/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #ifndef KFD_IOCTL_H_INCLUDED #define KFD_IOCTL_H_INCLUDED #include <drm/drm.h> #include <linux/ioctl.h> /* * - 1.1 - initial version * - 1.3 - Add SMI events support * - 1.4 - Indicate new SRAM EDC bit in device properties * - 1.5 - Add SVM API * - 1.6 - Query clear flags in SVM get_attr API * - 1.7 - Checkpoint Restore (CRIU) API * - 1.8 - CRIU - Support for SDMA transfers with GTT BOs * - 1.9 - Add available memory ioctl * - 1.10 - Add SMI profiler event log * - 1.11 - Add unified memory for ctx save/restore area * - 1.12 - Add DMA buf export ioctl * - 1.13 - Add debugger API * - 1.14 - Update kfd_event_data * - 1.15 - Enable managing mappings in compute VMs with GEM_VA ioctl * - 1.16 - Add contiguous VRAM allocation flag */ #define KFD_IOCTL_MAJOR_VERSION … #define KFD_IOCTL_MINOR_VERSION … struct kfd_ioctl_get_version_args { … }; /* For kfd_ioctl_create_queue_args.queue_type. */ #define KFD_IOC_QUEUE_TYPE_COMPUTE … #define KFD_IOC_QUEUE_TYPE_SDMA … #define KFD_IOC_QUEUE_TYPE_COMPUTE_AQL … #define KFD_IOC_QUEUE_TYPE_SDMA_XGMI … #define KFD_MAX_QUEUE_PERCENTAGE … #define KFD_MAX_QUEUE_PRIORITY … struct kfd_ioctl_create_queue_args { … }; struct kfd_ioctl_destroy_queue_args { … }; struct kfd_ioctl_update_queue_args { … }; struct kfd_ioctl_set_cu_mask_args { … }; struct kfd_ioctl_get_queue_wave_state_args { … }; struct kfd_ioctl_get_available_memory_args { … }; struct kfd_dbg_device_info_entry { … }; /* For kfd_ioctl_set_memory_policy_args.default_policy and alternate_policy */ #define KFD_IOC_CACHE_POLICY_COHERENT … #define KFD_IOC_CACHE_POLICY_NONCOHERENT … struct kfd_ioctl_set_memory_policy_args { … }; /* * All counters are monotonic. They are used for profiling of compute jobs. * The profiling is done by userspace. * * In case of GPU reset, the counter should not be affected. */ struct kfd_ioctl_get_clock_counters_args { … }; struct kfd_process_device_apertures { … }; /* * AMDKFD_IOC_GET_PROCESS_APERTURES is deprecated. Use * AMDKFD_IOC_GET_PROCESS_APERTURES_NEW instead, which supports an * unlimited number of GPUs. */ #define NUM_OF_SUPPORTED_GPUS … struct kfd_ioctl_get_process_apertures_args { … }; struct kfd_ioctl_get_process_apertures_new_args { … }; #define MAX_ALLOWED_NUM_POINTS … #define MAX_ALLOWED_AW_BUFF_SIZE … #define MAX_ALLOWED_WAC_BUFF_SIZE … struct kfd_ioctl_dbg_register_args { … }; struct kfd_ioctl_dbg_unregister_args { … }; struct kfd_ioctl_dbg_address_watch_args { … }; struct kfd_ioctl_dbg_wave_control_args { … }; #define KFD_INVALID_FD … /* Matching HSA_EVENTTYPE */ #define KFD_IOC_EVENT_SIGNAL … #define KFD_IOC_EVENT_NODECHANGE … #define KFD_IOC_EVENT_DEVICESTATECHANGE … #define KFD_IOC_EVENT_HW_EXCEPTION … #define KFD_IOC_EVENT_SYSTEM_EVENT … #define KFD_IOC_EVENT_DEBUG_EVENT … #define KFD_IOC_EVENT_PROFILE_EVENT … #define KFD_IOC_EVENT_QUEUE_EVENT … #define KFD_IOC_EVENT_MEMORY … #define KFD_IOC_WAIT_RESULT_COMPLETE … #define KFD_IOC_WAIT_RESULT_TIMEOUT … #define KFD_IOC_WAIT_RESULT_FAIL … #define KFD_SIGNAL_EVENT_LIMIT … /* For kfd_event_data.hw_exception_data.reset_type. */ #define KFD_HW_EXCEPTION_WHOLE_GPU_RESET … #define KFD_HW_EXCEPTION_PER_ENGINE_RESET … /* For kfd_event_data.hw_exception_data.reset_cause. */ #define KFD_HW_EXCEPTION_GPU_HANG … #define KFD_HW_EXCEPTION_ECC … /* For kfd_hsa_memory_exception_data.ErrorType */ #define KFD_MEM_ERR_NO_RAS … #define KFD_MEM_ERR_SRAM_ECC … #define KFD_MEM_ERR_POISON_CONSUMED … #define KFD_MEM_ERR_GPU_HANG … struct kfd_ioctl_create_event_args { … }; struct kfd_ioctl_destroy_event_args { … }; struct kfd_ioctl_set_event_args { … }; struct kfd_ioctl_reset_event_args { … }; struct kfd_memory_exception_failure { … }; /* memory exception data */ struct kfd_hsa_memory_exception_data { … }; /* hw exception data */ struct kfd_hsa_hw_exception_data { … }; /* hsa signal event data */ struct kfd_hsa_signal_event_data { … }; /* Event data */ struct kfd_event_data { … }; struct kfd_ioctl_wait_events_args { … }; struct kfd_ioctl_set_scratch_backing_va_args { … }; struct kfd_ioctl_get_tile_config_args { … }; struct kfd_ioctl_set_trap_handler_args { … }; struct kfd_ioctl_acquire_vm_args { … }; /* Allocation flags: memory types */ #define KFD_IOC_ALLOC_MEM_FLAGS_VRAM … #define KFD_IOC_ALLOC_MEM_FLAGS_GTT … #define KFD_IOC_ALLOC_MEM_FLAGS_USERPTR … #define KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL … #define KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP … /* Allocation flags: attributes/access options */ #define KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE … #define KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE … #define KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC … #define KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE … #define KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM … #define KFD_IOC_ALLOC_MEM_FLAGS_COHERENT … #define KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED … #define KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT … #define KFD_IOC_ALLOC_MEM_FLAGS_CONTIGUOUS … /* Allocate memory for later SVM (shared virtual memory) mapping. * * @va_addr: virtual address of the memory to be allocated * all later mappings on all GPUs will use this address * @size: size in bytes * @handle: buffer handle returned to user mode, used to refer to * this allocation for mapping, unmapping and freeing * @mmap_offset: for CPU-mapping the allocation by mmapping a render node * for userptrs this is overloaded to specify the CPU address * @gpu_id: device identifier * @flags: memory type and attributes. See KFD_IOC_ALLOC_MEM_FLAGS above */ struct kfd_ioctl_alloc_memory_of_gpu_args { … }; /* Free memory allocated with kfd_ioctl_alloc_memory_of_gpu * * @handle: memory handle returned by alloc */ struct kfd_ioctl_free_memory_of_gpu_args { … }; /* Map memory to one or more GPUs * * @handle: memory handle returned by alloc * @device_ids_array_ptr: array of gpu_ids (__u32 per device) * @n_devices: number of devices in the array * @n_success: number of devices mapped successfully * * @n_success returns information to the caller how many devices from * the start of the array have mapped the buffer successfully. It can * be passed into a subsequent retry call to skip those devices. For * the first call the caller should initialize it to 0. * * If the ioctl completes with return code 0 (success), n_success == * n_devices. */ struct kfd_ioctl_map_memory_to_gpu_args { … }; /* Unmap memory from one or more GPUs * * same arguments as for mapping */ struct kfd_ioctl_unmap_memory_from_gpu_args { … }; /* Allocate GWS for specific queue * * @queue_id: queue's id that GWS is allocated for * @num_gws: how many GWS to allocate * @first_gws: index of the first GWS allocated. * only support contiguous GWS allocation */ struct kfd_ioctl_alloc_queue_gws_args { … }; struct kfd_ioctl_get_dmabuf_info_args { … }; struct kfd_ioctl_import_dmabuf_args { … }; struct kfd_ioctl_export_dmabuf_args { … }; /* * KFD SMI(System Management Interface) events */ enum kfd_smi_event { … }; enum KFD_MIGRATE_TRIGGERS { … }; enum KFD_QUEUE_EVICTION_TRIGGERS { … }; enum KFD_SVM_UNMAP_TRIGGERS { … }; #define KFD_SMI_EVENT_MASK_FROM_INDEX(i) … #define KFD_SMI_EVENT_MSG_SIZE … struct kfd_ioctl_smi_events_args { … }; /************************************************************************************************** * CRIU IOCTLs (Checkpoint Restore In Userspace) * * When checkpointing a process, the userspace application will perform: * 1. PROCESS_INFO op to determine current process information. This pauses execution and evicts * all the queues. * 2. CHECKPOINT op to checkpoint process contents (BOs, queues, events, svm-ranges) * 3. UNPAUSE op to un-evict all the queues * * When restoring a process, the CRIU userspace application will perform: * * 1. RESTORE op to restore process contents * 2. RESUME op to start the process * * Note: Queues are forced into an evicted state after a successful PROCESS_INFO. User * application needs to perform an UNPAUSE operation after calling PROCESS_INFO. */ enum kfd_criu_op { … }; /** * kfd_ioctl_criu_args - Arguments perform CRIU operation * @devices: [in/out] User pointer to memory location for devices information. * This is an array of type kfd_criu_device_bucket. * @bos: [in/out] User pointer to memory location for BOs information * This is an array of type kfd_criu_bo_bucket. * @priv_data: [in/out] User pointer to memory location for private data * @priv_data_size: [in/out] Size of priv_data in bytes * @num_devices: [in/out] Number of GPUs used by process. Size of @devices array. * @num_bos [in/out] Number of BOs used by process. Size of @bos array. * @num_objects: [in/out] Number of objects used by process. Objects are opaque to * user application. * @pid: [in/out] PID of the process being checkpointed * @op [in] Type of operation (kfd_criu_op) * * Return: 0 on success, -errno on failure */ struct kfd_ioctl_criu_args { … }; struct kfd_criu_device_bucket { … }; struct kfd_criu_bo_bucket { … }; /* CRIU IOCTLs - END */ /**************************************************************************************************/ /* Register offset inside the remapped mmio page */ enum kfd_mmio_remap { … }; /* Guarantee host access to memory */ #define KFD_IOCTL_SVM_FLAG_HOST_ACCESS … /* Fine grained coherency between all devices with access */ #define KFD_IOCTL_SVM_FLAG_COHERENT … /* Use any GPU in same hive as preferred device */ #define KFD_IOCTL_SVM_FLAG_HIVE_LOCAL … /* GPUs only read, allows replication */ #define KFD_IOCTL_SVM_FLAG_GPU_RO … /* Allow execution on GPU */ #define KFD_IOCTL_SVM_FLAG_GPU_EXEC … /* GPUs mostly read, may allow similar optimizations as RO, but writes fault */ #define KFD_IOCTL_SVM_FLAG_GPU_READ_MOSTLY … /* Keep GPU memory mapping always valid as if XNACK is disable */ #define KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED … /* Fine grained coherency between all devices using device-scope atomics */ #define KFD_IOCTL_SVM_FLAG_EXT_COHERENT … /** * kfd_ioctl_svm_op - SVM ioctl operations * * @KFD_IOCTL_SVM_OP_SET_ATTR: Modify one or more attributes * @KFD_IOCTL_SVM_OP_GET_ATTR: Query one or more attributes */ enum kfd_ioctl_svm_op { … }; /** kfd_ioctl_svm_location - Enum for preferred and prefetch locations * * GPU IDs are used to specify GPUs as preferred and prefetch locations. * Below definitions are used for system memory or for leaving the preferred * location unspecified. */ enum kfd_ioctl_svm_location { … }; /** * kfd_ioctl_svm_attr_type - SVM attribute types * * @KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: gpuid of the preferred location, 0 for * system memory * @KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: gpuid of the prefetch location, 0 for * system memory. Setting this triggers an * immediate prefetch (migration). * @KFD_IOCTL_SVM_ATTR_ACCESS: * @KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: * @KFD_IOCTL_SVM_ATTR_NO_ACCESS: specify memory access for the gpuid given * by the attribute value * @KFD_IOCTL_SVM_ATTR_SET_FLAGS: bitmask of flags to set (see * KFD_IOCTL_SVM_FLAG_...) * @KFD_IOCTL_SVM_ATTR_CLR_FLAGS: bitmask of flags to clear * @KFD_IOCTL_SVM_ATTR_GRANULARITY: migration granularity * (log2 num pages) */ enum kfd_ioctl_svm_attr_type { … }; /** * kfd_ioctl_svm_attribute - Attributes as pairs of type and value * * The meaning of the @value depends on the attribute type. * * @type: attribute type (see enum @kfd_ioctl_svm_attr_type) * @value: attribute value */ struct kfd_ioctl_svm_attribute { … }; /** * kfd_ioctl_svm_args - Arguments for SVM ioctl * * @op specifies the operation to perform (see enum * @kfd_ioctl_svm_op). @start_addr and @size are common for all * operations. * * A variable number of attributes can be given in @attrs. * @nattr specifies the number of attributes. New attributes can be * added in the future without breaking the ABI. If unknown attributes * are given, the function returns -EINVAL. * * @KFD_IOCTL_SVM_OP_SET_ATTR sets attributes for a virtual address * range. It may overlap existing virtual address ranges. If it does, * the existing ranges will be split such that the attribute changes * only apply to the specified address range. * * @KFD_IOCTL_SVM_OP_GET_ATTR returns the intersection of attributes * over all memory in the given range and returns the result as the * attribute value. If different pages have different preferred or * prefetch locations, 0xffffffff will be returned for * @KFD_IOCTL_SVM_ATTR_PREFERRED_LOC or * @KFD_IOCTL_SVM_ATTR_PREFETCH_LOC resepctively. For * @KFD_IOCTL_SVM_ATTR_SET_FLAGS, flags of all pages will be * aggregated by bitwise AND. That means, a flag will be set in the * output, if that flag is set for all pages in the range. For * @KFD_IOCTL_SVM_ATTR_CLR_FLAGS, flags of all pages will be * aggregated by bitwise NOR. That means, a flag will be set in the * output, if that flag is clear for all pages in the range. * The minimum migration granularity throughout the range will be * returned for @KFD_IOCTL_SVM_ATTR_GRANULARITY. * * Querying of accessibility attributes works by initializing the * attribute type to @KFD_IOCTL_SVM_ATTR_ACCESS and the value to the * GPUID being queried. Multiple attributes can be given to allow * querying multiple GPUIDs. The ioctl function overwrites the * attribute type to indicate the access for the specified GPU. */ struct kfd_ioctl_svm_args { … }; /** * kfd_ioctl_set_xnack_mode_args - Arguments for set_xnack_mode * * @xnack_enabled: [in/out] Whether to enable XNACK mode for this process * * @xnack_enabled indicates whether recoverable page faults should be * enabled for the current process. 0 means disabled, positive means * enabled, negative means leave unchanged. If enabled, virtual address * translations on GFXv9 and later AMD GPUs can return XNACK and retry * the access until a valid PTE is available. This is used to implement * device page faults. * * On output, @xnack_enabled returns the (new) current mode (0 or * positive). Therefore, a negative input value can be used to query * the current mode without changing it. * * The XNACK mode fundamentally changes the way SVM managed memory works * in the driver, with subtle effects on application performance and * functionality. * * Enabling XNACK mode requires shader programs to be compiled * differently. Furthermore, not all GPUs support changing the mode * per-process. Therefore changing the mode is only allowed while no * user mode queues exist in the process. This ensure that no shader * code is running that may be compiled for the wrong mode. And GPUs * that cannot change to the requested mode will prevent the XNACK * mode from occurring. All GPUs used by the process must be in the * same XNACK mode. * * GFXv8 or older GPUs do not support 48 bit virtual addresses or SVM. * Therefore those GPUs are not considered for the XNACK mode switch. * * Return: 0 on success, -errno on failure */ struct kfd_ioctl_set_xnack_mode_args { … }; /* Wave launch override modes */ enum kfd_dbg_trap_override_mode { … }; /* Wave launch overrides */ enum kfd_dbg_trap_mask { … }; /* Wave launch modes */ enum kfd_dbg_trap_wave_launch_mode { … }; /* Address watch modes */ enum kfd_dbg_trap_address_watch_mode { … }; /* Additional wave settings */ enum kfd_dbg_trap_flags { … }; /* Trap exceptions */ enum kfd_dbg_trap_exception_code { … }; /* Mask generated by ecode in kfd_dbg_trap_exception_code */ #define KFD_EC_MASK(ecode) … /* Masks for exception code type checks below */ #define KFD_EC_MASK_QUEUE … #define KFD_EC_MASK_DEVICE … #define KFD_EC_MASK_PROCESS … #define KFD_EC_MASK_PACKET … /* Checks for exception code types for KFD search */ #define KFD_DBG_EC_IS_VALID(ecode) … #define KFD_DBG_EC_TYPE_IS_QUEUE(ecode) … #define KFD_DBG_EC_TYPE_IS_DEVICE(ecode) … #define KFD_DBG_EC_TYPE_IS_PROCESS(ecode) … #define KFD_DBG_EC_TYPE_IS_PACKET(ecode) … /* Runtime enable states */ enum kfd_dbg_runtime_state { … }; /* Runtime enable status */ struct kfd_runtime_info { … }; /* Enable modes for runtime enable */ #define KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK … #define KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK … /** * kfd_ioctl_runtime_enable_args - Arguments for runtime enable * * Coordinates debug exception signalling and debug device enablement with runtime. * * @r_debug - pointer to user struct for sharing information between ROCr and the debuggger * @mode_mask - mask to set mode * KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK - enable runtime for debugging, otherwise disable * KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK - enable trap temporary setup (ignore on disable) * @capabilities_mask - mask to notify runtime on what KFD supports * * Return - 0 on SUCCESS. * - EBUSY if runtime enable call already pending. * - EEXIST if user queues already active prior to call. * If process is debug enabled, runtime enable will enable debug devices and * wait for debugger process to send runtime exception EC_PROCESS_RUNTIME * to unblock - see kfd_ioctl_dbg_trap_args. * */ struct kfd_ioctl_runtime_enable_args { … }; /* Queue information */ struct kfd_queue_snapshot_entry { … }; /* Queue status return for suspend/resume */ #define KFD_DBG_QUEUE_ERROR_BIT … #define KFD_DBG_QUEUE_INVALID_BIT … #define KFD_DBG_QUEUE_ERROR_MASK … #define KFD_DBG_QUEUE_INVALID_MASK … /* Context save area header information */ struct kfd_context_save_area_header { … }; /* * Debug operations * * For specifics on usage and return values, see documentation per operation * below. Otherwise, generic error returns apply: * - ESRCH if the process to debug does not exist. * * - EINVAL (with KFD_IOC_DBG_TRAP_ENABLE exempt) if operation * KFD_IOC_DBG_TRAP_ENABLE has not succeeded prior. * Also returns this error if GPU hardware scheduling is not supported. * * - EPERM (with KFD_IOC_DBG_TRAP_DISABLE exempt) if target process is not * PTRACE_ATTACHED. KFD_IOC_DBG_TRAP_DISABLE is exempt to allow * clean up of debug mode as long as process is debug enabled. * * - EACCES if any DBG_HW_OP (debug hardware operation) is requested when * AMDKFD_IOC_RUNTIME_ENABLE has not succeeded prior. * * - ENODEV if any GPU does not support debugging on a DBG_HW_OP call. * * - Other errors may be returned when a DBG_HW_OP occurs while the GPU * is in a fatal state. * */ enum kfd_dbg_trap_operations { … }; /** * kfd_ioctl_dbg_trap_enable_args * * Arguments for KFD_IOC_DBG_TRAP_ENABLE. * * Enables debug session for target process. Call @op KFD_IOC_DBG_TRAP_DISABLE in * kfd_ioctl_dbg_trap_args to disable debug session. * * @exception_mask (IN) - exceptions to raise to the debugger * @rinfo_ptr (IN) - pointer to runtime info buffer (see kfd_runtime_info) * @rinfo_size (IN/OUT) - size of runtime info buffer in bytes * @dbg_fd (IN) - fd the KFD will nofify the debugger with of raised * exceptions set in exception_mask. * * Generic errors apply (see kfd_dbg_trap_operations). * Return - 0 on SUCCESS. * Copies KFD saved kfd_runtime_info to @rinfo_ptr on enable. * Size of kfd_runtime saved by the KFD returned to @rinfo_size. * - EBADF if KFD cannot get a reference to dbg_fd. * - EFAULT if KFD cannot copy runtime info to rinfo_ptr. * - EINVAL if target process is already debug enabled. * */ struct kfd_ioctl_dbg_trap_enable_args { … }; /** * kfd_ioctl_dbg_trap_send_runtime_event_args * * * Arguments for KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT. * Raises exceptions to runtime. * * @exception_mask (IN) - exceptions to raise to runtime * @gpu_id (IN) - target device id * @queue_id (IN) - target queue id * * Generic errors apply (see kfd_dbg_trap_operations). * Return - 0 on SUCCESS. * - ENODEV if gpu_id not found. * If exception_mask contains EC_PROCESS_RUNTIME, unblocks pending * AMDKFD_IOC_RUNTIME_ENABLE call - see kfd_ioctl_runtime_enable_args. * All other exceptions are raised to runtime through err_payload_addr. * See kfd_context_save_area_header. */ struct kfd_ioctl_dbg_trap_send_runtime_event_args { … }; /** * kfd_ioctl_dbg_trap_set_exceptions_enabled_args * * Arguments for KFD_IOC_SET_EXCEPTIONS_ENABLED * Set new exceptions to be raised to the debugger. * * @exception_mask (IN) - new exceptions to raise the debugger * * Generic errors apply (see kfd_dbg_trap_operations). * Return - 0 on SUCCESS. */ struct kfd_ioctl_dbg_trap_set_exceptions_enabled_args { … }; /** * kfd_ioctl_dbg_trap_set_wave_launch_override_args * * Arguments for KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE * Enable HW exceptions to raise trap. * * @override_mode (IN) - see kfd_dbg_trap_override_mode * @enable_mask (IN/OUT) - reference kfd_dbg_trap_mask. * IN is the override modes requested to be enabled. * OUT is referenced in Return below. * @support_request_mask (IN/OUT) - reference kfd_dbg_trap_mask. * IN is the override modes requested for support check. * OUT is referenced in Return below. * * Generic errors apply (see kfd_dbg_trap_operations). * Return - 0 on SUCCESS. * Previous enablement is returned in @enable_mask. * Actual override support is returned in @support_request_mask. * - EINVAL if override mode is not supported. * - EACCES if trap support requested is not actually supported. * i.e. enable_mask (IN) is not a subset of support_request_mask (OUT). * Otherwise it is considered a generic error (see kfd_dbg_trap_operations). */ struct kfd_ioctl_dbg_trap_set_wave_launch_override_args { … }; /** * kfd_ioctl_dbg_trap_set_wave_launch_mode_args * * Arguments for KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE * Set wave launch mode. * * @mode (IN) - see kfd_dbg_trap_wave_launch_mode * * Generic errors apply (see kfd_dbg_trap_operations). * Return - 0 on SUCCESS. */ struct kfd_ioctl_dbg_trap_set_wave_launch_mode_args { … }; /** * kfd_ioctl_dbg_trap_suspend_queues_ags * * Arguments for KFD_IOC_DBG_TRAP_SUSPEND_QUEUES * Suspend queues. * * @exception_mask (IN) - raised exceptions to clear * @queue_array_ptr (IN) - pointer to array of queue ids (u32 per queue id) * to suspend * @num_queues (IN) - number of queues to suspend in @queue_array_ptr * @grace_period (IN) - wave time allowance before preemption * per 1K GPU clock cycle unit * * Generic errors apply (see kfd_dbg_trap_operations). * Destruction of a suspended queue is blocked until the queue is * resumed. This allows the debugger to access queue information and * the its context save area without running into a race condition on * queue destruction. * Automatically copies per queue context save area header information * into the save area base * (see kfd_queue_snapshot_entry and kfd_context_save_area_header). * * Return - Number of queues suspended on SUCCESS. * . KFD_DBG_QUEUE_ERROR_MASK and KFD_DBG_QUEUE_INVALID_MASK masked * for each queue id in @queue_array_ptr array reports unsuccessful * suspend reason. * KFD_DBG_QUEUE_ERROR_MASK = HW failure. * KFD_DBG_QUEUE_INVALID_MASK = queue does not exist, is new or * is being destroyed. */ struct kfd_ioctl_dbg_trap_suspend_queues_args { … }; /** * kfd_ioctl_dbg_trap_resume_queues_args * * Arguments for KFD_IOC_DBG_TRAP_RESUME_QUEUES * Resume queues. * * @queue_array_ptr (IN) - pointer to array of queue ids (u32 per queue id) * to resume * @num_queues (IN) - number of queues to resume in @queue_array_ptr * * Generic errors apply (see kfd_dbg_trap_operations). * Return - Number of queues resumed on SUCCESS. * KFD_DBG_QUEUE_ERROR_MASK and KFD_DBG_QUEUE_INVALID_MASK mask * for each queue id in @queue_array_ptr array reports unsuccessful * resume reason. * KFD_DBG_QUEUE_ERROR_MASK = HW failure. * KFD_DBG_QUEUE_INVALID_MASK = queue does not exist. */ struct kfd_ioctl_dbg_trap_resume_queues_args { … }; /** * kfd_ioctl_dbg_trap_set_node_address_watch_args * * Arguments for KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH * Sets address watch for device. * * @address (IN) - watch address to set * @mode (IN) - see kfd_dbg_trap_address_watch_mode * @mask (IN) - watch address mask * @gpu_id (IN) - target gpu to set watch point * @id (OUT) - watch id allocated * * Generic errors apply (see kfd_dbg_trap_operations). * Return - 0 on SUCCESS. * Allocated watch ID returned to @id. * - ENODEV if gpu_id not found. * - ENOMEM if watch IDs can be allocated */ struct kfd_ioctl_dbg_trap_set_node_address_watch_args { … }; /** * kfd_ioctl_dbg_trap_clear_node_address_watch_args * * Arguments for KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH * Clear address watch for device. * * @gpu_id (IN) - target device to clear watch point * @id (IN) - allocated watch id to clear * * Generic errors apply (see kfd_dbg_trap_operations). * Return - 0 on SUCCESS. * - ENODEV if gpu_id not found. * - EINVAL if watch ID has not been allocated. */ struct kfd_ioctl_dbg_trap_clear_node_address_watch_args { … }; /** * kfd_ioctl_dbg_trap_set_flags_args * * Arguments for KFD_IOC_DBG_TRAP_SET_FLAGS * Sets flags for wave behaviour. * * @flags (IN/OUT) - IN = flags to enable, OUT = flags previously enabled * * Generic errors apply (see kfd_dbg_trap_operations). * Return - 0 on SUCCESS. * - EACCESS if any debug device does not allow flag options. */ struct kfd_ioctl_dbg_trap_set_flags_args { … }; /** * kfd_ioctl_dbg_trap_query_debug_event_args * * Arguments for KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT * * Find one or more raised exceptions. This function can return multiple * exceptions from a single queue or a single device with one call. To find * all raised exceptions, this function must be called repeatedly until it * returns -EAGAIN. Returned exceptions can optionally be cleared by * setting the corresponding bit in the @exception_mask input parameter. * However, clearing an exception prevents retrieving further information * about it with KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO. * * @exception_mask (IN/OUT) - exception to clear (IN) and raised (OUT) * @gpu_id (OUT) - gpu id of exceptions raised * @queue_id (OUT) - queue id of exceptions raised * * Generic errors apply (see kfd_dbg_trap_operations). * Return - 0 on raised exception found * Raised exceptions found are returned in @exception mask * with reported source id returned in @gpu_id or @queue_id. * - EAGAIN if no raised exception has been found */ struct kfd_ioctl_dbg_trap_query_debug_event_args { … }; /** * kfd_ioctl_dbg_trap_query_exception_info_args * * Arguments KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO * Get additional info on raised exception. * * @info_ptr (IN) - pointer to exception info buffer to copy to * @info_size (IN/OUT) - exception info buffer size (bytes) * @source_id (IN) - target gpu or queue id * @exception_code (IN) - target exception * @clear_exception (IN) - clear raised @exception_code exception * (0 = false, 1 = true) * * Generic errors apply (see kfd_dbg_trap_operations). * Return - 0 on SUCCESS. * If @exception_code is EC_DEVICE_MEMORY_VIOLATION, copy @info_size(OUT) * bytes of memory exception data to @info_ptr. * If @exception_code is EC_PROCESS_RUNTIME, copy saved * kfd_runtime_info to @info_ptr. * Actual required @info_ptr size (bytes) is returned in @info_size. */ struct kfd_ioctl_dbg_trap_query_exception_info_args { … }; /** * kfd_ioctl_dbg_trap_get_queue_snapshot_args * * Arguments KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT * Get queue information. * * @exception_mask (IN) - exceptions raised to clear * @snapshot_buf_ptr (IN) - queue snapshot entry buffer (see kfd_queue_snapshot_entry) * @num_queues (IN/OUT) - number of queue snapshot entries * The debugger specifies the size of the array allocated in @num_queues. * KFD returns the number of queues that actually existed. If this is * larger than the size specified by the debugger, KFD will not overflow * the array allocated by the debugger. * * @entry_size (IN/OUT) - size per entry in bytes * The debugger specifies sizeof(struct kfd_queue_snapshot_entry) in * @entry_size. KFD returns the number of bytes actually populated per * entry. The debugger should use the KFD_IOCTL_MINOR_VERSION to determine, * which fields in struct kfd_queue_snapshot_entry are valid. This allows * growing the ABI in a backwards compatible manner. * Note that entry_size(IN) should still be used to stride the snapshot buffer in the * event that it's larger than actual kfd_queue_snapshot_entry. * * Generic errors apply (see kfd_dbg_trap_operations). * Return - 0 on SUCCESS. * Copies @num_queues(IN) queue snapshot entries of size @entry_size(IN) * into @snapshot_buf_ptr if @num_queues(IN) > 0. * Otherwise return @num_queues(OUT) queue snapshot entries that exist. */ struct kfd_ioctl_dbg_trap_queue_snapshot_args { … }; /** * kfd_ioctl_dbg_trap_get_device_snapshot_args * * Arguments for KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT * Get device information. * * @exception_mask (IN) - exceptions raised to clear * @snapshot_buf_ptr (IN) - pointer to snapshot buffer (see kfd_dbg_device_info_entry) * @num_devices (IN/OUT) - number of debug devices to snapshot * The debugger specifies the size of the array allocated in @num_devices. * KFD returns the number of devices that actually existed. If this is * larger than the size specified by the debugger, KFD will not overflow * the array allocated by the debugger. * * @entry_size (IN/OUT) - size per entry in bytes * The debugger specifies sizeof(struct kfd_dbg_device_info_entry) in * @entry_size. KFD returns the number of bytes actually populated. The * debugger should use KFD_IOCTL_MINOR_VERSION to determine, which fields * in struct kfd_dbg_device_info_entry are valid. This allows growing the * ABI in a backwards compatible manner. * Note that entry_size(IN) should still be used to stride the snapshot buffer in the * event that it's larger than actual kfd_dbg_device_info_entry. * * Generic errors apply (see kfd_dbg_trap_operations). * Return - 0 on SUCCESS. * Copies @num_devices(IN) device snapshot entries of size @entry_size(IN) * into @snapshot_buf_ptr if @num_devices(IN) > 0. * Otherwise return @num_devices(OUT) queue snapshot entries that exist. */ struct kfd_ioctl_dbg_trap_device_snapshot_args { … }; /** * kfd_ioctl_dbg_trap_args * * Arguments to debug target process. * * @pid - target process to debug * @op - debug operation (see kfd_dbg_trap_operations) * * @op determines which union struct args to use. * Refer to kern docs for each kfd_ioctl_dbg_trap_*_args struct. */ struct kfd_ioctl_dbg_trap_args { … }; #define AMDKFD_IOCTL_BASE … #define AMDKFD_IO(nr) … #define AMDKFD_IOR(nr, type) … #define AMDKFD_IOW(nr, type) … #define AMDKFD_IOWR(nr, type) … #define AMDKFD_IOC_GET_VERSION … #define AMDKFD_IOC_CREATE_QUEUE … #define AMDKFD_IOC_DESTROY_QUEUE … #define AMDKFD_IOC_SET_MEMORY_POLICY … #define AMDKFD_IOC_GET_CLOCK_COUNTERS … #define AMDKFD_IOC_GET_PROCESS_APERTURES … #define AMDKFD_IOC_UPDATE_QUEUE … #define AMDKFD_IOC_CREATE_EVENT … #define AMDKFD_IOC_DESTROY_EVENT … #define AMDKFD_IOC_SET_EVENT … #define AMDKFD_IOC_RESET_EVENT … #define AMDKFD_IOC_WAIT_EVENTS … #define AMDKFD_IOC_DBG_REGISTER_DEPRECATED … #define AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED … #define AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED … #define AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED … #define AMDKFD_IOC_SET_SCRATCH_BACKING_VA … #define AMDKFD_IOC_GET_TILE_CONFIG … #define AMDKFD_IOC_SET_TRAP_HANDLER … #define AMDKFD_IOC_GET_PROCESS_APERTURES_NEW … #define AMDKFD_IOC_ACQUIRE_VM … #define AMDKFD_IOC_ALLOC_MEMORY_OF_GPU … #define AMDKFD_IOC_FREE_MEMORY_OF_GPU … #define AMDKFD_IOC_MAP_MEMORY_TO_GPU … #define AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU … #define AMDKFD_IOC_SET_CU_MASK … #define AMDKFD_IOC_GET_QUEUE_WAVE_STATE … #define AMDKFD_IOC_GET_DMABUF_INFO … #define AMDKFD_IOC_IMPORT_DMABUF … #define AMDKFD_IOC_ALLOC_QUEUE_GWS … #define AMDKFD_IOC_SMI_EVENTS … #define AMDKFD_IOC_SVM … #define AMDKFD_IOC_SET_XNACK_MODE … #define AMDKFD_IOC_CRIU_OP … #define AMDKFD_IOC_AVAILABLE_MEMORY … #define AMDKFD_IOC_EXPORT_DMABUF … #define AMDKFD_IOC_RUNTIME_ENABLE … #define AMDKFD_IOC_DBG_TRAP … #define AMDKFD_COMMAND_START … #define AMDKFD_COMMAND_END … #endif