPL(…);