linux/drivers/gpu/drm/scheduler/sched_main.c

/*
 * Copyright 2015 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

/**
 * DOC: Overview
 *
 * The GPU scheduler provides entities which allow userspace to push jobs
 * into software queues which are then scheduled on a hardware run queue.
 * The software queues have a priority among them. The scheduler selects the entities
 * from the run queue using a FIFO. The scheduler provides dependency handling
 * features among jobs. The driver is supposed to provide callback functions for
 * backend operations to the scheduler like submitting a job to hardware run queue,
 * returning the dependencies of a job etc.
 *
 * The organisation of the scheduler is the following:
 *
 * 1. Each hw run queue has one scheduler
 * 2. Each scheduler has multiple run queues with different priorities
 *    (e.g., HIGH_HW,HIGH_SW, KERNEL, NORMAL)
 * 3. Each scheduler run queue has a queue of entities to schedule
 * 4. Entities themselves maintain a queue of jobs that will be scheduled on
 *    the hardware.
 *
 * The jobs in a entity are always scheduled in the order that they were pushed.
 *
 * Note that once a job was taken from the entities queue and pushed to the
 * hardware, i.e. the pending queue, the entity must not be referenced anymore
 * through the jobs entity pointer.
 */

/**
 * DOC: Flow Control
 *
 * The DRM GPU scheduler provides a flow control mechanism to regulate the rate
 * in which the jobs fetched from scheduler entities are executed.
 *
 * In this context the &drm_gpu_scheduler keeps track of a driver specified
 * credit limit representing the capacity of this scheduler and a credit count;
 * every &drm_sched_job carries a driver specified number of credits.
 *
 * Once a job is executed (but not yet finished), the job's credits contribute
 * to the scheduler's credit count until the job is finished. If by executing
 * one more job the scheduler's credit count would exceed the scheduler's
 * credit limit, the job won't be executed. Instead, the scheduler will wait
 * until the credit count has decreased enough to not overflow its credit limit.
 * This implies waiting for previously executed jobs.
 *
 * Optionally, drivers may register a callback (update_job_credits) provided by
 * struct drm_sched_backend_ops to update the job's credits dynamically. The
 * scheduler executes this callback every time the scheduler considers a job for
 * execution and subsequently checks whether the job fits the scheduler's credit
 * limit.
 */

#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/completion.h>
#include <linux/dma-resv.h>
#include <uapi/linux/sched/types.h>

#include <drm/drm_print.h>
#include <drm/drm_gem.h>
#include <drm/drm_syncobj.h>
#include <drm/gpu_scheduler.h>
#include <drm/spsc_queue.h>

#define CREATE_TRACE_POINTS
#include "gpu_scheduler_trace.h"

#define to_drm_sched_job(sched_job)

int drm_sched_policy =;

/**
 * DOC: sched_policy (int)
 * Used to override default entities scheduling policy in a run queue.
 */
MODULE_PARM_DESC();
module_param_named(sched_policy, drm_sched_policy, int, 0444);

static u32 drm_sched_available_credits(struct drm_gpu_scheduler *sched)
{}

/**
 * drm_sched_can_queue -- Can we queue more to the hardware?
 * @sched: scheduler instance
 * @entity: the scheduler entity
 *
 * Return true if we can push at least one more job from @entity, false
 * otherwise.
 */
static bool drm_sched_can_queue(struct drm_gpu_scheduler *sched,
				struct drm_sched_entity *entity)
{}

static __always_inline bool drm_sched_entity_compare_before(struct rb_node *a,
							    const struct rb_node *b)
{}

static inline void drm_sched_rq_remove_fifo_locked(struct drm_sched_entity *entity)
{}

void drm_sched_rq_update_fifo(struct drm_sched_entity *entity, ktime_t ts)
{}

/**
 * drm_sched_rq_init - initialize a given run queue struct
 *
 * @sched: scheduler instance to associate with this run queue
 * @rq: scheduler run queue
 *
 * Initializes a scheduler runqueue.
 */
static void drm_sched_rq_init(struct drm_gpu_scheduler *sched,
			      struct drm_sched_rq *rq)
{}

/**
 * drm_sched_rq_add_entity - add an entity
 *
 * @rq: scheduler run queue
 * @entity: scheduler entity
 *
 * Adds a scheduler entity to the run queue.
 */
void drm_sched_rq_add_entity(struct drm_sched_rq *rq,
			     struct drm_sched_entity *entity)
{}

/**
 * drm_sched_rq_remove_entity - remove an entity
 *
 * @rq: scheduler run queue
 * @entity: scheduler entity
 *
 * Removes a scheduler entity from the run queue.
 */
void drm_sched_rq_remove_entity(struct drm_sched_rq *rq,
				struct drm_sched_entity *entity)
{}

/**
 * drm_sched_rq_select_entity_rr - Select an entity which could provide a job to run
 *
 * @sched: the gpu scheduler
 * @rq: scheduler run queue to check.
 *
 * Try to find the next ready entity.
 *
 * Return an entity if one is found; return an error-pointer (!NULL) if an
 * entity was ready, but the scheduler had insufficient credits to accommodate
 * its job; return NULL, if no ready entity was found.
 */
static struct drm_sched_entity *
drm_sched_rq_select_entity_rr(struct drm_gpu_scheduler *sched,
			      struct drm_sched_rq *rq)
{}

/**
 * drm_sched_rq_select_entity_fifo - Select an entity which provides a job to run
 *
 * @sched: the gpu scheduler
 * @rq: scheduler run queue to check.
 *
 * Find oldest waiting ready entity.
 *
 * Return an entity if one is found; return an error-pointer (!NULL) if an
 * entity was ready, but the scheduler had insufficient credits to accommodate
 * its job; return NULL, if no ready entity was found.
 */
static struct drm_sched_entity *
drm_sched_rq_select_entity_fifo(struct drm_gpu_scheduler *sched,
				struct drm_sched_rq *rq)
{}

/**
 * drm_sched_run_job_queue - enqueue run-job work
 * @sched: scheduler instance
 */
static void drm_sched_run_job_queue(struct drm_gpu_scheduler *sched)
{}

/**
 * __drm_sched_run_free_queue - enqueue free-job work
 * @sched: scheduler instance
 */
static void __drm_sched_run_free_queue(struct drm_gpu_scheduler *sched)
{}

/**
 * drm_sched_run_free_queue - enqueue free-job work if ready
 * @sched: scheduler instance
 */
static void drm_sched_run_free_queue(struct drm_gpu_scheduler *sched)
{}

/**
 * drm_sched_job_done - complete a job
 * @s_job: pointer to the job which is done
 *
 * Finish the job's fence and wake up the worker thread.
 */
static void drm_sched_job_done(struct drm_sched_job *s_job, int result)
{}

/**
 * drm_sched_job_done_cb - the callback for a done job
 * @f: fence
 * @cb: fence callbacks
 */
static void drm_sched_job_done_cb(struct dma_fence *f, struct dma_fence_cb *cb)
{}

/**
 * drm_sched_start_timeout - start timeout for reset worker
 *
 * @sched: scheduler instance to start the worker for
 *
 * Start the timeout for the given scheduler.
 */
static void drm_sched_start_timeout(struct drm_gpu_scheduler *sched)
{}

static void drm_sched_start_timeout_unlocked(struct drm_gpu_scheduler *sched)
{}

/**
 * drm_sched_tdr_queue_imm: - immediately start job timeout handler
 *
 * @sched: scheduler for which the timeout handling should be started.
 *
 * Start timeout handling immediately for the named scheduler.
 */
void drm_sched_tdr_queue_imm(struct drm_gpu_scheduler *sched)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_fault - immediately start timeout handler
 *
 * @sched: scheduler where the timeout handling should be started.
 *
 * Start timeout handling immediately when the driver detects a hardware fault.
 */
void drm_sched_fault(struct drm_gpu_scheduler *sched)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_suspend_timeout - Suspend scheduler job timeout
 *
 * @sched: scheduler instance for which to suspend the timeout
 *
 * Suspend the delayed work timeout for the scheduler. This is done by
 * modifying the delayed work timeout to an arbitrary large value,
 * MAX_SCHEDULE_TIMEOUT in this case.
 *
 * Returns the timeout remaining
 *
 */
unsigned long drm_sched_suspend_timeout(struct drm_gpu_scheduler *sched)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_resume_timeout - Resume scheduler job timeout
 *
 * @sched: scheduler instance for which to resume the timeout
 * @remaining: remaining timeout
 *
 * Resume the delayed work timeout for the scheduler.
 */
void drm_sched_resume_timeout(struct drm_gpu_scheduler *sched,
		unsigned long remaining)
{}
EXPORT_SYMBOL();

static void drm_sched_job_begin(struct drm_sched_job *s_job)
{}

static void drm_sched_job_timedout(struct work_struct *work)
{}

/**
 * drm_sched_stop - stop the scheduler
 *
 * @sched: scheduler instance
 * @bad: job which caused the time out
 *
 * Stop the scheduler and also removes and frees all completed jobs.
 * Note: bad job will not be freed as it might be used later and so it's
 * callers responsibility to release it manually if it's not part of the
 * pending list any more.
 *
 */
void drm_sched_stop(struct drm_gpu_scheduler *sched, struct drm_sched_job *bad)
{}

EXPORT_SYMBOL();

/**
 * drm_sched_start - recover jobs after a reset
 *
 * @sched: scheduler instance
 * @full_recovery: proceed with complete sched restart
 *
 */
void drm_sched_start(struct drm_gpu_scheduler *sched, bool full_recovery)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_resubmit_jobs - Deprecated, don't use in new code!
 *
 * @sched: scheduler instance
 *
 * Re-submitting jobs was a concept AMD came up as cheap way to implement
 * recovery after a job timeout.
 *
 * This turned out to be not working very well. First of all there are many
 * problem with the dma_fence implementation and requirements. Either the
 * implementation is risking deadlocks with core memory management or violating
 * documented implementation details of the dma_fence object.
 *
 * Drivers can still save and restore their state for recovery operations, but
 * we shouldn't make this a general scheduler feature around the dma_fence
 * interface.
 */
void drm_sched_resubmit_jobs(struct drm_gpu_scheduler *sched)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_job_init - init a scheduler job
 * @job: scheduler job to init
 * @entity: scheduler entity to use
 * @credits: the number of credits this job contributes to the schedulers
 * credit limit
 * @owner: job owner for debugging
 *
 * Refer to drm_sched_entity_push_job() documentation
 * for locking considerations.
 *
 * Drivers must make sure drm_sched_job_cleanup() if this function returns
 * successfully, even when @job is aborted before drm_sched_job_arm() is called.
 *
 * WARNING: amdgpu abuses &drm_sched.ready to signal when the hardware
 * has died, which can mean that there's no valid runqueue for a @entity.
 * This function returns -ENOENT in this case (which probably should be -EIO as
 * a more meanigful return value).
 *
 * Returns 0 for success, negative error code otherwise.
 */
int drm_sched_job_init(struct drm_sched_job *job,
		       struct drm_sched_entity *entity,
		       u32 credits, void *owner)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_job_arm - arm a scheduler job for execution
 * @job: scheduler job to arm
 *
 * This arms a scheduler job for execution. Specifically it initializes the
 * &drm_sched_job.s_fence of @job, so that it can be attached to struct dma_resv
 * or other places that need to track the completion of this job.
 *
 * Refer to drm_sched_entity_push_job() documentation for locking
 * considerations.
 *
 * This can only be called if drm_sched_job_init() succeeded.
 */
void drm_sched_job_arm(struct drm_sched_job *job)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_job_add_dependency - adds the fence as a job dependency
 * @job: scheduler job to add the dependencies to
 * @fence: the dma_fence to add to the list of dependencies.
 *
 * Note that @fence is consumed in both the success and error cases.
 *
 * Returns:
 * 0 on success, or an error on failing to expand the array.
 */
int drm_sched_job_add_dependency(struct drm_sched_job *job,
				 struct dma_fence *fence)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_job_add_syncobj_dependency - adds a syncobj's fence as a job dependency
 * @job: scheduler job to add the dependencies to
 * @file: drm file private pointer
 * @handle: syncobj handle to lookup
 * @point: timeline point
 *
 * This adds the fence matching the given syncobj to @job.
 *
 * Returns:
 * 0 on success, or an error on failing to expand the array.
 */
int drm_sched_job_add_syncobj_dependency(struct drm_sched_job *job,
					 struct drm_file *file,
					 u32 handle,
					 u32 point)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_job_add_resv_dependencies - add all fences from the resv to the job
 * @job: scheduler job to add the dependencies to
 * @resv: the dma_resv object to get the fences from
 * @usage: the dma_resv_usage to use to filter the fences
 *
 * This adds all fences matching the given usage from @resv to @job.
 * Must be called with the @resv lock held.
 *
 * Returns:
 * 0 on success, or an error on failing to expand the array.
 */
int drm_sched_job_add_resv_dependencies(struct drm_sched_job *job,
					struct dma_resv *resv,
					enum dma_resv_usage usage)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_job_add_implicit_dependencies - adds implicit dependencies as job
 *   dependencies
 * @job: scheduler job to add the dependencies to
 * @obj: the gem object to add new dependencies from.
 * @write: whether the job might write the object (so we need to depend on
 * shared fences in the reservation object).
 *
 * This should be called after drm_gem_lock_reservations() on your array of
 * GEM objects used in the job but before updating the reservations with your
 * own fences.
 *
 * Returns:
 * 0 on success, or an error on failing to expand the array.
 */
int drm_sched_job_add_implicit_dependencies(struct drm_sched_job *job,
					    struct drm_gem_object *obj,
					    bool write)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_job_cleanup - clean up scheduler job resources
 * @job: scheduler job to clean up
 *
 * Cleans up the resources allocated with drm_sched_job_init().
 *
 * Drivers should call this from their error unwind code if @job is aborted
 * before drm_sched_job_arm() is called.
 *
 * After that point of no return @job is committed to be executed by the
 * scheduler, and this function should be called from the
 * &drm_sched_backend_ops.free_job callback.
 */
void drm_sched_job_cleanup(struct drm_sched_job *job)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_wakeup - Wake up the scheduler if it is ready to queue
 * @sched: scheduler instance
 * @entity: the scheduler entity
 *
 * Wake up the scheduler if we can queue jobs.
 */
void drm_sched_wakeup(struct drm_gpu_scheduler *sched,
		      struct drm_sched_entity *entity)
{}

/**
 * drm_sched_select_entity - Select next entity to process
 *
 * @sched: scheduler instance
 *
 * Return an entity to process or NULL if none are found.
 *
 * Note, that we break out of the for-loop when "entity" is non-null, which can
 * also be an error-pointer--this assures we don't process lower priority
 * run-queues. See comments in the respectively called functions.
 */
static struct drm_sched_entity *
drm_sched_select_entity(struct drm_gpu_scheduler *sched)
{}

/**
 * drm_sched_get_finished_job - fetch the next finished job to be destroyed
 *
 * @sched: scheduler instance
 *
 * Returns the next finished job from the pending list (if there is one)
 * ready for it to be destroyed.
 */
static struct drm_sched_job *
drm_sched_get_finished_job(struct drm_gpu_scheduler *sched)
{}

/**
 * drm_sched_pick_best - Get a drm sched from a sched_list with the least load
 * @sched_list: list of drm_gpu_schedulers
 * @num_sched_list: number of drm_gpu_schedulers in the sched_list
 *
 * Returns pointer of the sched with the least load or NULL if none of the
 * drm_gpu_schedulers are ready
 */
struct drm_gpu_scheduler *
drm_sched_pick_best(struct drm_gpu_scheduler **sched_list,
		     unsigned int num_sched_list)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_free_job_work - worker to call free_job
 *
 * @w: free job work
 */
static void drm_sched_free_job_work(struct work_struct *w)
{}

/**
 * drm_sched_run_job_work - worker to call run_job
 *
 * @w: run job work
 */
static void drm_sched_run_job_work(struct work_struct *w)
{}

/**
 * drm_sched_init - Init a gpu scheduler instance
 *
 * @sched: scheduler instance
 * @ops: backend operations for this scheduler
 * @submit_wq: workqueue to use for submission. If NULL, an ordered wq is
 *	       allocated and used
 * @num_rqs: number of runqueues, one for each priority, up to DRM_SCHED_PRIORITY_COUNT
 * @credit_limit: the number of credits this scheduler can hold from all jobs
 * @hang_limit: number of times to allow a job to hang before dropping it
 * @timeout: timeout value in jiffies for the scheduler
 * @timeout_wq: workqueue to use for timeout work. If NULL, the system_wq is
 *		used
 * @score: optional score atomic shared with other schedulers
 * @name: name used for debugging
 * @dev: target &struct device
 *
 * Return 0 on success, otherwise error code.
 */
int drm_sched_init(struct drm_gpu_scheduler *sched,
		   const struct drm_sched_backend_ops *ops,
		   struct workqueue_struct *submit_wq,
		   u32 num_rqs, u32 credit_limit, unsigned int hang_limit,
		   long timeout, struct workqueue_struct *timeout_wq,
		   atomic_t *score, const char *name, struct device *dev)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_fini - Destroy a gpu scheduler
 *
 * @sched: scheduler instance
 *
 * Tears down and cleans up the scheduler.
 */
void drm_sched_fini(struct drm_gpu_scheduler *sched)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_increase_karma - Update sched_entity guilty flag
 *
 * @bad: The job guilty of time out
 *
 * Increment on every hang caused by the 'bad' job. If this exceeds the hang
 * limit of the scheduler then the respective sched entity is marked guilty and
 * jobs from it will not be scheduled further
 */
void drm_sched_increase_karma(struct drm_sched_job *bad)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_wqueue_ready - Is the scheduler ready for submission
 *
 * @sched: scheduler instance
 *
 * Returns true if submission is ready
 */
bool drm_sched_wqueue_ready(struct drm_gpu_scheduler *sched)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_wqueue_stop - stop scheduler submission
 *
 * @sched: scheduler instance
 */
void drm_sched_wqueue_stop(struct drm_gpu_scheduler *sched)
{}
EXPORT_SYMBOL();

/**
 * drm_sched_wqueue_start - start scheduler submission
 *
 * @sched: scheduler instance
 */
void drm_sched_wqueue_start(struct drm_gpu_scheduler *sched)
{}
EXPORT_SYMBOL();