// SPDX-License-Identifier: GPL-2.0-only
/*
* xsave/xrstor support.
*
* Author: Suresh Siddha <[email protected]>
*/
#include <linux/bitops.h>
#include <linux/compat.h>
#include <linux/cpu.h>
#include <linux/mman.h>
#include <linux/nospec.h>
#include <linux/pkeys.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/vmalloc.h>
#include <linux/coredump.h>
#include <asm/fpu/api.h>
#include <asm/fpu/regset.h>
#include <asm/fpu/signal.h>
#include <asm/fpu/xcr.h>
#include <asm/tlbflush.h>
#include <asm/prctl.h>
#include <asm/elf.h>
#include <uapi/asm/elf.h>
#include "context.h"
#include "internal.h"
#include "legacy.h"
#include "xstate.h"
#define for_each_extended_xfeature(bit, mask) \
(bit) = FIRST_EXTENDED_XFEATURE; \
for_each_set_bit_from(bit, (unsigned long *)&(mask), 8 * sizeof(mask))
/*
* Although we spell it out in here, the Processor Trace
* xfeature is completely unused. We use other mechanisms
* to save/restore PT state in Linux.
*/
static const char *xfeature_names[] =
{
"x87 floating point registers",
"SSE registers",
"AVX registers",
"MPX bounds registers",
"MPX CSR",
"AVX-512 opmask",
"AVX-512 Hi256",
"AVX-512 ZMM_Hi256",
"Processor Trace (unused)",
"Protection Keys User registers",
"PASID state",
"Control-flow User registers",
"Control-flow Kernel registers (unused)",
"unknown xstate feature",
"unknown xstate feature",
"unknown xstate feature",
"unknown xstate feature",
"AMX Tile config",
"AMX Tile data",
"unknown xstate feature",
};
static unsigned short xsave_cpuid_features[] __initdata = {
[XFEATURE_FP] = X86_FEATURE_FPU,
[XFEATURE_SSE] = X86_FEATURE_XMM,
[XFEATURE_YMM] = X86_FEATURE_AVX,
[XFEATURE_BNDREGS] = X86_FEATURE_MPX,
[XFEATURE_BNDCSR] = X86_FEATURE_MPX,
[XFEATURE_OPMASK] = X86_FEATURE_AVX512F,
[XFEATURE_ZMM_Hi256] = X86_FEATURE_AVX512F,
[XFEATURE_Hi16_ZMM] = X86_FEATURE_AVX512F,
[XFEATURE_PT_UNIMPLEMENTED_SO_FAR] = X86_FEATURE_INTEL_PT,
[XFEATURE_PKRU] = X86_FEATURE_OSPKE,
[XFEATURE_PASID] = X86_FEATURE_ENQCMD,
[XFEATURE_CET_USER] = X86_FEATURE_SHSTK,
[XFEATURE_XTILE_CFG] = X86_FEATURE_AMX_TILE,
[XFEATURE_XTILE_DATA] = X86_FEATURE_AMX_TILE,
};
static unsigned int xstate_offsets[XFEATURE_MAX] __ro_after_init =
{ [ 0 ... XFEATURE_MAX - 1] = -1};
static unsigned int xstate_sizes[XFEATURE_MAX] __ro_after_init =
{ [ 0 ... XFEATURE_MAX - 1] = -1};
static unsigned int xstate_flags[XFEATURE_MAX] __ro_after_init;
#define XSTATE_FLAG_SUPERVISOR BIT(0)
#define XSTATE_FLAG_ALIGNED64 BIT(1)
/*
* Return whether the system supports a given xfeature.
*
* Also return the name of the (most advanced) feature that the caller requested:
*/
int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
{
u64 xfeatures_missing = xfeatures_needed & ~fpu_kernel_cfg.max_features;
if (unlikely(feature_name)) {
long xfeature_idx, max_idx;
u64 xfeatures_print;
/*
* So we use FLS here to be able to print the most advanced
* feature that was requested but is missing. So if a driver
* asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the
* missing AVX feature - this is the most informative message
* to users:
*/
if (xfeatures_missing)
xfeatures_print = xfeatures_missing;
else
xfeatures_print = xfeatures_needed;
xfeature_idx = fls64(xfeatures_print)-1;
max_idx = ARRAY_SIZE(xfeature_names)-1;
xfeature_idx = min(xfeature_idx, max_idx);
*feature_name = xfeature_names[xfeature_idx];
}
if (xfeatures_missing)
return 0;
return 1;
}
EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
static bool xfeature_is_aligned64(int xfeature_nr)
{
return xstate_flags[xfeature_nr] & XSTATE_FLAG_ALIGNED64;
}
static bool xfeature_is_supervisor(int xfeature_nr)
{
return xstate_flags[xfeature_nr] & XSTATE_FLAG_SUPERVISOR;
}
static unsigned int xfeature_get_offset(u64 xcomp_bv, int xfeature)
{
unsigned int offs, i;
/*
* Non-compacted format and legacy features use the cached fixed
* offsets.
*/
if (!cpu_feature_enabled(X86_FEATURE_XCOMPACTED) ||
xfeature <= XFEATURE_SSE)
return xstate_offsets[xfeature];
/*
* Compacted format offsets depend on the actual content of the
* compacted xsave area which is determined by the xcomp_bv header
* field.
*/
offs = FXSAVE_SIZE + XSAVE_HDR_SIZE;
for_each_extended_xfeature(i, xcomp_bv) {
if (xfeature_is_aligned64(i))
offs = ALIGN(offs, 64);
if (i == xfeature)
break;
offs += xstate_sizes[i];
}
return offs;
}
/*
* Enable the extended processor state save/restore feature.
* Called once per CPU onlining.
*/
void fpu__init_cpu_xstate(void)
{
if (!boot_cpu_has(X86_FEATURE_XSAVE) || !fpu_kernel_cfg.max_features)
return;
cr4_set_bits(X86_CR4_OSXSAVE);
/*
* Must happen after CR4 setup and before xsetbv() to allow KVM
* lazy passthrough. Write independent of the dynamic state static
* key as that does not work on the boot CPU. This also ensures
* that any stale state is wiped out from XFD. Reset the per CPU
* xfd cache too.
*/
if (cpu_feature_enabled(X86_FEATURE_XFD))
xfd_set_state(init_fpstate.xfd);
/*
* XCR_XFEATURE_ENABLED_MASK (aka. XCR0) sets user features
* managed by XSAVE{C, OPT, S} and XRSTOR{S}. Only XSAVE user
* states can be set here.
*/
xsetbv(XCR_XFEATURE_ENABLED_MASK, fpu_user_cfg.max_features);
/*
* MSR_IA32_XSS sets supervisor states managed by XSAVES.
*/
if (boot_cpu_has(X86_FEATURE_XSAVES)) {
wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() |
xfeatures_mask_independent());
}
}
static bool xfeature_enabled(enum xfeature xfeature)
{
return fpu_kernel_cfg.max_features & BIT_ULL(xfeature);
}
/*
* Record the offsets and sizes of various xstates contained
* in the XSAVE state memory layout.
*/
static void __init setup_xstate_cache(void)
{
u32 eax, ebx, ecx, edx, i;
/* start at the beginning of the "extended state" */
unsigned int last_good_offset = offsetof(struct xregs_state,
extended_state_area);
/*
* The FP xstates and SSE xstates are legacy states. They are always
* in the fixed offsets in the xsave area in either compacted form
* or standard form.
*/
xstate_offsets[XFEATURE_FP] = 0;
xstate_sizes[XFEATURE_FP] = offsetof(struct fxregs_state,
xmm_space);
xstate_offsets[XFEATURE_SSE] = xstate_sizes[XFEATURE_FP];
xstate_sizes[XFEATURE_SSE] = sizeof_field(struct fxregs_state,
xmm_space);
for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
xstate_sizes[i] = eax;
xstate_flags[i] = ecx;
/*
* If an xfeature is supervisor state, the offset in EBX is
* invalid, leave it to -1.
*/
if (xfeature_is_supervisor(i))
continue;
xstate_offsets[i] = ebx;
/*
* In our xstate size checks, we assume that the highest-numbered
* xstate feature has the highest offset in the buffer. Ensure
* it does.
*/
WARN_ONCE(last_good_offset > xstate_offsets[i],
"x86/fpu: misordered xstate at %d\n", last_good_offset);
last_good_offset = xstate_offsets[i];
}
}
static void __init print_xstate_feature(u64 xstate_mask)
{
const char *feature_name;
if (cpu_has_xfeatures(xstate_mask, &feature_name))
pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name);
}
/*
* Print out all the supported xstate features:
*/
static void __init print_xstate_features(void)
{
print_xstate_feature(XFEATURE_MASK_FP);
print_xstate_feature(XFEATURE_MASK_SSE);
print_xstate_feature(XFEATURE_MASK_YMM);
print_xstate_feature(XFEATURE_MASK_BNDREGS);
print_xstate_feature(XFEATURE_MASK_BNDCSR);
print_xstate_feature(XFEATURE_MASK_OPMASK);
print_xstate_feature(XFEATURE_MASK_ZMM_Hi256);
print_xstate_feature(XFEATURE_MASK_Hi16_ZMM);
print_xstate_feature(XFEATURE_MASK_PKRU);
print_xstate_feature(XFEATURE_MASK_PASID);
print_xstate_feature(XFEATURE_MASK_CET_USER);
print_xstate_feature(XFEATURE_MASK_XTILE_CFG);
print_xstate_feature(XFEATURE_MASK_XTILE_DATA);
}
/*
* This check is important because it is easy to get XSTATE_*
* confused with XSTATE_BIT_*.
*/
#define CHECK_XFEATURE(nr) do { \
WARN_ON(nr < FIRST_EXTENDED_XFEATURE); \
WARN_ON(nr >= XFEATURE_MAX); \
} while (0)
/*
* Print out xstate component offsets and sizes
*/
static void __init print_xstate_offset_size(void)
{
int i;
for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n",
i, xfeature_get_offset(fpu_kernel_cfg.max_features, i),
i, xstate_sizes[i]);
}
}
/*
* This function is called only during boot time when x86 caps are not set
* up and alternative can not be used yet.
*/
static __init void os_xrstor_booting(struct xregs_state *xstate)
{
u64 mask = fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSTATE;
u32 lmask = mask;
u32 hmask = mask >> 32;
int err;
if (cpu_feature_enabled(X86_FEATURE_XSAVES))
XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
else
XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
/*
* We should never fault when copying from a kernel buffer, and the FPU
* state we set at boot time should be valid.
*/
WARN_ON_FPU(err);
}
/*
* All supported features have either init state all zeros or are
* handled in setup_init_fpu() individually. This is an explicit
* feature list and does not use XFEATURE_MASK*SUPPORTED to catch
* newly added supported features at build time and make people
* actually look at the init state for the new feature.
*/
#define XFEATURES_INIT_FPSTATE_HANDLED \
(XFEATURE_MASK_FP | \
XFEATURE_MASK_SSE | \
XFEATURE_MASK_YMM | \
XFEATURE_MASK_OPMASK | \
XFEATURE_MASK_ZMM_Hi256 | \
XFEATURE_MASK_Hi16_ZMM | \
XFEATURE_MASK_PKRU | \
XFEATURE_MASK_BNDREGS | \
XFEATURE_MASK_BNDCSR | \
XFEATURE_MASK_PASID | \
XFEATURE_MASK_CET_USER | \
XFEATURE_MASK_XTILE)
/*
* setup the xstate image representing the init state
*/
static void __init setup_init_fpu_buf(void)
{
BUILD_BUG_ON((XFEATURE_MASK_USER_SUPPORTED |
XFEATURE_MASK_SUPERVISOR_SUPPORTED) !=
XFEATURES_INIT_FPSTATE_HANDLED);
if (!boot_cpu_has(X86_FEATURE_XSAVE))
return;
print_xstate_features();
xstate_init_xcomp_bv(&init_fpstate.regs.xsave, init_fpstate.xfeatures);
/*
* Init all the features state with header.xfeatures being 0x0
*/
os_xrstor_booting(&init_fpstate.regs.xsave);
/*
* All components are now in init state. Read the state back so
* that init_fpstate contains all non-zero init state. This only
* works with XSAVE, but not with XSAVEOPT and XSAVEC/S because
* those use the init optimization which skips writing data for
* components in init state.
*
* XSAVE could be used, but that would require to reshuffle the
* data when XSAVEC/S is available because XSAVEC/S uses xstate
* compaction. But doing so is a pointless exercise because most
* components have an all zeros init state except for the legacy
* ones (FP and SSE). Those can be saved with FXSAVE into the
* legacy area. Adding new features requires to ensure that init
* state is all zeroes or if not to add the necessary handling
* here.
*/
fxsave(&init_fpstate.regs.fxsave);
}
int xfeature_size(int xfeature_nr)
{
u32 eax, ebx, ecx, edx;
CHECK_XFEATURE(xfeature_nr);
cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
return eax;
}
/* Validate an xstate header supplied by userspace (ptrace or sigreturn) */
static int validate_user_xstate_header(const struct xstate_header *hdr,
struct fpstate *fpstate)
{
/* No unknown or supervisor features may be set */
if (hdr->xfeatures & ~fpstate->user_xfeatures)
return -EINVAL;
/* Userspace must use the uncompacted format */
if (hdr->xcomp_bv)
return -EINVAL;
/*
* If 'reserved' is shrunken to add a new field, make sure to validate
* that new field here!
*/
BUILD_BUG_ON(sizeof(hdr->reserved) != 48);
/* No reserved bits may be set */
if (memchr_inv(hdr->reserved, 0, sizeof(hdr->reserved)))
return -EINVAL;
return 0;
}
static void __init __xstate_dump_leaves(void)
{
int i;
u32 eax, ebx, ecx, edx;
static int should_dump = 1;
if (!should_dump)
return;
should_dump = 0;
/*
* Dump out a few leaves past the ones that we support
* just in case there are some goodies up there
*/
for (i = 0; i < XFEATURE_MAX + 10; i++) {
cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n",
XSTATE_CPUID, i, eax, ebx, ecx, edx);
}
}
#define XSTATE_WARN_ON(x, fmt, ...) do { \
if (WARN_ONCE(x, "XSAVE consistency problem: " fmt, ##__VA_ARGS__)) { \
__xstate_dump_leaves(); \
} \
} while (0)
#define XCHECK_SZ(sz, nr, __struct) ({ \
if (WARN_ONCE(sz != sizeof(__struct), \
"[%s]: struct is %zu bytes, cpu state %d bytes\n", \
xfeature_names[nr], sizeof(__struct), sz)) { \
__xstate_dump_leaves(); \
} \
true; \
})
/**
* check_xtile_data_against_struct - Check tile data state size.
*
* Calculate the state size by multiplying the single tile size which is
* recorded in a C struct, and the number of tiles that the CPU informs.
* Compare the provided size with the calculation.
*
* @size: The tile data state size
*
* Returns: 0 on success, -EINVAL on mismatch.
*/
static int __init check_xtile_data_against_struct(int size)
{
u32 max_palid, palid, state_size;
u32 eax, ebx, ecx, edx;
u16 max_tile;
/*
* Check the maximum palette id:
* eax: the highest numbered palette subleaf.
*/
cpuid_count(TILE_CPUID, 0, &max_palid, &ebx, &ecx, &edx);
/*
* Cross-check each tile size and find the maximum number of
* supported tiles.
*/
for (palid = 1, max_tile = 0; palid <= max_palid; palid++) {
u16 tile_size, max;
/*
* Check the tile size info:
* eax[31:16]: bytes per title
* ebx[31:16]: the max names (or max number of tiles)
*/
cpuid_count(TILE_CPUID, palid, &eax, &ebx, &edx, &edx);
tile_size = eax >> 16;
max = ebx >> 16;
if (tile_size != sizeof(struct xtile_data)) {
pr_err("%s: struct is %zu bytes, cpu xtile %d bytes\n",
__stringify(XFEATURE_XTILE_DATA),
sizeof(struct xtile_data), tile_size);
__xstate_dump_leaves();
return -EINVAL;
}
if (max > max_tile)
max_tile = max;
}
state_size = sizeof(struct xtile_data) * max_tile;
if (size != state_size) {
pr_err("%s: calculated size is %u bytes, cpu state %d bytes\n",
__stringify(XFEATURE_XTILE_DATA), state_size, size);
__xstate_dump_leaves();
return -EINVAL;
}
return 0;
}
/*
* We have a C struct for each 'xstate'. We need to ensure
* that our software representation matches what the CPU
* tells us about the state's size.
*/
static bool __init check_xstate_against_struct(int nr)
{
/*
* Ask the CPU for the size of the state.
*/
int sz = xfeature_size(nr);
/*
* Match each CPU state with the corresponding software
* structure.
*/
switch (nr) {
case XFEATURE_YMM: return XCHECK_SZ(sz, nr, struct ymmh_struct);
case XFEATURE_BNDREGS: return XCHECK_SZ(sz, nr, struct mpx_bndreg_state);
case XFEATURE_BNDCSR: return XCHECK_SZ(sz, nr, struct mpx_bndcsr_state);
case XFEATURE_OPMASK: return XCHECK_SZ(sz, nr, struct avx_512_opmask_state);
case XFEATURE_ZMM_Hi256: return XCHECK_SZ(sz, nr, struct avx_512_zmm_uppers_state);
case XFEATURE_Hi16_ZMM: return XCHECK_SZ(sz, nr, struct avx_512_hi16_state);
case XFEATURE_PKRU: return XCHECK_SZ(sz, nr, struct pkru_state);
case XFEATURE_PASID: return XCHECK_SZ(sz, nr, struct ia32_pasid_state);
case XFEATURE_XTILE_CFG: return XCHECK_SZ(sz, nr, struct xtile_cfg);
case XFEATURE_CET_USER: return XCHECK_SZ(sz, nr, struct cet_user_state);
case XFEATURE_XTILE_DATA: check_xtile_data_against_struct(sz); return true;
default:
XSTATE_WARN_ON(1, "No structure for xstate: %d\n", nr);
return false;
}
return true;
}
static unsigned int xstate_calculate_size(u64 xfeatures, bool compacted)
{
unsigned int topmost = fls64(xfeatures) - 1;
unsigned int offset = xstate_offsets[topmost];
if (topmost <= XFEATURE_SSE)
return sizeof(struct xregs_state);
if (compacted)
offset = xfeature_get_offset(xfeatures, topmost);
return offset + xstate_sizes[topmost];
}
/*
* This essentially double-checks what the cpu told us about
* how large the XSAVE buffer needs to be. We are recalculating
* it to be safe.
*
* Independent XSAVE features allocate their own buffers and are not
* covered by these checks. Only the size of the buffer for task->fpu
* is checked here.
*/
static bool __init paranoid_xstate_size_valid(unsigned int kernel_size)
{
bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
bool xsaves = cpu_feature_enabled(X86_FEATURE_XSAVES);
unsigned int size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
int i;
for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
if (!check_xstate_against_struct(i))
return false;
/*
* Supervisor state components can be managed only by
* XSAVES.
*/
if (!xsaves && xfeature_is_supervisor(i)) {
XSTATE_WARN_ON(1, "Got supervisor feature %d, but XSAVES not advertised\n", i);
return false;
}
}
size = xstate_calculate_size(fpu_kernel_cfg.max_features, compacted);
XSTATE_WARN_ON(size != kernel_size,
"size %u != kernel_size %u\n", size, kernel_size);
return size == kernel_size;
}
/*
* Get total size of enabled xstates in XCR0 | IA32_XSS.
*
* Note the SDM's wording here. "sub-function 0" only enumerates
* the size of the *user* states. If we use it to size a buffer
* that we use 'XSAVES' on, we could potentially overflow the
* buffer because 'XSAVES' saves system states too.
*
* This also takes compaction into account. So this works for
* XSAVEC as well.
*/
static unsigned int __init get_compacted_size(void)
{
unsigned int eax, ebx, ecx, edx;
/*
* - CPUID function 0DH, sub-function 1:
* EBX enumerates the size (in bytes) required by
* the XSAVES instruction for an XSAVE area
* containing all the state components
* corresponding to bits currently set in
* XCR0 | IA32_XSS.
*
* When XSAVES is not available but XSAVEC is (virt), then there
* are no supervisor states, but XSAVEC still uses compacted
* format.
*/
cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
return ebx;
}
/*
* Get the total size of the enabled xstates without the independent supervisor
* features.
*/
static unsigned int __init get_xsave_compacted_size(void)
{
u64 mask = xfeatures_mask_independent();
unsigned int size;
if (!mask)
return get_compacted_size();
/* Disable independent features. */
wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor());
/*
* Ask the hardware what size is required of the buffer.
* This is the size required for the task->fpu buffer.
*/
size = get_compacted_size();
/* Re-enable independent features so XSAVES will work on them again. */
wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | mask);
return size;
}
static unsigned int __init get_xsave_size_user(void)
{
unsigned int eax, ebx, ecx, edx;
/*
* - CPUID function 0DH, sub-function 0:
* EBX enumerates the size (in bytes) required by
* the XSAVE instruction for an XSAVE area
* containing all the *user* state components
* corresponding to bits currently set in XCR0.
*/
cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
return ebx;
}
static int __init init_xstate_size(void)
{
/* Recompute the context size for enabled features: */
unsigned int user_size, kernel_size, kernel_default_size;
bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
/* Uncompacted user space size */
user_size = get_xsave_size_user();
/*
* XSAVES kernel size includes supervisor states and uses compacted
* format. XSAVEC uses compacted format, but does not save
* supervisor states.
*
* XSAVE[OPT] do not support supervisor states so kernel and user
* size is identical.
*/
if (compacted)
kernel_size = get_xsave_compacted_size();
else
kernel_size = user_size;
kernel_default_size =
xstate_calculate_size(fpu_kernel_cfg.default_features, compacted);
if (!paranoid_xstate_size_valid(kernel_size))
return -EINVAL;
fpu_kernel_cfg.max_size = kernel_size;
fpu_user_cfg.max_size = user_size;
fpu_kernel_cfg.default_size = kernel_default_size;
fpu_user_cfg.default_size =
xstate_calculate_size(fpu_user_cfg.default_features, false);
return 0;
}
/*
* We enabled the XSAVE hardware, but something went wrong and
* we can not use it. Disable it.
*/
static void __init fpu__init_disable_system_xstate(unsigned int legacy_size)
{
fpu_kernel_cfg.max_features = 0;
cr4_clear_bits(X86_CR4_OSXSAVE);
setup_clear_cpu_cap(X86_FEATURE_XSAVE);
/* Restore the legacy size.*/
fpu_kernel_cfg.max_size = legacy_size;
fpu_kernel_cfg.default_size = legacy_size;
fpu_user_cfg.max_size = legacy_size;
fpu_user_cfg.default_size = legacy_size;
/*
* Prevent enabling the static branch which enables writes to the
* XFD MSR.
*/
init_fpstate.xfd = 0;
fpstate_reset(¤t->thread.fpu);
}
/*
* Enable and initialize the xsave feature.
* Called once per system bootup.
*/
void __init fpu__init_system_xstate(unsigned int legacy_size)
{
unsigned int eax, ebx, ecx, edx;
u64 xfeatures;
int err;
int i;
if (!boot_cpu_has(X86_FEATURE_FPU)) {
pr_info("x86/fpu: No FPU detected\n");
return;
}
if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
pr_info("x86/fpu: x87 FPU will use %s\n",
boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE");
return;
}
if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
WARN_ON_FPU(1);
return;
}
/*
* Find user xstates supported by the processor.
*/
cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
fpu_kernel_cfg.max_features = eax + ((u64)edx << 32);
/*
* Find supervisor xstates supported by the processor.
*/
cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
fpu_kernel_cfg.max_features |= ecx + ((u64)edx << 32);
if ((fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) {
/*
* This indicates that something really unexpected happened
* with the enumeration. Disable XSAVE and try to continue
* booting without it. This is too early to BUG().
*/
pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n",
fpu_kernel_cfg.max_features);
goto out_disable;
}
fpu_kernel_cfg.independent_features = fpu_kernel_cfg.max_features &
XFEATURE_MASK_INDEPENDENT;
/*
* Clear XSAVE features that are disabled in the normal CPUID.
*/
for (i = 0; i < ARRAY_SIZE(xsave_cpuid_features); i++) {
unsigned short cid = xsave_cpuid_features[i];
/* Careful: X86_FEATURE_FPU is 0! */
if ((i != XFEATURE_FP && !cid) || !boot_cpu_has(cid))
fpu_kernel_cfg.max_features &= ~BIT_ULL(i);
}
if (!cpu_feature_enabled(X86_FEATURE_XFD))
fpu_kernel_cfg.max_features &= ~XFEATURE_MASK_USER_DYNAMIC;
if (!cpu_feature_enabled(X86_FEATURE_XSAVES))
fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED;
else
fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED |
XFEATURE_MASK_SUPERVISOR_SUPPORTED;
fpu_user_cfg.max_features = fpu_kernel_cfg.max_features;
fpu_user_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED;
/* Clean out dynamic features from default */
fpu_kernel_cfg.default_features = fpu_kernel_cfg.max_features;
fpu_kernel_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC;
fpu_user_cfg.default_features = fpu_user_cfg.max_features;
fpu_user_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC;
/* Store it for paranoia check at the end */
xfeatures = fpu_kernel_cfg.max_features;
/*
* Initialize the default XFD state in initfp_state and enable the
* dynamic sizing mechanism if dynamic states are available. The
* static key cannot be enabled here because this runs before
* jump_label_init(). This is delayed to an initcall.
*/
init_fpstate.xfd = fpu_user_cfg.max_features & XFEATURE_MASK_USER_DYNAMIC;
/* Set up compaction feature bit */
if (cpu_feature_enabled(X86_FEATURE_XSAVEC) ||
cpu_feature_enabled(X86_FEATURE_XSAVES))
setup_force_cpu_cap(X86_FEATURE_XCOMPACTED);
/* Enable xstate instructions to be able to continue with initialization: */
fpu__init_cpu_xstate();
/* Cache size, offset and flags for initialization */
setup_xstate_cache();
err = init_xstate_size();
if (err)
goto out_disable;
/* Reset the state for the current task */
fpstate_reset(¤t->thread.fpu);
/*
* Update info used for ptrace frames; use standard-format size and no
* supervisor xstates:
*/
update_regset_xstate_info(fpu_user_cfg.max_size,
fpu_user_cfg.max_features);
/*
* init_fpstate excludes dynamic states as they are large but init
* state is zero.
*/
init_fpstate.size = fpu_kernel_cfg.default_size;
init_fpstate.xfeatures = fpu_kernel_cfg.default_features;
if (init_fpstate.size > sizeof(init_fpstate.regs)) {
pr_warn("x86/fpu: init_fpstate buffer too small (%zu < %d), disabling XSAVE\n",
sizeof(init_fpstate.regs), init_fpstate.size);
goto out_disable;
}
setup_init_fpu_buf();
/*
* Paranoia check whether something in the setup modified the
* xfeatures mask.
*/
if (xfeatures != fpu_kernel_cfg.max_features) {
pr_err("x86/fpu: xfeatures modified from 0x%016llx to 0x%016llx during init, disabling XSAVE\n",
xfeatures, fpu_kernel_cfg.max_features);
goto out_disable;
}
/*
* CPU capabilities initialization runs before FPU init. So
* X86_FEATURE_OSXSAVE is not set. Now that XSAVE is completely
* functional, set the feature bit so depending code works.
*/
setup_force_cpu_cap(X86_FEATURE_OSXSAVE);
print_xstate_offset_size();
pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n",
fpu_kernel_cfg.max_features,
fpu_kernel_cfg.max_size,
boot_cpu_has(X86_FEATURE_XCOMPACTED) ? "compacted" : "standard");
return;
out_disable:
/* something went wrong, try to boot without any XSAVE support */
fpu__init_disable_system_xstate(legacy_size);
}
/*
* Restore minimal FPU state after suspend:
*/
void fpu__resume_cpu(void)
{
/*
* Restore XCR0 on xsave capable CPUs:
*/
if (cpu_feature_enabled(X86_FEATURE_XSAVE))
xsetbv(XCR_XFEATURE_ENABLED_MASK, fpu_user_cfg.max_features);
/*
* Restore IA32_XSS. The same CPUID bit enumerates support
* of XSAVES and MSR_IA32_XSS.
*/
if (cpu_feature_enabled(X86_FEATURE_XSAVES)) {
wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() |
xfeatures_mask_independent());
}
if (fpu_state_size_dynamic())
wrmsrl(MSR_IA32_XFD, current->thread.fpu.fpstate->xfd);
}
/*
* Given an xstate feature nr, calculate where in the xsave
* buffer the state is. Callers should ensure that the buffer
* is valid.
*/
static void *__raw_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
{
u64 xcomp_bv = xsave->header.xcomp_bv;
if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr)))
return NULL;
if (cpu_feature_enabled(X86_FEATURE_XCOMPACTED)) {
if (WARN_ON_ONCE(!(xcomp_bv & BIT_ULL(xfeature_nr))))
return NULL;
}
return (void *)xsave + xfeature_get_offset(xcomp_bv, xfeature_nr);
}
/*
* Given the xsave area and a state inside, this function returns the
* address of the state.
*
* This is the API that is called to get xstate address in either
* standard format or compacted format of xsave area.
*
* Note that if there is no data for the field in the xsave buffer
* this will return NULL.
*
* Inputs:
* xstate: the thread's storage area for all FPU data
* xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP,
* XFEATURE_SSE, etc...)
* Output:
* address of the state in the xsave area, or NULL if the
* field is not present in the xsave buffer.
*/
void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
{
/*
* Do we even *have* xsave state?
*/
if (!boot_cpu_has(X86_FEATURE_XSAVE))
return NULL;
/*
* We should not ever be requesting features that we
* have not enabled.
*/
if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr)))
return NULL;
/*
* This assumes the last 'xsave*' instruction to
* have requested that 'xfeature_nr' be saved.
* If it did not, we might be seeing and old value
* of the field in the buffer.
*
* This can happen because the last 'xsave' did not
* request that this feature be saved (unlikely)
* or because the "init optimization" caused it
* to not be saved.
*/
if (!(xsave->header.xfeatures & BIT_ULL(xfeature_nr)))
return NULL;
return __raw_xsave_addr(xsave, xfeature_nr);
}
EXPORT_SYMBOL_GPL(get_xsave_addr);
/*
* Given an xstate feature nr, calculate where in the xsave buffer the state is.
* The xsave buffer should be in standard format, not compacted (e.g. user mode
* signal frames).
*/
void __user *get_xsave_addr_user(struct xregs_state __user *xsave, int xfeature_nr)
{
if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr)))
return NULL;
return (void __user *)xsave + xstate_offsets[xfeature_nr];
}
#ifdef CONFIG_ARCH_HAS_PKEYS
/*
* This will go out and modify PKRU register to set the access
* rights for @pkey to @init_val.
*/
int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
unsigned long init_val)
{
u32 old_pkru, new_pkru_bits = 0;
int pkey_shift;
/*
* This check implies XSAVE support. OSPKE only gets
* set if we enable XSAVE and we enable PKU in XCR0.
*/
if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
return -EINVAL;
/*
* This code should only be called with valid 'pkey'
* values originating from in-kernel users. Complain
* if a bad value is observed.
*/
if (WARN_ON_ONCE(pkey >= arch_max_pkey()))
return -EINVAL;
/* Set the bits we need in PKRU: */
if (init_val & PKEY_DISABLE_ACCESS)
new_pkru_bits |= PKRU_AD_BIT;
if (init_val & PKEY_DISABLE_WRITE)
new_pkru_bits |= PKRU_WD_BIT;
/* Shift the bits in to the correct place in PKRU for pkey: */
pkey_shift = pkey * PKRU_BITS_PER_PKEY;
new_pkru_bits <<= pkey_shift;
/* Get old PKRU and mask off any old bits in place: */
old_pkru = read_pkru();
old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift);
/* Write old part along with new part: */
write_pkru(old_pkru | new_pkru_bits);
return 0;
}
#endif /* ! CONFIG_ARCH_HAS_PKEYS */
static void copy_feature(bool from_xstate, struct membuf *to, void *xstate,
void *init_xstate, unsigned int size)
{
membuf_write(to, from_xstate ? xstate : init_xstate, size);
}
/**
* __copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer
* @to: membuf descriptor
* @fpstate: The fpstate buffer from which to copy
* @xfeatures: The mask of xfeatures to save (XSAVE mode only)
* @pkru_val: The PKRU value to store in the PKRU component
* @copy_mode: The requested copy mode
*
* Converts from kernel XSAVE or XSAVES compacted format to UABI conforming
* format, i.e. from the kernel internal hardware dependent storage format
* to the requested @mode. UABI XSTATE is always uncompacted!
*
* It supports partial copy but @to.pos always starts from zero.
*/
void __copy_xstate_to_uabi_buf(struct membuf to, struct fpstate *fpstate,
u64 xfeatures, u32 pkru_val,
enum xstate_copy_mode copy_mode)
{
const unsigned int off_mxcsr = offsetof(struct fxregs_state, mxcsr);
struct xregs_state *xinit = &init_fpstate.regs.xsave;
struct xregs_state *xsave = &fpstate->regs.xsave;
struct xstate_header header;
unsigned int zerofrom;
u64 mask;
int i;
memset(&header, 0, sizeof(header));
header.xfeatures = xsave->header.xfeatures;
/* Mask out the feature bits depending on copy mode */
switch (copy_mode) {
case XSTATE_COPY_FP:
header.xfeatures &= XFEATURE_MASK_FP;
break;
case XSTATE_COPY_FX:
header.xfeatures &= XFEATURE_MASK_FP | XFEATURE_MASK_SSE;
break;
case XSTATE_COPY_XSAVE:
header.xfeatures &= fpstate->user_xfeatures & xfeatures;
break;
}
/* Copy FP state up to MXCSR */
copy_feature(header.xfeatures & XFEATURE_MASK_FP, &to, &xsave->i387,
&xinit->i387, off_mxcsr);
/* Copy MXCSR when SSE or YMM are set in the feature mask */
copy_feature(header.xfeatures & (XFEATURE_MASK_SSE | XFEATURE_MASK_YMM),
&to, &xsave->i387.mxcsr, &xinit->i387.mxcsr,
MXCSR_AND_FLAGS_SIZE);
/* Copy the remaining FP state */
copy_feature(header.xfeatures & XFEATURE_MASK_FP,
&to, &xsave->i387.st_space, &xinit->i387.st_space,
sizeof(xsave->i387.st_space));
/* Copy the SSE state - shared with YMM, but independently managed */
copy_feature(header.xfeatures & XFEATURE_MASK_SSE,
&to, &xsave->i387.xmm_space, &xinit->i387.xmm_space,
sizeof(xsave->i387.xmm_space));
if (copy_mode != XSTATE_COPY_XSAVE)
goto out;
/* Zero the padding area */
membuf_zero(&to, sizeof(xsave->i387.padding));
/* Copy xsave->i387.sw_reserved */
membuf_write(&to, xstate_fx_sw_bytes, sizeof(xsave->i387.sw_reserved));
/* Copy the user space relevant state of @xsave->header */
membuf_write(&to, &header, sizeof(header));
zerofrom = offsetof(struct xregs_state, extended_state_area);
/*
* This 'mask' indicates which states to copy from fpstate.
* Those extended states that are not present in fpstate are
* either disabled or initialized:
*
* In non-compacted format, disabled features still occupy
* state space but there is no state to copy from in the
* compacted init_fpstate. The gap tracking will zero these
* states.
*
* The extended features have an all zeroes init state. Thus,
* remove them from 'mask' to zero those features in the user
* buffer instead of retrieving them from init_fpstate.
*/
mask = header.xfeatures;
for_each_extended_xfeature(i, mask) {
/*
* If there was a feature or alignment gap, zero the space
* in the destination buffer.
*/
if (zerofrom < xstate_offsets[i])
membuf_zero(&to, xstate_offsets[i] - zerofrom);
if (i == XFEATURE_PKRU) {
struct pkru_state pkru = {0};
/*
* PKRU is not necessarily up to date in the
* XSAVE buffer. Use the provided value.
*/
pkru.pkru = pkru_val;
membuf_write(&to, &pkru, sizeof(pkru));
} else {
membuf_write(&to,
__raw_xsave_addr(xsave, i),
xstate_sizes[i]);
}
/*
* Keep track of the last copied state in the non-compacted
* target buffer for gap zeroing.
*/
zerofrom = xstate_offsets[i] + xstate_sizes[i];
}
out:
if (to.left)
membuf_zero(&to, to.left);
}
/**
* copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer
* @to: membuf descriptor
* @tsk: The task from which to copy the saved xstate
* @copy_mode: The requested copy mode
*
* Converts from kernel XSAVE or XSAVES compacted format to UABI conforming
* format, i.e. from the kernel internal hardware dependent storage format
* to the requested @mode. UABI XSTATE is always uncompacted!
*
* It supports partial copy but @to.pos always starts from zero.
*/
void copy_xstate_to_uabi_buf(struct membuf to, struct task_struct *tsk,
enum xstate_copy_mode copy_mode)
{
__copy_xstate_to_uabi_buf(to, tsk->thread.fpu.fpstate,
tsk->thread.fpu.fpstate->user_xfeatures,
tsk->thread.pkru, copy_mode);
}
static int copy_from_buffer(void *dst, unsigned int offset, unsigned int size,
const void *kbuf, const void __user *ubuf)
{
if (kbuf) {
memcpy(dst, kbuf + offset, size);
} else {
if (copy_from_user(dst, ubuf + offset, size))
return -EFAULT;
}
return 0;
}
/**
* copy_uabi_to_xstate - Copy a UABI format buffer to the kernel xstate
* @fpstate: The fpstate buffer to copy to
* @kbuf: The UABI format buffer, if it comes from the kernel
* @ubuf: The UABI format buffer, if it comes from userspace
* @pkru: The location to write the PKRU value to
*
* Converts from the UABI format into the kernel internal hardware
* dependent format.
*
* This function ultimately has three different callers with distinct PKRU
* behavior.
* 1. When called from sigreturn the PKRU register will be restored from
* @fpstate via an XRSTOR. Correctly copying the UABI format buffer to
* @fpstate is sufficient to cover this case, but the caller will also
* pass a pointer to the thread_struct's pkru field in @pkru and updating
* it is harmless.
* 2. When called from ptrace the PKRU register will be restored from the
* thread_struct's pkru field. A pointer to that is passed in @pkru.
* The kernel will restore it manually, so the XRSTOR behavior that resets
* the PKRU register to the hardware init value (0) if the corresponding
* xfeatures bit is not set is emulated here.
* 3. When called from KVM the PKRU register will be restored from the vcpu's
* pkru field. A pointer to that is passed in @pkru. KVM hasn't used
* XRSTOR and hasn't had the PKRU resetting behavior described above. To
* preserve that KVM behavior, it passes NULL for @pkru if the xfeatures
* bit is not set.
*/
static int copy_uabi_to_xstate(struct fpstate *fpstate, const void *kbuf,
const void __user *ubuf, u32 *pkru)
{
struct xregs_state *xsave = &fpstate->regs.xsave;
unsigned int offset, size;
struct xstate_header hdr;
u64 mask;
int i;
offset = offsetof(struct xregs_state, header);
if (copy_from_buffer(&hdr, offset, sizeof(hdr), kbuf, ubuf))
return -EFAULT;
if (validate_user_xstate_header(&hdr, fpstate))
return -EINVAL;
/* Validate MXCSR when any of the related features is in use */
mask = XFEATURE_MASK_FP | XFEATURE_MASK_SSE | XFEATURE_MASK_YMM;
if (hdr.xfeatures & mask) {
u32 mxcsr[2];
offset = offsetof(struct fxregs_state, mxcsr);
if (copy_from_buffer(mxcsr, offset, sizeof(mxcsr), kbuf, ubuf))
return -EFAULT;
/* Reserved bits in MXCSR must be zero. */
if (mxcsr[0] & ~mxcsr_feature_mask)
return -EINVAL;
/* SSE and YMM require MXCSR even when FP is not in use. */
if (!(hdr.xfeatures & XFEATURE_MASK_FP)) {
xsave->i387.mxcsr = mxcsr[0];
xsave->i387.mxcsr_mask = mxcsr[1];
}
}
for (i = 0; i < XFEATURE_MAX; i++) {
mask = BIT_ULL(i);
if (hdr.xfeatures & mask) {
void *dst = __raw_xsave_addr(xsave, i);
offset = xstate_offsets[i];
size = xstate_sizes[i];
if (copy_from_buffer(dst, offset, size, kbuf, ubuf))
return -EFAULT;
}
}
if (hdr.xfeatures & XFEATURE_MASK_PKRU) {
struct pkru_state *xpkru;
xpkru = __raw_xsave_addr(xsave, XFEATURE_PKRU);
*pkru = xpkru->pkru;
} else {
/*
* KVM may pass NULL here to indicate that it does not need
* PKRU updated.
*/
if (pkru)
*pkru = 0;
}
/*
* The state that came in from userspace was user-state only.
* Mask all the user states out of 'xfeatures':
*/
xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL;
/*
* Add back in the features that came in from userspace:
*/
xsave->header.xfeatures |= hdr.xfeatures;
return 0;
}
/*
* Convert from a ptrace standard-format kernel buffer to kernel XSAVE[S]
* format and copy to the target thread. Used by ptrace and KVM.
*/
int copy_uabi_from_kernel_to_xstate(struct fpstate *fpstate, const void *kbuf, u32 *pkru)
{
return copy_uabi_to_xstate(fpstate, kbuf, NULL, pkru);
}
/*
* Convert from a sigreturn standard-format user-space buffer to kernel
* XSAVE[S] format and copy to the target thread. This is called from the
* sigreturn() and rt_sigreturn() system calls.
*/
int copy_sigframe_from_user_to_xstate(struct task_struct *tsk,
const void __user *ubuf)
{
return copy_uabi_to_xstate(tsk->thread.fpu.fpstate, NULL, ubuf, &tsk->thread.pkru);
}
static bool validate_independent_components(u64 mask)
{
u64 xchk;
if (WARN_ON_FPU(!cpu_feature_enabled(X86_FEATURE_XSAVES)))
return false;
xchk = ~xfeatures_mask_independent();
if (WARN_ON_ONCE(!mask || mask & xchk))
return false;
return true;
}
/**
* xsaves - Save selected components to a kernel xstate buffer
* @xstate: Pointer to the buffer
* @mask: Feature mask to select the components to save
*
* The @xstate buffer must be 64 byte aligned and correctly initialized as
* XSAVES does not write the full xstate header. Before first use the
* buffer should be zeroed otherwise a consecutive XRSTORS from that buffer
* can #GP.
*
* The feature mask must be a subset of the independent features.
*/
void xsaves(struct xregs_state *xstate, u64 mask)
{
int err;
if (!validate_independent_components(mask))
return;
XSTATE_OP(XSAVES, xstate, (u32)mask, (u32)(mask >> 32), err);
WARN_ON_ONCE(err);
}
/**
* xrstors - Restore selected components from a kernel xstate buffer
* @xstate: Pointer to the buffer
* @mask: Feature mask to select the components to restore
*
* The @xstate buffer must be 64 byte aligned and correctly initialized
* otherwise XRSTORS from that buffer can #GP.
*
* Proper usage is to restore the state which was saved with
* xsaves() into @xstate.
*
* The feature mask must be a subset of the independent features.
*/
void xrstors(struct xregs_state *xstate, u64 mask)
{
int err;
if (!validate_independent_components(mask))
return;
XSTATE_OP(XRSTORS, xstate, (u32)mask, (u32)(mask >> 32), err);
WARN_ON_ONCE(err);
}
#if IS_ENABLED(CONFIG_KVM)
void fpstate_clear_xstate_component(struct fpstate *fps, unsigned int xfeature)
{
void *addr = get_xsave_addr(&fps->regs.xsave, xfeature);
if (addr)
memset(addr, 0, xstate_sizes[xfeature]);
}
EXPORT_SYMBOL_GPL(fpstate_clear_xstate_component);
#endif
#ifdef CONFIG_X86_64
#ifdef CONFIG_X86_DEBUG_FPU
/*
* Ensure that a subsequent XSAVE* or XRSTOR* instruction with RFBM=@mask
* can safely operate on the @fpstate buffer.
*/
static bool xstate_op_valid(struct fpstate *fpstate, u64 mask, bool rstor)
{
u64 xfd = __this_cpu_read(xfd_state);
if (fpstate->xfd == xfd)
return true;
/*
* The XFD MSR does not match fpstate->xfd. That's invalid when
* the passed in fpstate is current's fpstate.
*/
if (fpstate->xfd == current->thread.fpu.fpstate->xfd)
return false;
/*
* XRSTOR(S) from init_fpstate are always correct as it will just
* bring all components into init state and not read from the
* buffer. XSAVE(S) raises #PF after init.
*/
if (fpstate == &init_fpstate)
return rstor;
/*
* XSAVE(S): clone(), fpu_swap_kvm_fpstate()
* XRSTORS(S): fpu_swap_kvm_fpstate()
*/
/*
* No XSAVE/XRSTOR instructions (except XSAVE itself) touch
* the buffer area for XFD-disabled state components.
*/
mask &= ~xfd;
/*
* Remove features which are valid in fpstate. They
* have space allocated in fpstate.
*/
mask &= ~fpstate->xfeatures;
/*
* Any remaining state components in 'mask' might be written
* by XSAVE/XRSTOR. Fail validation it found.
*/
return !mask;
}
void xfd_validate_state(struct fpstate *fpstate, u64 mask, bool rstor)
{
WARN_ON_ONCE(!xstate_op_valid(fpstate, mask, rstor));
}
#endif /* CONFIG_X86_DEBUG_FPU */
static int __init xfd_update_static_branch(void)
{
/*
* If init_fpstate.xfd has bits set then dynamic features are
* available and the dynamic sizing must be enabled.
*/
if (init_fpstate.xfd)
static_branch_enable(&__fpu_state_size_dynamic);
return 0;
}
arch_initcall(xfd_update_static_branch)
void fpstate_free(struct fpu *fpu)
{
if (fpu->fpstate && fpu->fpstate != &fpu->__fpstate)
vfree(fpu->fpstate);
}
/**
* fpstate_realloc - Reallocate struct fpstate for the requested new features
*
* @xfeatures: A bitmap of xstate features which extend the enabled features
* of that task
* @ksize: The required size for the kernel buffer
* @usize: The required size for user space buffers
* @guest_fpu: Pointer to a guest FPU container. NULL for host allocations
*
* Note vs. vmalloc(): If the task with a vzalloc()-allocated buffer
* terminates quickly, vfree()-induced IPIs may be a concern, but tasks
* with large states are likely to live longer.
*
* Returns: 0 on success, -ENOMEM on allocation error.
*/
static int fpstate_realloc(u64 xfeatures, unsigned int ksize,
unsigned int usize, struct fpu_guest *guest_fpu)
{
struct fpu *fpu = ¤t->thread.fpu;
struct fpstate *curfps, *newfps = NULL;
unsigned int fpsize;
bool in_use;
fpsize = ksize + ALIGN(offsetof(struct fpstate, regs), 64);
newfps = vzalloc(fpsize);
if (!newfps)
return -ENOMEM;
newfps->size = ksize;
newfps->user_size = usize;
newfps->is_valloc = true;
/*
* When a guest FPU is supplied, use @guest_fpu->fpstate
* as reference independent whether it is in use or not.
*/
curfps = guest_fpu ? guest_fpu->fpstate : fpu->fpstate;
/* Determine whether @curfps is the active fpstate */
in_use = fpu->fpstate == curfps;
if (guest_fpu) {
newfps->is_guest = true;
newfps->is_confidential = curfps->is_confidential;
newfps->in_use = curfps->in_use;
guest_fpu->xfeatures |= xfeatures;
guest_fpu->uabi_size = usize;
}
fpregs_lock();
/*
* If @curfps is in use, ensure that the current state is in the
* registers before swapping fpstate as that might invalidate it
* due to layout changes.
*/
if (in_use && test_thread_flag(TIF_NEED_FPU_LOAD))
fpregs_restore_userregs();
newfps->xfeatures = curfps->xfeatures | xfeatures;
newfps->user_xfeatures = curfps->user_xfeatures | xfeatures;
newfps->xfd = curfps->xfd & ~xfeatures;
/* Do the final updates within the locked region */
xstate_init_xcomp_bv(&newfps->regs.xsave, newfps->xfeatures);
if (guest_fpu) {
guest_fpu->fpstate = newfps;
/* If curfps is active, update the FPU fpstate pointer */
if (in_use)
fpu->fpstate = newfps;
} else {
fpu->fpstate = newfps;
}
if (in_use)
xfd_update_state(fpu->fpstate);
fpregs_unlock();
/* Only free valloc'ed state */
if (curfps && curfps->is_valloc)
vfree(curfps);
return 0;
}
static int validate_sigaltstack(unsigned int usize)
{
struct task_struct *thread, *leader = current->group_leader;
unsigned long framesize = get_sigframe_size();
lockdep_assert_held(¤t->sighand->siglock);
/* get_sigframe_size() is based on fpu_user_cfg.max_size */
framesize -= fpu_user_cfg.max_size;
framesize += usize;
for_each_thread(leader, thread) {
if (thread->sas_ss_size && thread->sas_ss_size < framesize)
return -ENOSPC;
}
return 0;
}
static int __xstate_request_perm(u64 permitted, u64 requested, bool guest)
{
/*
* This deliberately does not exclude !XSAVES as we still might
* decide to optionally context switch XCR0 or talk the silicon
* vendors into extending XFD for the pre AMX states, especially
* AVX512.
*/
bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
struct fpu *fpu = ¤t->group_leader->thread.fpu;
struct fpu_state_perm *perm;
unsigned int ksize, usize;
u64 mask;
int ret = 0;
/* Check whether fully enabled */
if ((permitted & requested) == requested)
return 0;
/* Calculate the resulting kernel state size */
mask = permitted | requested;
/* Take supervisor states into account on the host */
if (!guest)
mask |= xfeatures_mask_supervisor();
ksize = xstate_calculate_size(mask, compacted);
/* Calculate the resulting user state size */
mask &= XFEATURE_MASK_USER_SUPPORTED;
usize = xstate_calculate_size(mask, false);
if (!guest) {
ret = validate_sigaltstack(usize);
if (ret)
return ret;
}
perm = guest ? &fpu->guest_perm : &fpu->perm;
/* Pairs with the READ_ONCE() in xstate_get_group_perm() */
WRITE_ONCE(perm->__state_perm, mask);
/* Protected by sighand lock */
perm->__state_size = ksize;
perm->__user_state_size = usize;
return ret;
}
/*
* Permissions array to map facilities with more than one component
*/
static const u64 xstate_prctl_req[XFEATURE_MAX] = {
[XFEATURE_XTILE_DATA] = XFEATURE_MASK_XTILE_DATA,
};
static int xstate_request_perm(unsigned long idx, bool guest)
{
u64 permitted, requested;
int ret;
if (idx >= XFEATURE_MAX)
return -EINVAL;
/*
* Look up the facility mask which can require more than
* one xstate component.
*/
idx = array_index_nospec(idx, ARRAY_SIZE(xstate_prctl_req));
requested = xstate_prctl_req[idx];
if (!requested)
return -EOPNOTSUPP;
if ((fpu_user_cfg.max_features & requested) != requested)
return -EOPNOTSUPP;
/* Lockless quick check */
permitted = xstate_get_group_perm(guest);
if ((permitted & requested) == requested)
return 0;
/* Protect against concurrent modifications */
spin_lock_irq(¤t->sighand->siglock);
permitted = xstate_get_group_perm(guest);
/* First vCPU allocation locks the permissions. */
if (guest && (permitted & FPU_GUEST_PERM_LOCKED))
ret = -EBUSY;
else
ret = __xstate_request_perm(permitted, requested, guest);
spin_unlock_irq(¤t->sighand->siglock);
return ret;
}
int __xfd_enable_feature(u64 xfd_err, struct fpu_guest *guest_fpu)
{
u64 xfd_event = xfd_err & XFEATURE_MASK_USER_DYNAMIC;
struct fpu_state_perm *perm;
unsigned int ksize, usize;
struct fpu *fpu;
if (!xfd_event) {
if (!guest_fpu)
pr_err_once("XFD: Invalid xfd error: %016llx\n", xfd_err);
return 0;
}
/* Protect against concurrent modifications */
spin_lock_irq(¤t->sighand->siglock);
/* If not permitted let it die */
if ((xstate_get_group_perm(!!guest_fpu) & xfd_event) != xfd_event) {
spin_unlock_irq(¤t->sighand->siglock);
return -EPERM;
}
fpu = ¤t->group_leader->thread.fpu;
perm = guest_fpu ? &fpu->guest_perm : &fpu->perm;
ksize = perm->__state_size;
usize = perm->__user_state_size;
/*
* The feature is permitted. State size is sufficient. Dropping
* the lock is safe here even if more features are added from
* another task, the retrieved buffer sizes are valid for the
* currently requested feature(s).
*/
spin_unlock_irq(¤t->sighand->siglock);
/*
* Try to allocate a new fpstate. If that fails there is no way
* out.
*/
if (fpstate_realloc(xfd_event, ksize, usize, guest_fpu))
return -EFAULT;
return 0;
}
int xfd_enable_feature(u64 xfd_err)
{
return __xfd_enable_feature(xfd_err, NULL);
}
#else /* CONFIG_X86_64 */
static inline int xstate_request_perm(unsigned long idx, bool guest)
{
return -EPERM;
}
#endif /* !CONFIG_X86_64 */
u64 xstate_get_guest_group_perm(void)
{
return xstate_get_group_perm(true);
}
EXPORT_SYMBOL_GPL(xstate_get_guest_group_perm);
/**
* fpu_xstate_prctl - xstate permission operations
* @option: A subfunction of arch_prctl()
* @arg2: option argument
* Return: 0 if successful; otherwise, an error code
*
* Option arguments:
*
* ARCH_GET_XCOMP_SUPP: Pointer to user space u64 to store the info
* ARCH_GET_XCOMP_PERM: Pointer to user space u64 to store the info
* ARCH_REQ_XCOMP_PERM: Facility number requested
*
* For facilities which require more than one XSTATE component, the request
* must be the highest state component number related to that facility,
* e.g. for AMX which requires XFEATURE_XTILE_CFG(17) and
* XFEATURE_XTILE_DATA(18) this would be XFEATURE_XTILE_DATA(18).
*/
long fpu_xstate_prctl(int option, unsigned long arg2)
{
u64 __user *uptr = (u64 __user *)arg2;
u64 permitted, supported;
unsigned long idx = arg2;
bool guest = false;
switch (option) {
case ARCH_GET_XCOMP_SUPP:
supported = fpu_user_cfg.max_features | fpu_user_cfg.legacy_features;
return put_user(supported, uptr);
case ARCH_GET_XCOMP_PERM:
/*
* Lockless snapshot as it can also change right after the
* dropping the lock.
*/
permitted = xstate_get_host_group_perm();
permitted &= XFEATURE_MASK_USER_SUPPORTED;
return put_user(permitted, uptr);
case ARCH_GET_XCOMP_GUEST_PERM:
permitted = xstate_get_guest_group_perm();
permitted &= XFEATURE_MASK_USER_SUPPORTED;
return put_user(permitted, uptr);
case ARCH_REQ_XCOMP_GUEST_PERM:
guest = true;
fallthrough;
case ARCH_REQ_XCOMP_PERM:
if (!IS_ENABLED(CONFIG_X86_64))
return -EOPNOTSUPP;
return xstate_request_perm(idx, guest);
default:
return -EINVAL;
}
}
#ifdef CONFIG_PROC_PID_ARCH_STATUS
/*
* Report the amount of time elapsed in millisecond since last AVX512
* use in the task.
*/
static void avx512_status(struct seq_file *m, struct task_struct *task)
{
unsigned long timestamp = READ_ONCE(task->thread.fpu.avx512_timestamp);
long delta;
if (!timestamp) {
/*
* Report -1 if no AVX512 usage
*/
delta = -1;
} else {
delta = (long)(jiffies - timestamp);
/*
* Cap to LONG_MAX if time difference > LONG_MAX
*/
if (delta < 0)
delta = LONG_MAX;
delta = jiffies_to_msecs(delta);
}
seq_put_decimal_ll(m, "AVX512_elapsed_ms:\t", delta);
seq_putc(m, '\n');
}
/*
* Report architecture specific information
*/
int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
/*
* Report AVX512 state if the processor and build option supported.
*/
if (cpu_feature_enabled(X86_FEATURE_AVX512F))
avx512_status(m, task);
return 0;
}
#endif /* CONFIG_PROC_PID_ARCH_STATUS */
#ifdef CONFIG_COREDUMP
static const char owner_name[] = "LINUX";
/*
* Dump type, size, offset and flag values for every xfeature that is present.
*/
static int dump_xsave_layout_desc(struct coredump_params *cprm)
{
int num_records = 0;
int i;
for_each_extended_xfeature(i, fpu_user_cfg.max_features) {
struct x86_xfeat_component xc = {
.type = i,
.size = xstate_sizes[i],
.offset = xstate_offsets[i],
/* reserved for future use */
.flags = 0,
};
if (!dump_emit(cprm, &xc, sizeof(xc)))
return 0;
num_records++;
}
return num_records;
}
static u32 get_xsave_desc_size(void)
{
u32 cnt = 0;
u32 i;
for_each_extended_xfeature(i, fpu_user_cfg.max_features)
cnt++;
return cnt * (sizeof(struct x86_xfeat_component));
}
int elf_coredump_extra_notes_write(struct coredump_params *cprm)
{
int num_records = 0;
struct elf_note en;
if (!fpu_user_cfg.max_features)
return 0;
en.n_namesz = sizeof(owner_name);
en.n_descsz = get_xsave_desc_size();
en.n_type = NT_X86_XSAVE_LAYOUT;
if (!dump_emit(cprm, &en, sizeof(en)))
return 1;
if (!dump_emit(cprm, owner_name, en.n_namesz))
return 1;
if (!dump_align(cprm, 4))
return 1;
num_records = dump_xsave_layout_desc(cprm);
if (!num_records)
return 1;
/* Total size should be equal to the number of records */
if ((sizeof(struct x86_xfeat_component) * num_records) != en.n_descsz)
return 1;
return 0;
}
int elf_coredump_extra_notes_size(void)
{
int size;
if (!fpu_user_cfg.max_features)
return 0;
/* .note header */
size = sizeof(struct elf_note);
/* Name plus alignment to 4 bytes */
size += roundup(sizeof(owner_name), 4);
size += get_xsave_desc_size();
return size;
}
#endif /* CONFIG_COREDUMP */