linux/include/linux/kvm_host.h

/* SPDX-License-Identifier: GPL-2.0-only */
#ifndef __KVM_HOST_H
#define __KVM_HOST_H


#include <linux/types.h>
#include <linux/hardirq.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/sched/stat.h>
#include <linux/bug.h>
#include <linux/minmax.h>
#include <linux/mm.h>
#include <linux/mmu_notifier.h>
#include <linux/preempt.h>
#include <linux/msi.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/rcupdate.h>
#include <linux/ratelimit.h>
#include <linux/err.h>
#include <linux/irqflags.h>
#include <linux/context_tracking.h>
#include <linux/irqbypass.h>
#include <linux/rcuwait.h>
#include <linux/refcount.h>
#include <linux/nospec.h>
#include <linux/notifier.h>
#include <linux/ftrace.h>
#include <linux/hashtable.h>
#include <linux/instrumentation.h>
#include <linux/interval_tree.h>
#include <linux/rbtree.h>
#include <linux/xarray.h>
#include <asm/signal.h>

#include <linux/kvm.h>
#include <linux/kvm_para.h>

#include <linux/kvm_types.h>

#include <asm/kvm_host.h>
#include <linux/kvm_dirty_ring.h>

#ifndef KVM_MAX_VCPU_IDS
#define KVM_MAX_VCPU_IDS
#endif

/*
 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
 * used in kvm, other bits are visible for userspace which are defined in
 * include/linux/kvm_h.
 */
#define KVM_MEMSLOT_INVALID

/*
 * Bit 63 of the memslot generation number is an "update in-progress flag",
 * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
 * This flag effectively creates a unique generation number that is used to
 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
 * i.e. may (or may not) have come from the previous memslots generation.
 *
 * This is necessary because the actual memslots update is not atomic with
 * respect to the generation number update.  Updating the generation number
 * first would allow a vCPU to cache a spte from the old memslots using the
 * new generation number, and updating the generation number after switching
 * to the new memslots would allow cache hits using the old generation number
 * to reference the defunct memslots.
 *
 * This mechanism is used to prevent getting hits in KVM's caches while a
 * memslot update is in-progress, and to prevent cache hits *after* updating
 * the actual generation number against accesses that were inserted into the
 * cache *before* the memslots were updated.
 */
#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS

/* Two fragments for cross MMIO pages. */
#define KVM_MAX_MMIO_FRAGMENTS

#ifndef KVM_MAX_NR_ADDRESS_SPACES
#define KVM_MAX_NR_ADDRESS_SPACES
#endif

/*
 * For the normal pfn, the highest 12 bits should be zero,
 * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
 * mask bit 63 to indicate the noslot pfn.
 */
#define KVM_PFN_ERR_MASK
#define KVM_PFN_ERR_NOSLOT_MASK
#define KVM_PFN_NOSLOT

#define KVM_PFN_ERR_FAULT
#define KVM_PFN_ERR_HWPOISON
#define KVM_PFN_ERR_RO_FAULT
#define KVM_PFN_ERR_SIGPENDING

/*
 * error pfns indicate that the gfn is in slot but faild to
 * translate it to pfn on host.
 */
static inline bool is_error_pfn(kvm_pfn_t pfn)
{}

/*
 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
 * by a pending signal.  Note, the signal may or may not be fatal.
 */
static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
{}

/*
 * error_noslot pfns indicate that the gfn can not be
 * translated to pfn - it is not in slot or failed to
 * translate it to pfn.
 */
static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
{}

/* noslot pfn indicates that the gfn is not in slot. */
static inline bool is_noslot_pfn(kvm_pfn_t pfn)
{}

/*
 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
 * provide own defines and kvm_is_error_hva
 */
#ifndef KVM_HVA_ERR_BAD

#define KVM_HVA_ERR_BAD
#define KVM_HVA_ERR_RO_BAD

static inline bool kvm_is_error_hva(unsigned long addr)
{}

#endif

static inline bool kvm_is_error_gpa(gpa_t gpa)
{}

#define KVM_ERR_PTR_BAD_PAGE

static inline bool is_error_page(struct page *page)
{}

#define KVM_REQUEST_MASK
#define KVM_REQUEST_NO_WAKEUP
#define KVM_REQUEST_WAIT
#define KVM_REQUEST_NO_ACTION
/*
 * Architecture-independent vcpu->requests bit members
 * Bits 3-7 are reserved for more arch-independent bits.
 */
#define KVM_REQ_TLB_FLUSH
#define KVM_REQ_VM_DEAD
#define KVM_REQ_UNBLOCK
#define KVM_REQ_DIRTY_RING_SOFT_FULL
#define KVM_REQUEST_ARCH_BASE

/*
 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
 * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
 * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
 * guarantee the vCPU received an IPI and has actually exited guest mode.
 */
#define KVM_REQ_OUTSIDE_GUEST_MODE

#define KVM_ARCH_REQ_FLAGS(nr, flags)
#define KVM_ARCH_REQ(nr)

bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
				 unsigned long *vcpu_bitmap);
bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);

#define KVM_USERSPACE_IRQ_SOURCE_ID
#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID

extern struct mutex kvm_lock;
extern struct list_head vm_list;

struct kvm_io_range {};

#define NR_IOBUS_DEVS

struct kvm_io_bus {};

enum kvm_bus {};

int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
		     int len, const void *val);
int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
			    gpa_t addr, int len, const void *val, long cookie);
int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
		    int len, void *val);
int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
			    int len, struct kvm_io_device *dev);
int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
			      struct kvm_io_device *dev);
struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
					 gpa_t addr);

#ifdef CONFIG_KVM_ASYNC_PF
struct kvm_async_pf {};

void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
			unsigned long hva, struct kvm_arch_async_pf *arch);
int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
#endif

#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
kvm_mmu_notifier_arg;

struct kvm_gfn_range {};
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
#endif

enum {};

#define KVM_UNMAPPED_PAGE

struct kvm_host_map {};

/*
 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
 * directly to check for that.
 */
static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
{}

static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
{}

/*
 * Sometimes a large or cross-page mmio needs to be broken up into separate
 * exits for userspace servicing.
 */
struct kvm_mmio_fragment {};

struct kvm_vcpu {};

/*
 * Start accounting time towards a guest.
 * Must be called before entering guest context.
 */
static __always_inline void guest_timing_enter_irqoff(void)
{}

/*
 * Enter guest context and enter an RCU extended quiescent state.
 *
 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
 * unsafe to use any code which may directly or indirectly use RCU, tracing
 * (including IRQ flag tracing), or lockdep. All code in this period must be
 * non-instrumentable.
 */
static __always_inline void guest_context_enter_irqoff(void)
{}

/*
 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
 * guest_state_enter_irqoff().
 */
static __always_inline void guest_enter_irqoff(void)
{}

/**
 * guest_state_enter_irqoff - Fixup state when entering a guest
 *
 * Entry to a guest will enable interrupts, but the kernel state is interrupts
 * disabled when this is invoked. Also tell RCU about it.
 *
 * 1) Trace interrupts on state
 * 2) Invoke context tracking if enabled to adjust RCU state
 * 3) Tell lockdep that interrupts are enabled
 *
 * Invoked from architecture specific code before entering a guest.
 * Must be called with interrupts disabled and the caller must be
 * non-instrumentable.
 * The caller has to invoke guest_timing_enter_irqoff() before this.
 *
 * Note: this is analogous to exit_to_user_mode().
 */
static __always_inline void guest_state_enter_irqoff(void)
{}

/*
 * Exit guest context and exit an RCU extended quiescent state.
 *
 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
 * unsafe to use any code which may directly or indirectly use RCU, tracing
 * (including IRQ flag tracing), or lockdep. All code in this period must be
 * non-instrumentable.
 */
static __always_inline void guest_context_exit_irqoff(void)
{}

/*
 * Stop accounting time towards a guest.
 * Must be called after exiting guest context.
 */
static __always_inline void guest_timing_exit_irqoff(void)
{}

/*
 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
 * guest_timing_exit_irqoff().
 */
static __always_inline void guest_exit_irqoff(void)
{}

static inline void guest_exit(void)
{}

/**
 * guest_state_exit_irqoff - Establish state when returning from guest mode
 *
 * Entry from a guest disables interrupts, but guest mode is traced as
 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
 *
 * 1) Tell lockdep that interrupts are disabled
 * 2) Invoke context tracking if enabled to reactivate RCU
 * 3) Trace interrupts off state
 *
 * Invoked from architecture specific code after exiting a guest.
 * Must be invoked with interrupts disabled and the caller must be
 * non-instrumentable.
 * The caller has to invoke guest_timing_exit_irqoff() after this.
 *
 * Note: this is analogous to enter_from_user_mode().
 */
static __always_inline void guest_state_exit_irqoff(void)
{}

static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
{}

/*
 * Some of the bitops functions do not support too long bitmaps.
 * This number must be determined not to exceed such limits.
 */
#define KVM_MEM_MAX_NR_PAGES

/*
 * Since at idle each memslot belongs to two memslot sets it has to contain
 * two embedded nodes for each data structure that it forms a part of.
 *
 * Two memslot sets (one active and one inactive) are necessary so the VM
 * continues to run on one memslot set while the other is being modified.
 *
 * These two memslot sets normally point to the same set of memslots.
 * They can, however, be desynchronized when performing a memslot management
 * operation by replacing the memslot to be modified by its copy.
 * After the operation is complete, both memslot sets once again point to
 * the same, common set of memslot data.
 *
 * The memslots themselves are independent of each other so they can be
 * individually added or deleted.
 */
struct kvm_memory_slot {};

static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
{}

static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
{}

static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
{}

static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
{}

#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
#define KVM_DIRTY_LOG_MANUAL_CAPS
#endif

struct kvm_s390_adapter_int {};

struct kvm_hv_sint {};

struct kvm_xen_evtchn {};

struct kvm_kernel_irq_routing_entry {};

#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
struct kvm_irq_routing_table {};
#endif

bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);

#ifndef KVM_INTERNAL_MEM_SLOTS
#define KVM_INTERNAL_MEM_SLOTS
#endif

#define KVM_MEM_SLOTS_NUM
#define KVM_USER_MEM_SLOTS

#if KVM_MAX_NR_ADDRESS_SPACES == 1
static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
{
	return KVM_MAX_NR_ADDRESS_SPACES;
}

static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
{
	return 0;
}
#endif

/*
 * Arch code must define kvm_arch_has_private_mem if support for private memory
 * is enabled.
 */
#if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
{
	return false;
}
#endif

struct kvm_memslots {};

struct kvm {};

#define kvm_err(fmt, ...)
#define kvm_info(fmt, ...)
#define kvm_debug(fmt, ...)
#define kvm_debug_ratelimited(fmt, ...)
#define kvm_pr_unimpl(fmt, ...)

/* The guest did something we don't support. */
#define vcpu_unimpl(vcpu, fmt, ...)

#define vcpu_debug(vcpu, fmt, ...)
#define vcpu_debug_ratelimited(vcpu, fmt, ...)
#define vcpu_err(vcpu, fmt, ...)

static inline void kvm_vm_dead(struct kvm *kvm)
{}

static inline void kvm_vm_bugged(struct kvm *kvm)
{}


#define KVM_BUG(cond, kvm, fmt...)

#define KVM_BUG_ON(cond, kvm)

/*
 * Note, "data corruption" refers to corruption of host kernel data structures,
 * not guest data.  Guest data corruption, suspected or confirmed, that is tied
 * and contained to a single VM should *never* BUG() and potentially panic the
 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
 * is corrupted and that corruption can have a cascading effect to other parts
 * of the hosts and/or to other VMs.
 */
#define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)

static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
{}

static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
{}

static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
{}

static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
{}

static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
{}

#define kvm_for_each_vcpu(idx, vcpup, kvm)

static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
{}

void kvm_destroy_vcpus(struct kvm *kvm);

void vcpu_load(struct kvm_vcpu *vcpu);
void vcpu_put(struct kvm_vcpu *vcpu);

#ifdef __KVM_HAVE_IOAPIC
void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
void kvm_arch_post_irq_routing_update(struct kvm *kvm);
#else
static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
{
}
static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
{
}
#endif

#ifdef CONFIG_HAVE_KVM_IRQCHIP
int kvm_irqfd_init(void);
void kvm_irqfd_exit(void);
#else
static inline int kvm_irqfd_init(void)
{
	return 0;
}

static inline void kvm_irqfd_exit(void)
{
}
#endif
int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
void kvm_exit(void);

void kvm_get_kvm(struct kvm *kvm);
bool kvm_get_kvm_safe(struct kvm *kvm);
void kvm_put_kvm(struct kvm *kvm);
bool file_is_kvm(struct file *file);
void kvm_put_kvm_no_destroy(struct kvm *kvm);

static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
{}

static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
{}

static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
{}

static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
{}

bool kvm_are_all_memslots_empty(struct kvm *kvm);

#define kvm_for_each_memslot(memslot, bkt, slots)

static inline
struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
{}

/* Iterator used for walking memslots that overlap a gfn range. */
struct kvm_memslot_iter {};

static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
{}

static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
					  struct kvm_memslots *slots,
					  gfn_t start)
{}

static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
{}

/* Iterate over each memslot at least partially intersecting [start, end) range */
#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)

/*
 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
 * - create a new memory slot
 * - delete an existing memory slot
 * - modify an existing memory slot
 *   -- move it in the guest physical memory space
 *   -- just change its flags
 *
 * Since flags can be changed by some of these operations, the following
 * differentiation is the best we can do for __kvm_set_memory_region():
 */
enum kvm_mr_change {};

int kvm_set_memory_region(struct kvm *kvm,
			  const struct kvm_userspace_memory_region2 *mem);
int __kvm_set_memory_region(struct kvm *kvm,
			    const struct kvm_userspace_memory_region2 *mem);
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				const struct kvm_memory_slot *old,
				struct kvm_memory_slot *new,
				enum kvm_mr_change change);
void kvm_arch_commit_memory_region(struct kvm *kvm,
				struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new,
				enum kvm_mr_change change);
/* flush all memory translations */
void kvm_arch_flush_shadow_all(struct kvm *kvm);
/* flush memory translations pointing to 'slot' */
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot);

int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
			    struct page **pages, int nr_pages);

struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
				      bool *writable);
void kvm_release_page_clean(struct page *page);
void kvm_release_page_dirty(struct page *page);

kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
		      bool *writable);
kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
			       bool atomic, bool interruptible, bool *async,
			       bool write_fault, bool *writable, hva_t *hva);

void kvm_release_pfn_clean(kvm_pfn_t pfn);
void kvm_release_pfn_dirty(kvm_pfn_t pfn);
void kvm_set_pfn_dirty(kvm_pfn_t pfn);
void kvm_set_pfn_accessed(kvm_pfn_t pfn);

void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
			int len);
int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
			   void *data, unsigned long len);
int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
				 void *data, unsigned int offset,
				 unsigned long len);
int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
			 int offset, int len);
int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
		    unsigned long len);
int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
			   void *data, unsigned long len);
int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
				  void *data, unsigned int offset,
				  unsigned long len);
int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
			      gpa_t gpa, unsigned long len);

#define __kvm_get_guest(kvm, gfn, offset, v)

#define kvm_get_guest(kvm, gpa, v)

#define __kvm_put_guest(kvm, gfn, offset, v)

#define kvm_put_guest(kvm, gpa, v)

int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
void mark_page_dirty(struct kvm *kvm, gfn_t gfn);

struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
			     int len);
int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
			       unsigned long len);
int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
			unsigned long len);
int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
			      int offset, int len);
int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
			 unsigned long len);
void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);

/**
 * kvm_gpc_init - initialize gfn_to_pfn_cache.
 *
 * @gpc:	   struct gfn_to_pfn_cache object.
 * @kvm:	   pointer to kvm instance.
 *
 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
 * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
 * the caller before init).
 */
void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);

/**
 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
 *                    physical address.
 *
 * @gpc:	   struct gfn_to_pfn_cache object.
 * @gpa:	   guest physical address to map.
 * @len:	   sanity check; the range being access must fit a single page.
 *
 * @return:	   0 for success.
 *		   -EINVAL for a mapping which would cross a page boundary.
 *		   -EFAULT for an untranslatable guest physical address.
 *
 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
 * invalidations to be processed.  Callers are required to use kvm_gpc_check()
 * to ensure that the cache is valid before accessing the target page.
 */
int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);

/**
 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
 *
 * @gpc:          struct gfn_to_pfn_cache object.
 * @hva:          userspace virtual address to map.
 * @len:          sanity check; the range being access must fit a single page.
 *
 * @return:       0 for success.
 *                -EINVAL for a mapping which would cross a page boundary.
 *                -EFAULT for an untranslatable guest physical address.
 *
 * The semantics of this function are the same as those of kvm_gpc_activate(). It
 * merely bypasses a layer of address translation.
 */
int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);

/**
 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
 *
 * @gpc:	   struct gfn_to_pfn_cache object.
 * @len:	   sanity check; the range being access must fit a single page.
 *
 * @return:	   %true if the cache is still valid and the address matches.
 *		   %false if the cache is not valid.
 *
 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
 * while calling this function, and then continue to hold the lock until the
 * access is complete.
 *
 * Callers in IN_GUEST_MODE may do so without locking, although they should
 * still hold a read lock on kvm->scru for the memslot checks.
 */
bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);

/**
 * kvm_gpc_refresh - update a previously initialized cache.
 *
 * @gpc:	   struct gfn_to_pfn_cache object.
 * @len:	   sanity check; the range being access must fit a single page.
 *
 * @return:	   0 for success.
 *		   -EINVAL for a mapping which would cross a page boundary.
 *		   -EFAULT for an untranslatable guest physical address.
 *
 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
 * return from this function does not mean the page can be immediately
 * accessed because it may have raced with an invalidation. Callers must
 * still lock and check the cache status, as this function does not return
 * with the lock still held to permit access.
 */
int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);

/**
 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
 *
 * @gpc:	   struct gfn_to_pfn_cache object.
 *
 * This removes a cache from the VM's list to be processed on MMU notifier
 * invocation.
 */
void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);

static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
{}

static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
{}

void kvm_sigset_activate(struct kvm_vcpu *vcpu);
void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);

void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
int kvm_vcpu_yield_to(struct kvm_vcpu *target);
void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);

void kvm_flush_remote_tlbs(struct kvm *kvm);
void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
				   const struct kvm_memory_slot *memslot);

#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
#endif

void kvm_mmu_invalidate_begin(struct kvm *kvm);
void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
void kvm_mmu_invalidate_end(struct kvm *kvm);
bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg);
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg);
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);

int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);

void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
					struct kvm_memory_slot *slot,
					gfn_t gfn_offset,
					unsigned long mask);
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);

#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
		      int *is_dirty, struct kvm_memory_slot **memslot);
#endif

int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			bool line_status);
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap);
int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
			      unsigned long arg);

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				    struct kvm_translation *tr);

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs);
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs);
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state);
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state);
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg);
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);

#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
#endif

#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
#else
static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
#endif

#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
int kvm_arch_hardware_enable(void);
void kvm_arch_hardware_disable(void);
#endif
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
int kvm_arch_post_init_vm(struct kvm *kvm);
void kvm_arch_pre_destroy_vm(struct kvm *kvm);
void kvm_arch_create_vm_debugfs(struct kvm *kvm);

#ifndef __KVM_HAVE_ARCH_VM_ALLOC
/*
 * All architectures that want to use vzalloc currently also
 * need their own kvm_arch_alloc_vm implementation.
 */
static inline struct kvm *kvm_arch_alloc_vm(void)
{
	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
}
#endif

static inline void __kvm_arch_free_vm(struct kvm *kvm)
{}

#ifndef __KVM_HAVE_ARCH_VM_FREE
static inline void kvm_arch_free_vm(struct kvm *kvm)
{
	__kvm_arch_free_vm(kvm);
}
#endif

#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
{
	return -ENOTSUPP;
}
#else
int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
#endif

#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
						    gfn_t gfn, u64 nr_pages)
{
	return -EOPNOTSUPP;
}
#else
int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
#endif

#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
#else
static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
{
}

static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
{
}

static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
{
	return false;
}
#endif
#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
void kvm_arch_start_assignment(struct kvm *kvm);
void kvm_arch_end_assignment(struct kvm *kvm);
bool kvm_arch_has_assigned_device(struct kvm *kvm);
#else
static inline void kvm_arch_start_assignment(struct kvm *kvm)
{
}

static inline void kvm_arch_end_assignment(struct kvm *kvm)
{
}

static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
{
	return false;
}
#endif

static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
{}

/*
 * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
 * true if the vCPU was blocking and was awakened, false otherwise.
 */
static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
{}

static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
{}

#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
/*
 * returns true if the virtual interrupt controller is initialized and
 * ready to accept virtual IRQ. On some architectures the virtual interrupt
 * controller is dynamically instantiated and this is not always true.
 */
bool kvm_arch_intc_initialized(struct kvm *kvm);
#else
static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
{}
#endif

#ifdef CONFIG_GUEST_PERF_EVENTS
unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);

void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
void kvm_unregister_perf_callbacks(void);
#else
static inline void kvm_register_perf_callbacks(void *ign) {}
static inline void kvm_unregister_perf_callbacks(void) {}
#endif /* CONFIG_GUEST_PERF_EVENTS */

int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
void kvm_arch_destroy_vm(struct kvm *kvm);
void kvm_arch_sync_events(struct kvm *kvm);

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);

struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
bool kvm_is_zone_device_page(struct page *page);

struct kvm_irq_ack_notifier {};

int kvm_irq_map_gsi(struct kvm *kvm,
		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);

int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
		bool line_status);
int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
		int irq_source_id, int level, bool line_status);
int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
			       struct kvm *kvm, int irq_source_id,
			       int level, bool line_status);
bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
void kvm_register_irq_ack_notifier(struct kvm *kvm,
				   struct kvm_irq_ack_notifier *kian);
void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
				   struct kvm_irq_ack_notifier *kian);
int kvm_request_irq_source_id(struct kvm *kvm);
void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);

/*
 * Returns a pointer to the memslot if it contains gfn.
 * Otherwise returns NULL.
 */
static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
{}

/*
 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
 *
 * With "approx" set returns the memslot also when the address falls
 * in a hole. In that case one of the memslots bordering the hole is
 * returned.
 */
static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
{}

static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
{}

/*
 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
 * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
 * because that would bloat other code too much.
 */
static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
{}

static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
{}

static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
{}

static inline gfn_t
hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
{}

static inline gpa_t gfn_to_gpa(gfn_t gfn)
{}

static inline gfn_t gpa_to_gfn(gpa_t gpa)
{}

static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
{}

static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
{}

static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
{}

enum kvm_stat_kind {};

struct kvm_stat_data {};

struct _kvm_stats_desc {};

#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)

#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)

#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)
#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)
#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)
#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)
#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)

/* Cumulative counter, read/write */
#define STATS_DESC_COUNTER(SCOPE, name)
/* Instantaneous counter, read only */
#define STATS_DESC_ICOUNTER(SCOPE, name)
/* Peak counter, read/write */
#define STATS_DESC_PCOUNTER(SCOPE, name)

/* Instantaneous boolean value, read only */
#define STATS_DESC_IBOOLEAN(SCOPE, name)
/* Peak (sticky) boolean value, read/write */
#define STATS_DESC_PBOOLEAN(SCOPE, name)

/* Cumulative time in nanosecond */
#define STATS_DESC_TIME_NSEC(SCOPE, name)
/* Linear histogram for time in nanosecond */
#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)
/* Logarithmic histogram for time in nanosecond */
#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)

#define KVM_GENERIC_VM_STATS()

#define KVM_GENERIC_VCPU_STATS()

ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
		       const struct _kvm_stats_desc *desc,
		       void *stats, size_t size_stats,
		       char __user *user_buffer, size_t size, loff_t *offset);

/**
 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
 * statistics data.
 *
 * @data: start address of the stats data
 * @size: the number of bucket of the stats data
 * @value: the new value used to update the linear histogram's bucket
 * @bucket_size: the size (width) of a bucket
 */
static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
						u64 value, size_t bucket_size)
{}

/**
 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
 * statistics data.
 *
 * @data: start address of the stats data
 * @size: the number of bucket of the stats data
 * @value: the new value used to update the logarithmic histogram's bucket
 */
static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
{}

#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)
#define KVM_STATS_LOG_HIST_UPDATE(array, value)


extern const struct kvm_stats_header kvm_vm_stats_header;
extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
extern const struct kvm_stats_header kvm_vcpu_stats_header;
extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];

#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
{}

static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
					   unsigned long mmu_seq,
					   gfn_t gfn)
{}

/*
 * This lockless version of the range-based retry check *must* be paired with a
 * call to the locked version after acquiring mmu_lock, i.e. this is safe to
 * use only as a pre-check to avoid contending mmu_lock.  This version *will*
 * get false negatives and false positives.
 */
static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
						   unsigned long mmu_seq,
						   gfn_t gfn)
{}
#endif

#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING

#define KVM_MAX_IRQ_ROUTES

bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
int kvm_set_irq_routing(struct kvm *kvm,
			const struct kvm_irq_routing_entry *entries,
			unsigned nr,
			unsigned flags);
int kvm_init_irq_routing(struct kvm *kvm);
int kvm_set_routing_entry(struct kvm *kvm,
			  struct kvm_kernel_irq_routing_entry *e,
			  const struct kvm_irq_routing_entry *ue);
void kvm_free_irq_routing(struct kvm *kvm);

#else

static inline void kvm_free_irq_routing(struct kvm *kvm) {}

static inline int kvm_init_irq_routing(struct kvm *kvm)
{
	return 0;
}

#endif

int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);

void kvm_eventfd_init(struct kvm *kvm);
int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);

#ifdef CONFIG_HAVE_KVM_IRQCHIP
int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
void kvm_irqfd_release(struct kvm *kvm);
bool kvm_notify_irqfd_resampler(struct kvm *kvm,
				unsigned int irqchip,
				unsigned int pin);
void kvm_irq_routing_update(struct kvm *);
#else
static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
{
	return -EINVAL;
}

static inline void kvm_irqfd_release(struct kvm *kvm) {}

static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
					      unsigned int irqchip,
					      unsigned int pin)
{
	return false;
}
#endif /* CONFIG_HAVE_KVM_IRQCHIP */

void kvm_arch_irq_routing_update(struct kvm *kvm);

static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
{}

static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
{}

static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
{}

static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
{}

static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
{}

static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
{}

#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
extern bool kvm_rebooting;
#endif

extern unsigned int halt_poll_ns;
extern unsigned int halt_poll_ns_grow;
extern unsigned int halt_poll_ns_grow_start;
extern unsigned int halt_poll_ns_shrink;

struct kvm_device {};

/* create, destroy, and name are mandatory */
struct kvm_device_ops {};

struct kvm_device *kvm_device_from_filp(struct file *filp);
int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
void kvm_unregister_device_ops(u32 type);

extern struct kvm_device_ops kvm_mpic_ops;
extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
extern struct kvm_device_ops kvm_arm_vgic_v3_ops;

#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT

static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
{}
static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
{}

#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */

static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
{
}

static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
{
}
#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */

static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
{}

struct kvm_vcpu *kvm_get_running_vcpu(void);
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);

#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
bool kvm_arch_has_irq_bypass(void);
int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
			   struct irq_bypass_producer *);
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
			   struct irq_bypass_producer *);
void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
				  uint32_t guest_irq, bool set);
bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
				  struct kvm_kernel_irq_routing_entry *);
#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */

#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
/* If we wakeup during the poll time, was it a sucessful poll? */
static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
{
	return vcpu->valid_wakeup;
}

#else
static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
{}
#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */

#ifdef CONFIG_HAVE_KVM_NO_POLL
/* Callback that tells if we must not poll */
bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
#else
static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
{
	return false;
}
#endif /* CONFIG_HAVE_KVM_NO_POLL */

#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
long kvm_arch_vcpu_async_ioctl(struct file *filp,
			       unsigned int ioctl, unsigned long arg);
#else
static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
					     unsigned int ioctl,
					     unsigned long arg)
{}
#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */

void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);

#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
#else
static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
{}
#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */

kvm_vm_thread_fn_t;

int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
				uintptr_t data, const char *name,
				struct task_struct **thread_ptr);

#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
{}
#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */

/*
 * If more than one page is being (un)accounted, @virt must be the address of
 * the first page of a block of pages what were allocated together (i.e
 * accounted together).
 *
 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
 * is thread-safe.
 */
static inline void kvm_account_pgtable_pages(void *virt, int nr)
{}

/*
 * This defines how many reserved entries we want to keep before we
 * kick the vcpu to the userspace to avoid dirty ring full.  This
 * value can be tuned to higher if e.g. PML is enabled on the host.
 */
#define KVM_DIRTY_RING_RSVD_ENTRIES

/* Max number of entries allowed for each kvm dirty ring */
#define KVM_DIRTY_RING_MAX_ENTRIES

static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
						 gpa_t gpa, gpa_t size,
						 bool is_write, bool is_exec,
						 bool is_private)
{}

#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
{}

bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
				     unsigned long mask, unsigned long attrs);
bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
					struct kvm_gfn_range *range);
bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
					 struct kvm_gfn_range *range);

static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
{}
#else
static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
{
	return false;
}
#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */

#ifdef CONFIG_KVM_PRIVATE_MEM
int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
		     gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
#else
static inline int kvm_gmem_get_pfn(struct kvm *kvm,
				   struct kvm_memory_slot *slot, gfn_t gfn,
				   kvm_pfn_t *pfn, int *max_order)
{
	KVM_BUG_ON(1, kvm);
	return -EIO;
}
#endif /* CONFIG_KVM_PRIVATE_MEM */

#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
#endif

#ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
/**
 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
 *
 * @kvm: KVM instance
 * @gfn: starting GFN to be populated
 * @src: userspace-provided buffer containing data to copy into GFN range
 *       (passed to @post_populate, and incremented on each iteration
 *       if not NULL)
 * @npages: number of pages to copy from userspace-buffer
 * @post_populate: callback to issue for each gmem page that backs the GPA
 *                 range
 * @opaque: opaque data to pass to @post_populate callback
 *
 * This is primarily intended for cases where a gmem-backed GPA range needs
 * to be initialized with userspace-provided data prior to being mapped into
 * the guest as a private page. This should be called with the slots->lock
 * held so that caller-enforced invariants regarding the expected memory
 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
 *
 * Returns the number of pages that were populated.
 */
kvm_gmem_populate_cb;

long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
		       kvm_gmem_populate_cb post_populate, void *opaque);
#endif

#ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
#endif

#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
				    struct kvm_pre_fault_memory *range);
#endif

#endif