linux/drivers/gpu/drm/display/drm_scdc_helper.c

/*
 * Copyright (c) 2015 NVIDIA Corporation. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sub license,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/delay.h>

#include <drm/display/drm_scdc_helper.h>
#include <drm/drm_connector.h>
#include <drm/drm_device.h>
#include <drm/drm_print.h>

/**
 * DOC: scdc helpers
 *
 * Status and Control Data Channel (SCDC) is a mechanism introduced by the
 * HDMI 2.0 specification. It is a point-to-point protocol that allows the
 * HDMI source and HDMI sink to exchange data. The same I2C interface that
 * is used to access EDID serves as the transport mechanism for SCDC.
 *
 * Note: The SCDC status is going to be lost when the display is
 * disconnected. This can happen physically when the user disconnects
 * the cable, but also when a display is switched on (such as waking up
 * a TV).
 *
 * This is further complicated by the fact that, upon a disconnection /
 * reconnection, KMS won't change the mode on its own. This means that
 * one can't just rely on setting the SCDC status on enable, but also
 * has to track the connector status changes using interrupts and
 * restore the SCDC status. The typical solution for this is to trigger an
 * empty modeset in drm_connector_helper_funcs.detect_ctx(), like what vc4 does
 * in vc4_hdmi_reset_link().
 */

#define SCDC_I2C_SLAVE_ADDRESS

/**
 * drm_scdc_read - read a block of data from SCDC
 * @adapter: I2C controller
 * @offset: start offset of block to read
 * @buffer: return location for the block to read
 * @size: size of the block to read
 *
 * Reads a block of data from SCDC, starting at a given offset.
 *
 * Returns:
 * 0 on success, negative error code on failure.
 */
ssize_t drm_scdc_read(struct i2c_adapter *adapter, u8 offset, void *buffer,
		      size_t size)
{}
EXPORT_SYMBOL();

/**
 * drm_scdc_write - write a block of data to SCDC
 * @adapter: I2C controller
 * @offset: start offset of block to write
 * @buffer: block of data to write
 * @size: size of the block to write
 *
 * Writes a block of data to SCDC, starting at a given offset.
 *
 * Returns:
 * 0 on success, negative error code on failure.
 */
ssize_t drm_scdc_write(struct i2c_adapter *adapter, u8 offset,
		       const void *buffer, size_t size)
{}
EXPORT_SYMBOL();

/**
 * drm_scdc_get_scrambling_status - what is status of scrambling?
 * @connector: connector
 *
 * Reads the scrambler status over SCDC, and checks the
 * scrambling status.
 *
 * Returns:
 * True if the scrambling is enabled, false otherwise.
 */
bool drm_scdc_get_scrambling_status(struct drm_connector *connector)
{}
EXPORT_SYMBOL();

/**
 * drm_scdc_set_scrambling - enable scrambling
 * @connector: connector
 * @enable: bool to indicate if scrambling is to be enabled/disabled
 *
 * Writes the TMDS config register over SCDC channel, and:
 * enables scrambling when enable = 1
 * disables scrambling when enable = 0
 *
 * Returns:
 * True if scrambling is set/reset successfully, false otherwise.
 */
bool drm_scdc_set_scrambling(struct drm_connector *connector,
			     bool enable)
{}
EXPORT_SYMBOL();

/**
 * drm_scdc_set_high_tmds_clock_ratio - set TMDS clock ratio
 * @connector: connector
 * @set: ret or reset the high clock ratio
 *
 *
 *	TMDS clock ratio calculations go like this:
 *		TMDS character = 10 bit TMDS encoded value
 *
 *		TMDS character rate = The rate at which TMDS characters are
 *		transmitted (Mcsc)
 *
 *		TMDS bit rate = 10x TMDS character rate
 *
 *	As per the spec:
 *		TMDS clock rate for pixel clock < 340 MHz = 1x the character
 *		rate = 1/10 pixel clock rate
 *
 *		TMDS clock rate for pixel clock > 340 MHz = 0.25x the character
 *		rate = 1/40 pixel clock rate
 *
 *	Writes to the TMDS config register over SCDC channel, and:
 *		sets TMDS clock ratio to 1/40 when set = 1
 *
 *		sets TMDS clock ratio to 1/10 when set = 0
 *
 * Returns:
 * True if write is successful, false otherwise.
 */
bool drm_scdc_set_high_tmds_clock_ratio(struct drm_connector *connector,
					bool set)
{}
EXPORT_SYMBOL();