linux/include/net/sock.h

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		Definitions for the AF_INET socket handler.
 *
 * Version:	@(#)sock.h	1.0.4	05/13/93
 *
 * Authors:	Ross Biro
 *		Fred N. van Kempen, <[email protected]>
 *		Corey Minyard <[email protected]>
 *		Florian La Roche <[email protected]>
 *
 * Fixes:
 *		Alan Cox	:	Volatiles in skbuff pointers. See
 *					skbuff comments. May be overdone,
 *					better to prove they can be removed
 *					than the reverse.
 *		Alan Cox	:	Added a zapped field for tcp to note
 *					a socket is reset and must stay shut up
 *		Alan Cox	:	New fields for options
 *	Pauline Middelink	:	identd support
 *		Alan Cox	:	Eliminate low level recv/recvfrom
 *		David S. Miller	:	New socket lookup architecture.
 *              Steve Whitehouse:       Default routines for sock_ops
 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
 *              			protinfo be just a void pointer, as the
 *              			protocol specific parts were moved to
 *              			respective headers and ipv4/v6, etc now
 *              			use private slabcaches for its socks
 *              Pedro Hortas	:	New flags field for socket options
 */
#ifndef _SOCK_H
#define _SOCK_H

#include <linux/hardirq.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/list_nulls.h>
#include <linux/timer.h>
#include <linux/cache.h>
#include <linux/bitops.h>
#include <linux/lockdep.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>	/* struct sk_buff */
#include <linux/mm.h>
#include <linux/security.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/page_counter.h>
#include <linux/memcontrol.h>
#include <linux/static_key.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/cgroup-defs.h>
#include <linux/rbtree.h>
#include <linux/rculist_nulls.h>
#include <linux/poll.h>
#include <linux/sockptr.h>
#include <linux/indirect_call_wrapper.h>
#include <linux/atomic.h>
#include <linux/refcount.h>
#include <linux/llist.h>
#include <net/dst.h>
#include <net/checksum.h>
#include <net/tcp_states.h>
#include <linux/net_tstamp.h>
#include <net/l3mdev.h>
#include <uapi/linux/socket.h>

/*
 * This structure really needs to be cleaned up.
 * Most of it is for TCP, and not used by any of
 * the other protocols.
 */

/* This is the per-socket lock.  The spinlock provides a synchronization
 * between user contexts and software interrupt processing, whereas the
 * mini-semaphore synchronizes multiple users amongst themselves.
 */
socket_lock_t;

struct sock;
struct proto;
struct net;

__portpair;
__addrpair;

/**
 *	struct sock_common - minimal network layer representation of sockets
 *	@skc_daddr: Foreign IPv4 addr
 *	@skc_rcv_saddr: Bound local IPv4 addr
 *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
 *	@skc_hash: hash value used with various protocol lookup tables
 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
 *	@skc_dport: placeholder for inet_dport/tw_dport
 *	@skc_num: placeholder for inet_num/tw_num
 *	@skc_portpair: __u32 union of @skc_dport & @skc_num
 *	@skc_family: network address family
 *	@skc_state: Connection state
 *	@skc_reuse: %SO_REUSEADDR setting
 *	@skc_reuseport: %SO_REUSEPORT setting
 *	@skc_ipv6only: socket is IPV6 only
 *	@skc_net_refcnt: socket is using net ref counting
 *	@skc_bound_dev_if: bound device index if != 0
 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 *	@skc_prot: protocol handlers inside a network family
 *	@skc_net: reference to the network namespace of this socket
 *	@skc_v6_daddr: IPV6 destination address
 *	@skc_v6_rcv_saddr: IPV6 source address
 *	@skc_cookie: socket's cookie value
 *	@skc_node: main hash linkage for various protocol lookup tables
 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 *	@skc_tx_queue_mapping: tx queue number for this connection
 *	@skc_rx_queue_mapping: rx queue number for this connection
 *	@skc_flags: place holder for sk_flags
 *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 *	@skc_listener: connection request listener socket (aka rsk_listener)
 *		[union with @skc_flags]
 *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
 *		[union with @skc_flags]
 *	@skc_incoming_cpu: record/match cpu processing incoming packets
 *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
 *		[union with @skc_incoming_cpu]
 *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
 *		[union with @skc_incoming_cpu]
 *	@skc_refcnt: reference count
 *
 *	This is the minimal network layer representation of sockets, the header
 *	for struct sock and struct inet_timewait_sock.
 */
struct sock_common {};

struct bpf_local_storage;
struct sk_filter;

/**
  *	struct sock - network layer representation of sockets
  *	@__sk_common: shared layout with inet_timewait_sock
  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
  *	@sk_lock:	synchronizer
  *	@sk_kern_sock: True if sock is using kernel lock classes
  *	@sk_rcvbuf: size of receive buffer in bytes
  *	@sk_wq: sock wait queue and async head
  *	@sk_rx_dst: receive input route used by early demux
  *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
  *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
  *	@sk_dst_cache: destination cache
  *	@sk_dst_pending_confirm: need to confirm neighbour
  *	@sk_policy: flow policy
  *	@sk_receive_queue: incoming packets
  *	@sk_wmem_alloc: transmit queue bytes committed
  *	@sk_tsq_flags: TCP Small Queues flags
  *	@sk_write_queue: Packet sending queue
  *	@sk_omem_alloc: "o" is "option" or "other"
  *	@sk_wmem_queued: persistent queue size
  *	@sk_forward_alloc: space allocated forward
  *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
  *	@sk_napi_id: id of the last napi context to receive data for sk
  *	@sk_ll_usec: usecs to busypoll when there is no data
  *	@sk_allocation: allocation mode
  *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
  *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
  *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
  *	@sk_sndbuf: size of send buffer in bytes
  *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
  *	@sk_no_check_rx: allow zero checksum in RX packets
  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
  *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
  *	@sk_gso_max_size: Maximum GSO segment size to build
  *	@sk_gso_max_segs: Maximum number of GSO segments
  *	@sk_pacing_shift: scaling factor for TCP Small Queues
  *	@sk_lingertime: %SO_LINGER l_linger setting
  *	@sk_backlog: always used with the per-socket spinlock held
  *	@sk_callback_lock: used with the callbacks in the end of this struct
  *	@sk_error_queue: rarely used
  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
  *			  IPV6_ADDRFORM for instance)
  *	@sk_err: last error
  *	@sk_err_soft: errors that don't cause failure but are the cause of a
  *		      persistent failure not just 'timed out'
  *	@sk_drops: raw/udp drops counter
  *	@sk_ack_backlog: current listen backlog
  *	@sk_max_ack_backlog: listen backlog set in listen()
  *	@sk_uid: user id of owner
  *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
  *	@sk_busy_poll_budget: napi processing budget when busypolling
  *	@sk_priority: %SO_PRIORITY setting
  *	@sk_type: socket type (%SOCK_STREAM, etc)
  *	@sk_protocol: which protocol this socket belongs in this network family
  *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
  *	@sk_peer_pid: &struct pid for this socket's peer
  *	@sk_peer_cred: %SO_PEERCRED setting
  *	@sk_rcvlowat: %SO_RCVLOWAT setting
  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
  *	@sk_sndtimeo: %SO_SNDTIMEO setting
  *	@sk_txhash: computed flow hash for use on transmit
  *	@sk_txrehash: enable TX hash rethink
  *	@sk_filter: socket filtering instructions
  *	@sk_timer: sock cleanup timer
  *	@sk_stamp: time stamp of last packet received
  *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
  *	@sk_tsflags: SO_TIMESTAMPING flags
  *	@sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
  *			   Sockets that can be used under memory reclaim should
  *			   set this to false.
  *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
  *	              for timestamping
  *	@sk_tskey: counter to disambiguate concurrent tstamp requests
  *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
  *	@sk_socket: Identd and reporting IO signals
  *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
  *	@sk_frag: cached page frag
  *	@sk_peek_off: current peek_offset value
  *	@sk_send_head: front of stuff to transmit
  *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
  *	@sk_security: used by security modules
  *	@sk_mark: generic packet mark
  *	@sk_cgrp_data: cgroup data for this cgroup
  *	@sk_memcg: this socket's memory cgroup association
  *	@sk_write_pending: a write to stream socket waits to start
  *	@sk_disconnects: number of disconnect operations performed on this sock
  *	@sk_state_change: callback to indicate change in the state of the sock
  *	@sk_data_ready: callback to indicate there is data to be processed
  *	@sk_write_space: callback to indicate there is bf sending space available
  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
  *	@sk_backlog_rcv: callback to process the backlog
  *	@sk_validate_xmit_skb: ptr to an optional validate function
  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
  *	@sk_reuseport_cb: reuseport group container
  *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
  *	@sk_rcu: used during RCU grace period
  *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
  *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
  *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
  *	@sk_txtime_unused: unused txtime flags
  *	@ns_tracker: tracker for netns reference
  */
struct sock {};

struct sock_bh_locked {};

enum sk_pacing {};

/* flag bits in sk_user_data
 *
 * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
 *   not be suitable for copying when cloning the socket. For instance,
 *   it can point to a reference counted object. sk_user_data bottom
 *   bit is set if pointer must not be copied.
 *
 * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
 *   managed/owned by a BPF reuseport array. This bit should be set
 *   when sk_user_data's sk is added to the bpf's reuseport_array.
 *
 * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
 *   sk_user_data points to psock type. This bit should be set
 *   when sk_user_data is assigned to a psock object.
 */
#define SK_USER_DATA_NOCOPY
#define SK_USER_DATA_BPF
#define SK_USER_DATA_PSOCK
#define SK_USER_DATA_PTRMASK

/**
 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
 * @sk: socket
 */
static inline bool sk_user_data_is_nocopy(const struct sock *sk)
{}

#define __sk_user_data(sk)

/**
 * __locked_read_sk_user_data_with_flags - return the pointer
 * only if argument flags all has been set in sk_user_data. Otherwise
 * return NULL
 *
 * @sk: socket
 * @flags: flag bits
 *
 * The caller must be holding sk->sk_callback_lock.
 */
static inline void *
__locked_read_sk_user_data_with_flags(const struct sock *sk,
				      uintptr_t flags)
{}

/**
 * __rcu_dereference_sk_user_data_with_flags - return the pointer
 * only if argument flags all has been set in sk_user_data. Otherwise
 * return NULL
 *
 * @sk: socket
 * @flags: flag bits
 */
static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
					  uintptr_t flags)
{}

#define rcu_dereference_sk_user_data(sk)
#define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)
#define rcu_assign_sk_user_data(sk, ptr)

static inline
struct net *sock_net(const struct sock *sk)
{}

static inline
void sock_net_set(struct sock *sk, struct net *net)
{}

/*
 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 * on a socket means that the socket will reuse everybody else's port
 * without looking at the other's sk_reuse value.
 */

#define SK_NO_REUSE
#define SK_CAN_REUSE
#define SK_FORCE_REUSE

int sk_set_peek_off(struct sock *sk, int val);

static inline int sk_peek_offset(const struct sock *sk, int flags)
{}

static inline void sk_peek_offset_bwd(struct sock *sk, int val)
{}

static inline void sk_peek_offset_fwd(struct sock *sk, int val)
{}

/*
 * Hashed lists helper routines
 */
static inline struct sock *sk_entry(const struct hlist_node *node)
{}

static inline struct sock *__sk_head(const struct hlist_head *head)
{}

static inline struct sock *sk_head(const struct hlist_head *head)
{}

static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
{}

static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
{}

static inline struct sock *sk_next(const struct sock *sk)
{}

static inline struct sock *sk_nulls_next(const struct sock *sk)
{}

static inline bool sk_unhashed(const struct sock *sk)
{}

static inline bool sk_hashed(const struct sock *sk)
{}

static inline void sk_node_init(struct hlist_node *node)
{}

static inline void __sk_del_node(struct sock *sk)
{}

/* NB: equivalent to hlist_del_init_rcu */
static inline bool __sk_del_node_init(struct sock *sk)
{}

/* Grab socket reference count. This operation is valid only
   when sk is ALREADY grabbed f.e. it is found in hash table
   or a list and the lookup is made under lock preventing hash table
   modifications.
 */

static __always_inline void sock_hold(struct sock *sk)
{}

/* Ungrab socket in the context, which assumes that socket refcnt
   cannot hit zero, f.e. it is true in context of any socketcall.
 */
static __always_inline void __sock_put(struct sock *sk)
{}

static inline bool sk_del_node_init(struct sock *sk)
{}
#define sk_del_node_init_rcu(sk)

static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
{}

static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
{}

static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
{}

static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
{}

static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
{}

static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
{}

static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
{}

static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
{}

static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
{}

static inline void __sk_del_bind_node(struct sock *sk)
{}

static inline void sk_add_bind_node(struct sock *sk,
					struct hlist_head *list)
{}

#define sk_for_each(__sk, list)
#define sk_for_each_rcu(__sk, list)
#define sk_nulls_for_each(__sk, node, list)
#define sk_nulls_for_each_rcu(__sk, node, list)
#define sk_for_each_from(__sk)
#define sk_nulls_for_each_from(__sk, node)
#define sk_for_each_safe(__sk, tmp, list)
#define sk_for_each_bound(__sk, list)

/**
 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 * @tpos:	the type * to use as a loop cursor.
 * @pos:	the &struct hlist_node to use as a loop cursor.
 * @head:	the head for your list.
 * @offset:	offset of hlist_node within the struct.
 *
 */
#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)

static inline struct user_namespace *sk_user_ns(const struct sock *sk)
{}

/* Sock flags */
enum sock_flags {};

#define SK_FLAGS_TIMESTAMP

static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
{}

static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
{}

static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
{}

static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
				     int valbool)
{}

static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
{}

#ifdef CONFIG_NET
DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
static inline int sk_memalloc_socks(void)
{}

void __receive_sock(struct file *file);
#else

static inline int sk_memalloc_socks(void)
{
	return 0;
}

static inline void __receive_sock(struct file *file)
{ }
#endif

static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
{}

static inline void sk_acceptq_removed(struct sock *sk)
{}

static inline void sk_acceptq_added(struct sock *sk)
{}

/* Note: If you think the test should be:
 *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
 */
static inline bool sk_acceptq_is_full(const struct sock *sk)
{}

/*
 * Compute minimal free write space needed to queue new packets.
 */
static inline int sk_stream_min_wspace(const struct sock *sk)
{}

static inline int sk_stream_wspace(const struct sock *sk)
{}

static inline void sk_wmem_queued_add(struct sock *sk, int val)
{}

static inline void sk_forward_alloc_add(struct sock *sk, int val)
{}

void sk_stream_write_space(struct sock *sk);

/* OOB backlog add */
static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
{}

/*
 * Take into account size of receive queue and backlog queue
 * Do not take into account this skb truesize,
 * to allow even a single big packet to come.
 */
static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
{}

/* The per-socket spinlock must be held here. */
static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
					      unsigned int limit)
{}

int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);

INDIRECT_CALLABLE_DECLARE();
INDIRECT_CALLABLE_DECLARE();

static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
{}

static inline void sk_incoming_cpu_update(struct sock *sk)
{}


static inline void sock_rps_save_rxhash(struct sock *sk,
					const struct sk_buff *skb)
{}

static inline void sock_rps_reset_rxhash(struct sock *sk)
{}

#define sk_wait_event(__sk, __timeo, __condition, __wait)

int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
void sk_stream_wait_close(struct sock *sk, long timeo_p);
int sk_stream_error(struct sock *sk, int flags, int err);
void sk_stream_kill_queues(struct sock *sk);
void sk_set_memalloc(struct sock *sk);
void sk_clear_memalloc(struct sock *sk);

void __sk_flush_backlog(struct sock *sk);

static inline bool sk_flush_backlog(struct sock *sk)
{}

int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);

struct request_sock_ops;
struct timewait_sock_ops;
struct inet_hashinfo;
struct raw_hashinfo;
struct smc_hashinfo;
struct module;
struct sk_psock;

/*
 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
 * un-modified. Special care is taken when initializing object to zero.
 */
static inline void sk_prot_clear_nulls(struct sock *sk, int size)
{}

struct proto_accept_arg {};

/* Networking protocol blocks we attach to sockets.
 * socket layer -> transport layer interface
 */
struct proto {} __randomize_layout;

int proto_register(struct proto *prot, int alloc_slab);
void proto_unregister(struct proto *prot);
int sock_load_diag_module(int family, int protocol);

INDIRECT_CALLABLE_DECLARE();

static inline int sk_forward_alloc_get(const struct sock *sk)
{}

static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
{}

static inline bool sk_stream_memory_free(const struct sock *sk)
{}

static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
{}

static inline bool sk_stream_is_writeable(const struct sock *sk)
{}

static inline int sk_under_cgroup_hierarchy(struct sock *sk,
					    struct cgroup *ancestor)
{}

#define SK_ALLOC_PERCPU_COUNTER_BATCH

static inline void sk_sockets_allocated_dec(struct sock *sk)
{}

static inline void sk_sockets_allocated_inc(struct sock *sk)
{}

static inline u64
sk_sockets_allocated_read_positive(struct sock *sk)
{}

static inline int
proto_sockets_allocated_sum_positive(struct proto *prot)
{}

#ifdef CONFIG_PROC_FS
#define PROTO_INUSE_NR
struct prot_inuse {};

static inline void sock_prot_inuse_add(const struct net *net,
				       const struct proto *prot, int val)
{}

static inline void sock_inuse_add(const struct net *net, int val)
{}

int sock_prot_inuse_get(struct net *net, struct proto *proto);
int sock_inuse_get(struct net *net);
#else
static inline void sock_prot_inuse_add(const struct net *net,
				       const struct proto *prot, int val)
{
}

static inline void sock_inuse_add(const struct net *net, int val)
{
}
#endif


/* With per-bucket locks this operation is not-atomic, so that
 * this version is not worse.
 */
static inline int __sk_prot_rehash(struct sock *sk)
{}

/* About 10 seconds */
#define SOCK_DESTROY_TIME

/* Sockets 0-1023 can't be bound to unless you are superuser */
#define PROT_SOCK

#define SHUTDOWN_MASK
#define RCV_SHUTDOWN
#define SEND_SHUTDOWN

#define SOCK_BINDADDR_LOCK
#define SOCK_BINDPORT_LOCK

struct socket_alloc {};

static inline struct socket *SOCKET_I(struct inode *inode)
{}

static inline struct inode *SOCK_INODE(struct socket *socket)
{}

/*
 * Functions for memory accounting
 */
int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
int __sk_mem_schedule(struct sock *sk, int size, int kind);
void __sk_mem_reduce_allocated(struct sock *sk, int amount);
void __sk_mem_reclaim(struct sock *sk, int amount);

#define SK_MEM_SEND
#define SK_MEM_RECV

/* sysctl_mem values are in pages */
static inline long sk_prot_mem_limits(const struct sock *sk, int index)
{}

static inline int sk_mem_pages(int amt)
{}

static inline bool sk_has_account(struct sock *sk)
{}

static inline bool sk_wmem_schedule(struct sock *sk, int size)
{}

static inline bool
sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
{}

static inline int sk_unused_reserved_mem(const struct sock *sk)
{}

static inline void sk_mem_reclaim(struct sock *sk)
{}

static inline void sk_mem_reclaim_final(struct sock *sk)
{}

static inline void sk_mem_charge(struct sock *sk, int size)
{}

static inline void sk_mem_uncharge(struct sock *sk, int size)
{}

/*
 * Macro so as to not evaluate some arguments when
 * lockdep is not enabled.
 *
 * Mark both the sk_lock and the sk_lock.slock as a
 * per-address-family lock class.
 */
#define sock_lock_init_class_and_name(sk, sname, skey, name, key)

static inline bool lockdep_sock_is_held(const struct sock *sk)
{}

void lock_sock_nested(struct sock *sk, int subclass);

static inline void lock_sock(struct sock *sk)
{}

void __lock_sock(struct sock *sk);
void __release_sock(struct sock *sk);
void release_sock(struct sock *sk);

/* BH context may only use the following locking interface. */
#define bh_lock_sock(__sk)
#define bh_lock_sock_nested(__sk)
#define bh_unlock_sock(__sk)

bool __lock_sock_fast(struct sock *sk) __acquires();

/**
 * lock_sock_fast - fast version of lock_sock
 * @sk: socket
 *
 * This version should be used for very small section, where process wont block
 * return false if fast path is taken:
 *
 *   sk_lock.slock locked, owned = 0, BH disabled
 *
 * return true if slow path is taken:
 *
 *   sk_lock.slock unlocked, owned = 1, BH enabled
 */
static inline bool lock_sock_fast(struct sock *sk)
{}

/* fast socket lock variant for caller already holding a [different] socket lock */
static inline bool lock_sock_fast_nested(struct sock *sk)
{}

/**
 * unlock_sock_fast - complement of lock_sock_fast
 * @sk: socket
 * @slow: slow mode
 *
 * fast unlock socket for user context.
 * If slow mode is on, we call regular release_sock()
 */
static inline void unlock_sock_fast(struct sock *sk, bool slow)
	__releases(&sk->sk_lock.slock)
{}

void sockopt_lock_sock(struct sock *sk);
void sockopt_release_sock(struct sock *sk);
bool sockopt_ns_capable(struct user_namespace *ns, int cap);
bool sockopt_capable(int cap);

/* Used by processes to "lock" a socket state, so that
 * interrupts and bottom half handlers won't change it
 * from under us. It essentially blocks any incoming
 * packets, so that we won't get any new data or any
 * packets that change the state of the socket.
 *
 * While locked, BH processing will add new packets to
 * the backlog queue.  This queue is processed by the
 * owner of the socket lock right before it is released.
 *
 * Since ~2.3.5 it is also exclusive sleep lock serializing
 * accesses from user process context.
 */

static inline void sock_owned_by_me(const struct sock *sk)
{}

static inline void sock_not_owned_by_me(const struct sock *sk)
{}

static inline bool sock_owned_by_user(const struct sock *sk)
{}

static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
{}

static inline void sock_release_ownership(struct sock *sk)
{}

/* no reclassification while locks are held */
static inline bool sock_allow_reclassification(const struct sock *csk)
{}

struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
		      struct proto *prot, int kern);
void sk_free(struct sock *sk);
void sk_destruct(struct sock *sk);
struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
void sk_free_unlock_clone(struct sock *sk);

struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
			     gfp_t priority);
void __sock_wfree(struct sk_buff *skb);
void sock_wfree(struct sk_buff *skb);
struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
			     gfp_t priority);
void skb_orphan_partial(struct sk_buff *skb);
void sock_rfree(struct sk_buff *skb);
void sock_efree(struct sk_buff *skb);
#ifdef CONFIG_INET
void sock_edemux(struct sk_buff *skb);
void sock_pfree(struct sk_buff *skb);
#else
#define sock_edemux
#endif

int sk_setsockopt(struct sock *sk, int level, int optname,
		  sockptr_t optval, unsigned int optlen);
int sock_setsockopt(struct socket *sock, int level, int op,
		    sockptr_t optval, unsigned int optlen);
int do_sock_setsockopt(struct socket *sock, bool compat, int level,
		       int optname, sockptr_t optval, int optlen);
int do_sock_getsockopt(struct socket *sock, bool compat, int level,
		       int optname, sockptr_t optval, sockptr_t optlen);

int sk_getsockopt(struct sock *sk, int level, int optname,
		  sockptr_t optval, sockptr_t optlen);
int sock_gettstamp(struct socket *sock, void __user *userstamp,
		   bool timeval, bool time32);
struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
				     unsigned long data_len, int noblock,
				     int *errcode, int max_page_order);

static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
						  unsigned long size,
						  int noblock, int *errcode)
{}

void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
void sock_kfree_s(struct sock *sk, void *mem, int size);
void sock_kzfree_s(struct sock *sk, void *mem, int size);
void sk_send_sigurg(struct sock *sk);

static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
{}

struct sockcm_cookie {};

static inline void sockcm_init(struct sockcm_cookie *sockc,
			       const struct sock *sk)
{}

int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
		     struct sockcm_cookie *sockc);
int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
		   struct sockcm_cookie *sockc);

/*
 * Functions to fill in entries in struct proto_ops when a protocol
 * does not implement a particular function.
 */
int sock_no_bind(struct socket *, struct sockaddr *, int);
int sock_no_connect(struct socket *, struct sockaddr *, int, int);
int sock_no_socketpair(struct socket *, struct socket *);
int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
int sock_no_getname(struct socket *, struct sockaddr *, int);
int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
int sock_no_listen(struct socket *, int);
int sock_no_shutdown(struct socket *, int);
int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
int sock_no_mmap(struct file *file, struct socket *sock,
		 struct vm_area_struct *vma);

/*
 * Functions to fill in entries in struct proto_ops when a protocol
 * uses the inet style.
 */
int sock_common_getsockopt(struct socket *sock, int level, int optname,
				  char __user *optval, int __user *optlen);
int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
			int flags);
int sock_common_setsockopt(struct socket *sock, int level, int optname,
			   sockptr_t optval, unsigned int optlen);

void sk_common_release(struct sock *sk);

/*
 *	Default socket callbacks and setup code
 */

/* Initialise core socket variables using an explicit uid. */
void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);

/* Initialise core socket variables.
 * Assumes struct socket *sock is embedded in a struct socket_alloc.
 */
void sock_init_data(struct socket *sock, struct sock *sk);

/*
 * Socket reference counting postulates.
 *
 * * Each user of socket SHOULD hold a reference count.
 * * Each access point to socket (an hash table bucket, reference from a list,
 *   running timer, skb in flight MUST hold a reference count.
 * * When reference count hits 0, it means it will never increase back.
 * * When reference count hits 0, it means that no references from
 *   outside exist to this socket and current process on current CPU
 *   is last user and may/should destroy this socket.
 * * sk_free is called from any context: process, BH, IRQ. When
 *   it is called, socket has no references from outside -> sk_free
 *   may release descendant resources allocated by the socket, but
 *   to the time when it is called, socket is NOT referenced by any
 *   hash tables, lists etc.
 * * Packets, delivered from outside (from network or from another process)
 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
 *   when they sit in queue. Otherwise, packets will leak to hole, when
 *   socket is looked up by one cpu and unhasing is made by another CPU.
 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
 *   (leak to backlog). Packet socket does all the processing inside
 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
 *   use separate SMP lock, so that they are prone too.
 */

/* Ungrab socket and destroy it, if it was the last reference. */
static inline void sock_put(struct sock *sk)
{}
/* Generic version of sock_put(), dealing with all sockets
 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
 */
void sock_gen_put(struct sock *sk);

int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
		     unsigned int trim_cap, bool refcounted);
static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
				 const int nested)
{}

static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
{}

#define NO_QUEUE_MAPPING

static inline void sk_tx_queue_clear(struct sock *sk)
{}

static inline int sk_tx_queue_get(const struct sock *sk)
{}

static inline void __sk_rx_queue_set(struct sock *sk,
				     const struct sk_buff *skb,
				     bool force_set)
{}

static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
{}

static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
{}

static inline void sk_rx_queue_clear(struct sock *sk)
{}

static inline int sk_rx_queue_get(const struct sock *sk)
{}

static inline void sk_set_socket(struct sock *sk, struct socket *sock)
{}

static inline wait_queue_head_t *sk_sleep(struct sock *sk)
{}
/* Detach socket from process context.
 * Announce socket dead, detach it from wait queue and inode.
 * Note that parent inode held reference count on this struct sock,
 * we do not release it in this function, because protocol
 * probably wants some additional cleanups or even continuing
 * to work with this socket (TCP).
 */
static inline void sock_orphan(struct sock *sk)
{}

static inline void sock_graft(struct sock *sk, struct socket *parent)
{}

kuid_t sock_i_uid(struct sock *sk);
unsigned long __sock_i_ino(struct sock *sk);
unsigned long sock_i_ino(struct sock *sk);

static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
{}

static inline u32 net_tx_rndhash(void)
{}

static inline void sk_set_txhash(struct sock *sk)
{}

static inline bool sk_rethink_txhash(struct sock *sk)
{}

static inline struct dst_entry *
__sk_dst_get(const struct sock *sk)
{}

static inline struct dst_entry *
sk_dst_get(const struct sock *sk)
{}

static inline void __dst_negative_advice(struct sock *sk)
{}

static inline void dst_negative_advice(struct sock *sk)
{}

static inline void
__sk_dst_set(struct sock *sk, struct dst_entry *dst)
{}

static inline void
sk_dst_set(struct sock *sk, struct dst_entry *dst)
{}

static inline void
__sk_dst_reset(struct sock *sk)
{}

static inline void
sk_dst_reset(struct sock *sk)
{}

struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);

struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);

static inline void sk_dst_confirm(struct sock *sk)
{}

static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
{}

bool sk_mc_loop(const struct sock *sk);

static inline bool sk_can_gso(const struct sock *sk)
{}

void sk_setup_caps(struct sock *sk, struct dst_entry *dst);

static inline void sk_gso_disable(struct sock *sk)
{}

static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
					   struct iov_iter *from, char *to,
					   int copy, int offset)
{}

static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
				       struct iov_iter *from, int copy)
{}

static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
					   struct sk_buff *skb,
					   struct page *page,
					   int off, int copy)
{}

/**
 * sk_wmem_alloc_get - returns write allocations
 * @sk: socket
 *
 * Return: sk_wmem_alloc minus initial offset of one
 */
static inline int sk_wmem_alloc_get(const struct sock *sk)
{}

/**
 * sk_rmem_alloc_get - returns read allocations
 * @sk: socket
 *
 * Return: sk_rmem_alloc
 */
static inline int sk_rmem_alloc_get(const struct sock *sk)
{}

/**
 * sk_has_allocations - check if allocations are outstanding
 * @sk: socket
 *
 * Return: true if socket has write or read allocations
 */
static inline bool sk_has_allocations(const struct sock *sk)
{}

/**
 * skwq_has_sleeper - check if there are any waiting processes
 * @wq: struct socket_wq
 *
 * Return: true if socket_wq has waiting processes
 *
 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
 * barrier call. They were added due to the race found within the tcp code.
 *
 * Consider following tcp code paths::
 *
 *   CPU1                CPU2
 *   sys_select          receive packet
 *   ...                 ...
 *   __add_wait_queue    update tp->rcv_nxt
 *   ...                 ...
 *   tp->rcv_nxt check   sock_def_readable
 *   ...                 {
 *   schedule               rcu_read_lock();
 *                          wq = rcu_dereference(sk->sk_wq);
 *                          if (wq && waitqueue_active(&wq->wait))
 *                              wake_up_interruptible(&wq->wait)
 *                          ...
 *                       }
 *
 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
 * could then endup calling schedule and sleep forever if there are no more
 * data on the socket.
 *
 */
static inline bool skwq_has_sleeper(struct socket_wq *wq)
{}

/**
 * sock_poll_wait - place memory barrier behind the poll_wait call.
 * @filp:           file
 * @sock:           socket to wait on
 * @p:              poll_table
 *
 * See the comments in the wq_has_sleeper function.
 */
static inline void sock_poll_wait(struct file *filp, struct socket *sock,
				  poll_table *p)
{}

static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
{}

void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);

/*
 *	Queue a received datagram if it will fit. Stream and sequenced
 *	protocols can't normally use this as they need to fit buffers in
 *	and play with them.
 *
 *	Inlined as it's very short and called for pretty much every
 *	packet ever received.
 */
static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
{}

static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
{}

static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
{}

static inline void skb_prepare_for_gro(struct sk_buff *skb)
{}

void sk_reset_timer(struct sock *sk, struct timer_list *timer,
		    unsigned long expires);

void sk_stop_timer(struct sock *sk, struct timer_list *timer);

void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);

int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
			struct sk_buff *skb, unsigned int flags,
			void (*destructor)(struct sock *sk,
					   struct sk_buff *skb));
int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);

int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
			      enum skb_drop_reason *reason);

static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
{}

int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
struct sk_buff *sock_dequeue_err_skb(struct sock *sk);

/*
 *	Recover an error report and clear atomically
 */

static inline int sock_error(struct sock *sk)
{}

void sk_error_report(struct sock *sk);

static inline unsigned long sock_wspace(struct sock *sk)
{}

/* Note:
 *  We use sk->sk_wq_raw, from contexts knowing this
 *  pointer is not NULL and cannot disappear/change.
 */
static inline void sk_set_bit(int nr, struct sock *sk)
{}

static inline void sk_clear_bit(int nr, struct sock *sk)
{}

static inline void sk_wake_async(const struct sock *sk, int how, int band)
{}

static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
{}

/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
 * Note: for send buffers, TCP works better if we can build two skbs at
 * minimum.
 */
#define TCP_SKB_MIN_TRUESIZE

#define SOCK_MIN_SNDBUF
#define SOCK_MIN_RCVBUF

static inline void sk_stream_moderate_sndbuf(struct sock *sk)
{}

/**
 * sk_page_frag - return an appropriate page_frag
 * @sk: socket
 *
 * Use the per task page_frag instead of the per socket one for
 * optimization when we know that we're in process context and own
 * everything that's associated with %current.
 *
 * Both direct reclaim and page faults can nest inside other
 * socket operations and end up recursing into sk_page_frag()
 * while it's already in use: explicitly avoid task page_frag
 * when users disable sk_use_task_frag.
 *
 * Return: a per task page_frag if context allows that,
 * otherwise a per socket one.
 */
static inline struct page_frag *sk_page_frag(struct sock *sk)
{}

bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);

/*
 *	Default write policy as shown to user space via poll/select/SIGIO
 */
static inline bool sock_writeable(const struct sock *sk)
{}

static inline gfp_t gfp_any(void)
{}

static inline gfp_t gfp_memcg_charge(void)
{}

static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
{}

static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
{}

static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
{}

/* Alas, with timeout socket operations are not restartable.
 * Compare this to poll().
 */
static inline int sock_intr_errno(long timeo)
{}

struct sock_skb_cb {};

/* Store sock_skb_cb at the end of skb->cb[] so protocol families
 * using skb->cb[] would keep using it directly and utilize its
 * alignement guarantee.
 */
#define SOCK_SKB_CB_OFFSET

#define SOCK_SKB_CB(__skb)

#define sock_skb_cb_check_size(size)

static inline void
sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
{}

static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
{}

static inline ktime_t sock_read_timestamp(struct sock *sk)
{}

static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
{}

void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
			   struct sk_buff *skb);
void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
			     struct sk_buff *skb);

static inline void
sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
{}

void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
		       struct sk_buff *skb);

#define SK_DEFAULT_STAMP
static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
				   struct sk_buff *skb)
{}

void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);

/**
 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
 * @sk:		socket sending this packet
 * @tsflags:	timestamping flags to use
 * @tx_flags:	completed with instructions for time stamping
 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
 *
 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
 */
static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
				      __u8 *tx_flags, __u32 *tskey)
{}

static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
				     __u8 *tx_flags)
{}

static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
{}

static inline bool sk_is_inet(const struct sock *sk)
{}

static inline bool sk_is_tcp(const struct sock *sk)
{}

static inline bool sk_is_udp(const struct sock *sk)
{}

static inline bool sk_is_stream_unix(const struct sock *sk)
{}

/**
 * sk_eat_skb - Release a skb if it is no longer needed
 * @sk: socket to eat this skb from
 * @skb: socket buffer to eat
 *
 * This routine must be called with interrupts disabled or with the socket
 * locked so that the sk_buff queue operation is ok.
*/
static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
{}

static inline bool
skb_sk_is_prefetched(struct sk_buff *skb)
{}

/* This helper checks if a socket is a full socket,
 * ie _not_ a timewait or request socket.
 */
static inline bool sk_fullsock(const struct sock *sk)
{}

static inline bool
sk_is_refcounted(struct sock *sk)
{}

/* Checks if this SKB belongs to an HW offloaded socket
 * and whether any SW fallbacks are required based on dev.
 * Check decrypted mark in case skb_orphan() cleared socket.
 */
static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
						   struct net_device *dev)
{}

/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
 */
static inline bool sk_listener(const struct sock *sk)
{}

void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
		       int type);

bool sk_ns_capable(const struct sock *sk,
		   struct user_namespace *user_ns, int cap);
bool sk_capable(const struct sock *sk, int cap);
bool sk_net_capable(const struct sock *sk, int cap);

void sk_get_meminfo(const struct sock *sk, u32 *meminfo);

/* Take into consideration the size of the struct sk_buff overhead in the
 * determination of these values, since that is non-constant across
 * platforms.  This makes socket queueing behavior and performance
 * not depend upon such differences.
 */
#define _SK_MEM_PACKETS
#define _SK_MEM_OVERHEAD
#define SK_WMEM_MAX
#define SK_RMEM_MAX

extern __u32 sysctl_wmem_max;
extern __u32 sysctl_rmem_max;

extern int sysctl_tstamp_allow_data;

extern __u32 sysctl_wmem_default;
extern __u32 sysctl_rmem_default;

#define SKB_FRAG_PAGE_ORDER
DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);

static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
{}

static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
{}

/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
 * Some wifi drivers need to tweak it to get more chunks.
 * They can use this helper from their ndo_start_xmit()
 */
static inline void sk_pacing_shift_update(struct sock *sk, int val)
{}

/* if a socket is bound to a device, check that the given device
 * index is either the same or that the socket is bound to an L3
 * master device and the given device index is also enslaved to
 * that L3 master
 */
static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
{}

void sock_def_readable(struct sock *sk);

int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
int sock_set_timestamping(struct sock *sk, int optname,
			  struct so_timestamping timestamping);

void sock_enable_timestamps(struct sock *sk);
void sock_no_linger(struct sock *sk);
void sock_set_keepalive(struct sock *sk);
void sock_set_priority(struct sock *sk, u32 priority);
void sock_set_rcvbuf(struct sock *sk, int val);
void sock_set_mark(struct sock *sk, u32 val);
void sock_set_reuseaddr(struct sock *sk);
void sock_set_reuseport(struct sock *sk);
void sock_set_sndtimeo(struct sock *sk, s64 secs);

int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);

int sock_get_timeout(long timeo, void *optval, bool old_timeval);
int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
			   sockptr_t optval, int optlen, bool old_timeval);

int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
		     void __user *arg, void *karg, size_t size);
int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
static inline bool sk_is_readable(struct sock *sk)
{}
#endif	/* _SOCK_H */