// SPDX-License-Identifier: GPL-2.0-only
/*
* x86 APERF/MPERF KHz calculation for
* /sys/.../cpufreq/scaling_cur_freq
*
* Copyright (C) 2017 Intel Corp.
* Author: Len Brown <[email protected]>
*/
#include <linux/cpufreq.h>
#include <linux/delay.h>
#include <linux/ktime.h>
#include <linux/math64.h>
#include <linux/percpu.h>
#include <linux/rcupdate.h>
#include <linux/sched/isolation.h>
#include <linux/sched/topology.h>
#include <linux/smp.h>
#include <linux/syscore_ops.h>
#include <asm/cpu.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include "cpu.h"
struct aperfmperf {
seqcount_t seq;
unsigned long last_update;
u64 acnt;
u64 mcnt;
u64 aperf;
u64 mperf;
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct aperfmperf, cpu_samples) = {
.seq = SEQCNT_ZERO(cpu_samples.seq)
};
static void init_counter_refs(void)
{
u64 aperf, mperf;
rdmsrl(MSR_IA32_APERF, aperf);
rdmsrl(MSR_IA32_MPERF, mperf);
this_cpu_write(cpu_samples.aperf, aperf);
this_cpu_write(cpu_samples.mperf, mperf);
}
#if defined(CONFIG_X86_64) && defined(CONFIG_SMP)
/*
* APERF/MPERF frequency ratio computation.
*
* The scheduler wants to do frequency invariant accounting and needs a <1
* ratio to account for the 'current' frequency, corresponding to
* freq_curr / freq_max.
*
* Since the frequency freq_curr on x86 is controlled by micro-controller and
* our P-state setting is little more than a request/hint, we need to observe
* the effective frequency 'BusyMHz', i.e. the average frequency over a time
* interval after discarding idle time. This is given by:
*
* BusyMHz = delta_APERF / delta_MPERF * freq_base
*
* where freq_base is the max non-turbo P-state.
*
* The freq_max term has to be set to a somewhat arbitrary value, because we
* can't know which turbo states will be available at a given point in time:
* it all depends on the thermal headroom of the entire package. We set it to
* the turbo level with 4 cores active.
*
* Benchmarks show that's a good compromise between the 1C turbo ratio
* (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
* which would ignore the entire turbo range (a conspicuous part, making
* freq_curr/freq_max always maxed out).
*
* An exception to the heuristic above is the Atom uarch, where we choose the
* highest turbo level for freq_max since Atom's are generally oriented towards
* power efficiency.
*
* Setting freq_max to anything less than the 1C turbo ratio makes the ratio
* freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
*/
DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
void arch_set_max_freq_ratio(bool turbo_disabled)
{
arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
arch_turbo_freq_ratio;
}
EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
static bool __init turbo_disabled(void)
{
u64 misc_en;
int err;
err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
if (err)
return false;
return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
}
static bool __init slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
{
int err;
err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
if (err)
return false;
err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
if (err)
return false;
*base_freq = (*base_freq >> 16) & 0x3F; /* max P state */
*turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */
return true;
}
#define X86_MATCH(vfm) \
X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, NULL)
static const struct x86_cpu_id has_knl_turbo_ratio_limits[] __initconst = {
X86_MATCH(INTEL_XEON_PHI_KNL),
X86_MATCH(INTEL_XEON_PHI_KNM),
{}
};
static const struct x86_cpu_id has_skx_turbo_ratio_limits[] __initconst = {
X86_MATCH(INTEL_SKYLAKE_X),
{}
};
static const struct x86_cpu_id has_glm_turbo_ratio_limits[] __initconst = {
X86_MATCH(INTEL_ATOM_GOLDMONT),
X86_MATCH(INTEL_ATOM_GOLDMONT_D),
X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS),
{}
};
static bool __init knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
int num_delta_fratio)
{
int fratio, delta_fratio, found;
int err, i;
u64 msr;
err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
if (err)
return false;
*base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
if (err)
return false;
fratio = (msr >> 8) & 0xFF;
i = 16;
found = 0;
do {
if (found >= num_delta_fratio) {
*turbo_freq = fratio;
return true;
}
delta_fratio = (msr >> (i + 5)) & 0x7;
if (delta_fratio) {
found += 1;
fratio -= delta_fratio;
}
i += 8;
} while (i < 64);
return true;
}
static bool __init skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
{
u64 ratios, counts;
u32 group_size;
int err, i;
err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
if (err)
return false;
*base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
if (err)
return false;
err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
if (err)
return false;
for (i = 0; i < 64; i += 8) {
group_size = (counts >> i) & 0xFF;
if (group_size >= size) {
*turbo_freq = (ratios >> i) & 0xFF;
return true;
}
}
return false;
}
static bool __init core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
{
u64 msr;
int err;
err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
if (err)
return false;
err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
if (err)
return false;
*base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
*turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */
/* The CPU may have less than 4 cores */
if (!*turbo_freq)
*turbo_freq = msr & 0xFF; /* 1C turbo */
return true;
}
static bool __init intel_set_max_freq_ratio(void)
{
u64 base_freq, turbo_freq;
u64 turbo_ratio;
if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
goto out;
if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
goto out;
if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
goto out;
if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
goto out;
if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
goto out;
return false;
out:
/*
* Some hypervisors advertise X86_FEATURE_APERFMPERF
* but then fill all MSR's with zeroes.
* Some CPUs have turbo boost but don't declare any turbo ratio
* in MSR_TURBO_RATIO_LIMIT.
*/
if (!base_freq || !turbo_freq) {
pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
return false;
}
turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
if (!turbo_ratio) {
pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
return false;
}
arch_turbo_freq_ratio = turbo_ratio;
arch_set_max_freq_ratio(turbo_disabled());
return true;
}
#ifdef CONFIG_PM_SLEEP
static struct syscore_ops freq_invariance_syscore_ops = {
.resume = init_counter_refs,
};
static void register_freq_invariance_syscore_ops(void)
{
register_syscore_ops(&freq_invariance_syscore_ops);
}
#else
static inline void register_freq_invariance_syscore_ops(void) {}
#endif
static void freq_invariance_enable(void)
{
if (static_branch_unlikely(&arch_scale_freq_key)) {
WARN_ON_ONCE(1);
return;
}
static_branch_enable_cpuslocked(&arch_scale_freq_key);
register_freq_invariance_syscore_ops();
pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
}
void freq_invariance_set_perf_ratio(u64 ratio, bool turbo_disabled)
{
arch_turbo_freq_ratio = ratio;
arch_set_max_freq_ratio(turbo_disabled);
freq_invariance_enable();
}
static void __init bp_init_freq_invariance(void)
{
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
return;
if (intel_set_max_freq_ratio()) {
guard(cpus_read_lock)();
freq_invariance_enable();
}
}
static void disable_freq_invariance_workfn(struct work_struct *work)
{
int cpu;
static_branch_disable(&arch_scale_freq_key);
/*
* Set arch_freq_scale to a default value on all cpus
* This negates the effect of scaling
*/
for_each_possible_cpu(cpu)
per_cpu(arch_freq_scale, cpu) = SCHED_CAPACITY_SCALE;
}
static DECLARE_WORK(disable_freq_invariance_work,
disable_freq_invariance_workfn);
DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
static DEFINE_STATIC_KEY_FALSE(arch_hybrid_cap_scale_key);
struct arch_hybrid_cpu_scale {
unsigned long capacity;
unsigned long freq_ratio;
};
static struct arch_hybrid_cpu_scale __percpu *arch_cpu_scale;
/**
* arch_enable_hybrid_capacity_scale() - Enable hybrid CPU capacity scaling
*
* Allocate memory for per-CPU data used by hybrid CPU capacity scaling,
* initialize it and set the static key controlling its code paths.
*
* Must be called before arch_set_cpu_capacity().
*/
bool arch_enable_hybrid_capacity_scale(void)
{
int cpu;
if (static_branch_unlikely(&arch_hybrid_cap_scale_key)) {
WARN_ONCE(1, "Hybrid CPU capacity scaling already enabled");
return true;
}
arch_cpu_scale = alloc_percpu(struct arch_hybrid_cpu_scale);
if (!arch_cpu_scale)
return false;
for_each_possible_cpu(cpu) {
per_cpu_ptr(arch_cpu_scale, cpu)->capacity = SCHED_CAPACITY_SCALE;
per_cpu_ptr(arch_cpu_scale, cpu)->freq_ratio = arch_max_freq_ratio;
}
static_branch_enable(&arch_hybrid_cap_scale_key);
pr_info("Hybrid CPU capacity scaling enabled\n");
return true;
}
/**
* arch_set_cpu_capacity() - Set scale-invariance parameters for a CPU
* @cpu: Target CPU.
* @cap: Capacity of @cpu at its maximum frequency, relative to @max_cap.
* @max_cap: System-wide maximum CPU capacity.
* @cap_freq: Frequency of @cpu corresponding to @cap.
* @base_freq: Frequency of @cpu at which MPERF counts.
*
* The units in which @cap and @max_cap are expressed do not matter, so long
* as they are consistent, because the former is effectively divided by the
* latter. Analogously for @cap_freq and @base_freq.
*
* After calling this function for all CPUs, call arch_rebuild_sched_domains()
* to let the scheduler know that capacity-aware scheduling can be used going
* forward.
*/
void arch_set_cpu_capacity(int cpu, unsigned long cap, unsigned long max_cap,
unsigned long cap_freq, unsigned long base_freq)
{
if (static_branch_likely(&arch_hybrid_cap_scale_key)) {
WRITE_ONCE(per_cpu_ptr(arch_cpu_scale, cpu)->capacity,
div_u64(cap << SCHED_CAPACITY_SHIFT, max_cap));
WRITE_ONCE(per_cpu_ptr(arch_cpu_scale, cpu)->freq_ratio,
div_u64(cap_freq << SCHED_CAPACITY_SHIFT, base_freq));
} else {
WARN_ONCE(1, "Hybrid CPU capacity scaling not enabled");
}
}
unsigned long arch_scale_cpu_capacity(int cpu)
{
if (static_branch_unlikely(&arch_hybrid_cap_scale_key))
return READ_ONCE(per_cpu_ptr(arch_cpu_scale, cpu)->capacity);
return SCHED_CAPACITY_SCALE;
}
EXPORT_SYMBOL_GPL(arch_scale_cpu_capacity);
static void scale_freq_tick(u64 acnt, u64 mcnt)
{
u64 freq_scale, freq_ratio;
if (!arch_scale_freq_invariant())
return;
if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
goto error;
if (static_branch_unlikely(&arch_hybrid_cap_scale_key))
freq_ratio = READ_ONCE(this_cpu_ptr(arch_cpu_scale)->freq_ratio);
else
freq_ratio = arch_max_freq_ratio;
if (check_mul_overflow(mcnt, freq_ratio, &mcnt) || !mcnt)
goto error;
freq_scale = div64_u64(acnt, mcnt);
if (!freq_scale)
goto error;
if (freq_scale > SCHED_CAPACITY_SCALE)
freq_scale = SCHED_CAPACITY_SCALE;
this_cpu_write(arch_freq_scale, freq_scale);
return;
error:
pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
schedule_work(&disable_freq_invariance_work);
}
#else
static inline void bp_init_freq_invariance(void) { }
static inline void scale_freq_tick(u64 acnt, u64 mcnt) { }
#endif /* CONFIG_X86_64 && CONFIG_SMP */
void arch_scale_freq_tick(void)
{
struct aperfmperf *s = this_cpu_ptr(&cpu_samples);
u64 acnt, mcnt, aperf, mperf;
if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF))
return;
rdmsrl(MSR_IA32_APERF, aperf);
rdmsrl(MSR_IA32_MPERF, mperf);
acnt = aperf - s->aperf;
mcnt = mperf - s->mperf;
s->aperf = aperf;
s->mperf = mperf;
raw_write_seqcount_begin(&s->seq);
s->last_update = jiffies;
s->acnt = acnt;
s->mcnt = mcnt;
raw_write_seqcount_end(&s->seq);
scale_freq_tick(acnt, mcnt);
}
/*
* Discard samples older than the define maximum sample age of 20ms. There
* is no point in sending IPIs in such a case. If the scheduler tick was
* not running then the CPU is either idle or isolated.
*/
#define MAX_SAMPLE_AGE ((unsigned long)HZ / 50)
unsigned int arch_freq_get_on_cpu(int cpu)
{
struct aperfmperf *s = per_cpu_ptr(&cpu_samples, cpu);
unsigned int seq, freq;
unsigned long last;
u64 acnt, mcnt;
if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF))
goto fallback;
do {
seq = raw_read_seqcount_begin(&s->seq);
last = s->last_update;
acnt = s->acnt;
mcnt = s->mcnt;
} while (read_seqcount_retry(&s->seq, seq));
/*
* Bail on invalid count and when the last update was too long ago,
* which covers idle and NOHZ full CPUs.
*/
if (!mcnt || (jiffies - last) > MAX_SAMPLE_AGE)
goto fallback;
return div64_u64((cpu_khz * acnt), mcnt);
fallback:
freq = cpufreq_quick_get(cpu);
return freq ? freq : cpu_khz;
}
static int __init bp_init_aperfmperf(void)
{
if (!cpu_feature_enabled(X86_FEATURE_APERFMPERF))
return 0;
init_counter_refs();
bp_init_freq_invariance();
return 0;
}
early_initcall(bp_init_aperfmperf);
void ap_init_aperfmperf(void)
{
if (cpu_feature_enabled(X86_FEATURE_APERFMPERF))
init_counter_refs();
}