// SPDX-License-Identifier: GPL-2.0
#include <linux/phy.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool_netlink.h>
#include "qcom.h"
MODULE_DESCRIPTION("Qualcomm PHY driver Common Functions");
MODULE_AUTHOR("Matus Ujhelyi");
MODULE_AUTHOR("Christian Marangi <[email protected]>");
MODULE_LICENSE("GPL");
int at803x_debug_reg_read(struct phy_device *phydev, u16 reg)
{
int ret;
ret = phy_write(phydev, AT803X_DEBUG_ADDR, reg);
if (ret < 0)
return ret;
return phy_read(phydev, AT803X_DEBUG_DATA);
}
EXPORT_SYMBOL_GPL(at803x_debug_reg_read);
int at803x_debug_reg_mask(struct phy_device *phydev, u16 reg,
u16 clear, u16 set)
{
u16 val;
int ret;
ret = at803x_debug_reg_read(phydev, reg);
if (ret < 0)
return ret;
val = ret & 0xffff;
val &= ~clear;
val |= set;
return phy_write(phydev, AT803X_DEBUG_DATA, val);
}
EXPORT_SYMBOL_GPL(at803x_debug_reg_mask);
int at803x_debug_reg_write(struct phy_device *phydev, u16 reg, u16 data)
{
int ret;
ret = phy_write(phydev, AT803X_DEBUG_ADDR, reg);
if (ret < 0)
return ret;
return phy_write(phydev, AT803X_DEBUG_DATA, data);
}
EXPORT_SYMBOL_GPL(at803x_debug_reg_write);
int at803x_set_wol(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
int ret, irq_enabled;
if (wol->wolopts & WAKE_MAGIC) {
struct net_device *ndev = phydev->attached_dev;
const u8 *mac;
unsigned int i;
static const unsigned int offsets[] = {
AT803X_LOC_MAC_ADDR_32_47_OFFSET,
AT803X_LOC_MAC_ADDR_16_31_OFFSET,
AT803X_LOC_MAC_ADDR_0_15_OFFSET,
};
if (!ndev)
return -ENODEV;
mac = (const u8 *)ndev->dev_addr;
if (!is_valid_ether_addr(mac))
return -EINVAL;
for (i = 0; i < 3; i++)
phy_write_mmd(phydev, MDIO_MMD_PCS, offsets[i],
mac[(i * 2) + 1] | (mac[(i * 2)] << 8));
/* Enable WOL interrupt */
ret = phy_modify(phydev, AT803X_INTR_ENABLE, 0, AT803X_INTR_ENABLE_WOL);
if (ret)
return ret;
} else {
/* Disable WOL interrupt */
ret = phy_modify(phydev, AT803X_INTR_ENABLE, AT803X_INTR_ENABLE_WOL, 0);
if (ret)
return ret;
}
/* Clear WOL status */
ret = phy_read(phydev, AT803X_INTR_STATUS);
if (ret < 0)
return ret;
/* Check if there are other interrupts except for WOL triggered when PHY is
* in interrupt mode, only the interrupts enabled by AT803X_INTR_ENABLE can
* be passed up to the interrupt PIN.
*/
irq_enabled = phy_read(phydev, AT803X_INTR_ENABLE);
if (irq_enabled < 0)
return irq_enabled;
irq_enabled &= ~AT803X_INTR_ENABLE_WOL;
if (ret & irq_enabled && !phy_polling_mode(phydev))
phy_trigger_machine(phydev);
return 0;
}
EXPORT_SYMBOL_GPL(at803x_set_wol);
void at803x_get_wol(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
int value;
wol->supported = WAKE_MAGIC;
wol->wolopts = 0;
value = phy_read(phydev, AT803X_INTR_ENABLE);
if (value < 0)
return;
if (value & AT803X_INTR_ENABLE_WOL)
wol->wolopts |= WAKE_MAGIC;
}
EXPORT_SYMBOL_GPL(at803x_get_wol);
int at803x_ack_interrupt(struct phy_device *phydev)
{
int err;
err = phy_read(phydev, AT803X_INTR_STATUS);
return (err < 0) ? err : 0;
}
EXPORT_SYMBOL_GPL(at803x_ack_interrupt);
int at803x_config_intr(struct phy_device *phydev)
{
int err;
int value;
value = phy_read(phydev, AT803X_INTR_ENABLE);
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
/* Clear any pending interrupts */
err = at803x_ack_interrupt(phydev);
if (err)
return err;
value |= AT803X_INTR_ENABLE_AUTONEG_ERR;
value |= AT803X_INTR_ENABLE_SPEED_CHANGED;
value |= AT803X_INTR_ENABLE_DUPLEX_CHANGED;
value |= AT803X_INTR_ENABLE_LINK_FAIL;
value |= AT803X_INTR_ENABLE_LINK_SUCCESS;
err = phy_write(phydev, AT803X_INTR_ENABLE, value);
} else {
err = phy_write(phydev, AT803X_INTR_ENABLE, 0);
if (err)
return err;
/* Clear any pending interrupts */
err = at803x_ack_interrupt(phydev);
}
return err;
}
EXPORT_SYMBOL_GPL(at803x_config_intr);
irqreturn_t at803x_handle_interrupt(struct phy_device *phydev)
{
int irq_status, int_enabled;
irq_status = phy_read(phydev, AT803X_INTR_STATUS);
if (irq_status < 0) {
phy_error(phydev);
return IRQ_NONE;
}
/* Read the current enabled interrupts */
int_enabled = phy_read(phydev, AT803X_INTR_ENABLE);
if (int_enabled < 0) {
phy_error(phydev);
return IRQ_NONE;
}
/* See if this was one of our enabled interrupts */
if (!(irq_status & int_enabled))
return IRQ_NONE;
phy_trigger_machine(phydev);
return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(at803x_handle_interrupt);
int at803x_read_specific_status(struct phy_device *phydev,
struct at803x_ss_mask ss_mask)
{
int ss;
/* Read the AT8035 PHY-Specific Status register, which indicates the
* speed and duplex that the PHY is actually using, irrespective of
* whether we are in autoneg mode or not.
*/
ss = phy_read(phydev, AT803X_SPECIFIC_STATUS);
if (ss < 0)
return ss;
if (ss & AT803X_SS_SPEED_DUPLEX_RESOLVED) {
int sfc, speed;
sfc = phy_read(phydev, AT803X_SPECIFIC_FUNCTION_CONTROL);
if (sfc < 0)
return sfc;
speed = ss & ss_mask.speed_mask;
speed >>= ss_mask.speed_shift;
switch (speed) {
case AT803X_SS_SPEED_10:
phydev->speed = SPEED_10;
break;
case AT803X_SS_SPEED_100:
phydev->speed = SPEED_100;
break;
case AT803X_SS_SPEED_1000:
phydev->speed = SPEED_1000;
break;
case QCA808X_SS_SPEED_2500:
phydev->speed = SPEED_2500;
break;
}
if (ss & AT803X_SS_DUPLEX)
phydev->duplex = DUPLEX_FULL;
else
phydev->duplex = DUPLEX_HALF;
if (ss & AT803X_SS_MDIX)
phydev->mdix = ETH_TP_MDI_X;
else
phydev->mdix = ETH_TP_MDI;
switch (FIELD_GET(AT803X_SFC_MDI_CROSSOVER_MODE_M, sfc)) {
case AT803X_SFC_MANUAL_MDI:
phydev->mdix_ctrl = ETH_TP_MDI;
break;
case AT803X_SFC_MANUAL_MDIX:
phydev->mdix_ctrl = ETH_TP_MDI_X;
break;
case AT803X_SFC_AUTOMATIC_CROSSOVER:
phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
break;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(at803x_read_specific_status);
int at803x_config_mdix(struct phy_device *phydev, u8 ctrl)
{
u16 val;
switch (ctrl) {
case ETH_TP_MDI:
val = AT803X_SFC_MANUAL_MDI;
break;
case ETH_TP_MDI_X:
val = AT803X_SFC_MANUAL_MDIX;
break;
case ETH_TP_MDI_AUTO:
val = AT803X_SFC_AUTOMATIC_CROSSOVER;
break;
default:
return 0;
}
return phy_modify_changed(phydev, AT803X_SPECIFIC_FUNCTION_CONTROL,
AT803X_SFC_MDI_CROSSOVER_MODE_M,
FIELD_PREP(AT803X_SFC_MDI_CROSSOVER_MODE_M, val));
}
EXPORT_SYMBOL_GPL(at803x_config_mdix);
int at803x_prepare_config_aneg(struct phy_device *phydev)
{
int ret;
ret = at803x_config_mdix(phydev, phydev->mdix_ctrl);
if (ret < 0)
return ret;
/* Changes of the midx bits are disruptive to the normal operation;
* therefore any changes to these registers must be followed by a
* software reset to take effect.
*/
if (ret == 1) {
ret = genphy_soft_reset(phydev);
if (ret < 0)
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(at803x_prepare_config_aneg);
int at803x_read_status(struct phy_device *phydev)
{
struct at803x_ss_mask ss_mask = { 0 };
int err, old_link = phydev->link;
/* Update the link, but return if there was an error */
err = genphy_update_link(phydev);
if (err)
return err;
/* why bother the PHY if nothing can have changed */
if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link)
return 0;
phydev->speed = SPEED_UNKNOWN;
phydev->duplex = DUPLEX_UNKNOWN;
phydev->pause = 0;
phydev->asym_pause = 0;
err = genphy_read_lpa(phydev);
if (err < 0)
return err;
ss_mask.speed_mask = AT803X_SS_SPEED_MASK;
ss_mask.speed_shift = __bf_shf(AT803X_SS_SPEED_MASK);
err = at803x_read_specific_status(phydev, ss_mask);
if (err < 0)
return err;
if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete)
phy_resolve_aneg_pause(phydev);
return 0;
}
EXPORT_SYMBOL_GPL(at803x_read_status);
static int at803x_get_downshift(struct phy_device *phydev, u8 *d)
{
int val;
val = phy_read(phydev, AT803X_SMART_SPEED);
if (val < 0)
return val;
if (val & AT803X_SMART_SPEED_ENABLE)
*d = FIELD_GET(AT803X_SMART_SPEED_RETRY_LIMIT_MASK, val) + 2;
else
*d = DOWNSHIFT_DEV_DISABLE;
return 0;
}
static int at803x_set_downshift(struct phy_device *phydev, u8 cnt)
{
u16 mask, set;
int ret;
switch (cnt) {
case DOWNSHIFT_DEV_DEFAULT_COUNT:
cnt = AT803X_DEFAULT_DOWNSHIFT;
fallthrough;
case AT803X_MIN_DOWNSHIFT ... AT803X_MAX_DOWNSHIFT:
set = AT803X_SMART_SPEED_ENABLE |
AT803X_SMART_SPEED_BYPASS_TIMER |
FIELD_PREP(AT803X_SMART_SPEED_RETRY_LIMIT_MASK, cnt - 2);
mask = AT803X_SMART_SPEED_RETRY_LIMIT_MASK;
break;
case DOWNSHIFT_DEV_DISABLE:
set = 0;
mask = AT803X_SMART_SPEED_ENABLE |
AT803X_SMART_SPEED_BYPASS_TIMER;
break;
default:
return -EINVAL;
}
ret = phy_modify_changed(phydev, AT803X_SMART_SPEED, mask, set);
/* After changing the smart speed settings, we need to perform a
* software reset, use phy_init_hw() to make sure we set the
* reapply any values which might got lost during software reset.
*/
if (ret == 1)
ret = phy_init_hw(phydev);
return ret;
}
int at803x_get_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna, void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return at803x_get_downshift(phydev, data);
default:
return -EOPNOTSUPP;
}
}
EXPORT_SYMBOL_GPL(at803x_get_tunable);
int at803x_set_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna, const void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return at803x_set_downshift(phydev, *(const u8 *)data);
default:
return -EOPNOTSUPP;
}
}
EXPORT_SYMBOL_GPL(at803x_set_tunable);
int at803x_cdt_fault_length(int dt)
{
/* According to the datasheet the distance to the fault is
* DELTA_TIME * 0.824 meters.
*
* The author suspect the correct formula is:
*
* fault_distance = DELTA_TIME * (c * VF) / 125MHz / 2
*
* where c is the speed of light, VF is the velocity factor of
* the twisted pair cable, 125MHz the counter frequency and
* we need to divide by 2 because the hardware will measure the
* round trip time to the fault and back to the PHY.
*
* With a VF of 0.69 we get the factor 0.824 mentioned in the
* datasheet.
*/
return (dt * 824) / 10;
}
EXPORT_SYMBOL_GPL(at803x_cdt_fault_length);
int at803x_cdt_start(struct phy_device *phydev, u32 cdt_start)
{
return phy_write(phydev, AT803X_CDT, cdt_start);
}
EXPORT_SYMBOL_GPL(at803x_cdt_start);
int at803x_cdt_wait_for_completion(struct phy_device *phydev,
u32 cdt_en)
{
int val, ret;
/* One test run takes about 25ms */
ret = phy_read_poll_timeout(phydev, AT803X_CDT, val,
!(val & cdt_en),
30000, 100000, true);
return ret < 0 ? ret : 0;
}
EXPORT_SYMBOL_GPL(at803x_cdt_wait_for_completion);
static bool qca808x_cdt_fault_length_valid(int cdt_code)
{
switch (cdt_code) {
case QCA808X_CDT_STATUS_STAT_SAME_SHORT:
case QCA808X_CDT_STATUS_STAT_SAME_OPEN:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI1_SAME_NORMAL:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI1_SAME_OPEN:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI1_SAME_SHORT:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI2_SAME_NORMAL:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI2_SAME_OPEN:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI2_SAME_SHORT:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI3_SAME_NORMAL:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI3_SAME_OPEN:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI3_SAME_SHORT:
return true;
default:
return false;
}
}
static int qca808x_cable_test_result_trans(int cdt_code)
{
switch (cdt_code) {
case QCA808X_CDT_STATUS_STAT_NORMAL:
return ETHTOOL_A_CABLE_RESULT_CODE_OK;
case QCA808X_CDT_STATUS_STAT_SAME_SHORT:
return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
case QCA808X_CDT_STATUS_STAT_SAME_OPEN:
return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI1_SAME_NORMAL:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI1_SAME_OPEN:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI1_SAME_SHORT:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI2_SAME_NORMAL:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI2_SAME_OPEN:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI2_SAME_SHORT:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI3_SAME_NORMAL:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI3_SAME_OPEN:
case QCA808X_CDT_STATUS_STAT_CROSS_SHORT_WITH_MDI3_SAME_SHORT:
return ETHTOOL_A_CABLE_RESULT_CODE_CROSS_SHORT;
case QCA808X_CDT_STATUS_STAT_FAIL:
default:
return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
}
}
static int qca808x_cdt_fault_length(struct phy_device *phydev, int pair,
int result)
{
int val;
u32 cdt_length_reg = 0;
switch (pair) {
case ETHTOOL_A_CABLE_PAIR_A:
cdt_length_reg = QCA808X_MMD3_CDT_DIAG_PAIR_A;
break;
case ETHTOOL_A_CABLE_PAIR_B:
cdt_length_reg = QCA808X_MMD3_CDT_DIAG_PAIR_B;
break;
case ETHTOOL_A_CABLE_PAIR_C:
cdt_length_reg = QCA808X_MMD3_CDT_DIAG_PAIR_C;
break;
case ETHTOOL_A_CABLE_PAIR_D:
cdt_length_reg = QCA808X_MMD3_CDT_DIAG_PAIR_D;
break;
default:
return -EINVAL;
}
val = phy_read_mmd(phydev, MDIO_MMD_PCS, cdt_length_reg);
if (val < 0)
return val;
if (result == ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT)
val = FIELD_GET(QCA808X_CDT_DIAG_LENGTH_SAME_SHORT, val);
else
val = FIELD_GET(QCA808X_CDT_DIAG_LENGTH_CROSS_SHORT, val);
return at803x_cdt_fault_length(val);
}
static int qca808x_cable_test_get_pair_status(struct phy_device *phydev, u8 pair,
u16 status)
{
int length, result;
u16 pair_code;
switch (pair) {
case ETHTOOL_A_CABLE_PAIR_A:
pair_code = FIELD_GET(QCA808X_CDT_CODE_PAIR_A, status);
break;
case ETHTOOL_A_CABLE_PAIR_B:
pair_code = FIELD_GET(QCA808X_CDT_CODE_PAIR_B, status);
break;
case ETHTOOL_A_CABLE_PAIR_C:
pair_code = FIELD_GET(QCA808X_CDT_CODE_PAIR_C, status);
break;
case ETHTOOL_A_CABLE_PAIR_D:
pair_code = FIELD_GET(QCA808X_CDT_CODE_PAIR_D, status);
break;
default:
return -EINVAL;
}
result = qca808x_cable_test_result_trans(pair_code);
ethnl_cable_test_result(phydev, pair, result);
if (qca808x_cdt_fault_length_valid(pair_code)) {
length = qca808x_cdt_fault_length(phydev, pair, result);
ethnl_cable_test_fault_length(phydev, pair, length);
}
return 0;
}
int qca808x_cable_test_get_status(struct phy_device *phydev, bool *finished)
{
int ret, val;
*finished = false;
val = QCA808X_CDT_ENABLE_TEST |
QCA808X_CDT_LENGTH_UNIT;
ret = at803x_cdt_start(phydev, val);
if (ret)
return ret;
ret = at803x_cdt_wait_for_completion(phydev, QCA808X_CDT_ENABLE_TEST);
if (ret)
return ret;
val = phy_read_mmd(phydev, MDIO_MMD_PCS, QCA808X_MMD3_CDT_STATUS);
if (val < 0)
return val;
ret = qca808x_cable_test_get_pair_status(phydev, ETHTOOL_A_CABLE_PAIR_A, val);
if (ret)
return ret;
ret = qca808x_cable_test_get_pair_status(phydev, ETHTOOL_A_CABLE_PAIR_B, val);
if (ret)
return ret;
ret = qca808x_cable_test_get_pair_status(phydev, ETHTOOL_A_CABLE_PAIR_C, val);
if (ret)
return ret;
ret = qca808x_cable_test_get_pair_status(phydev, ETHTOOL_A_CABLE_PAIR_D, val);
if (ret)
return ret;
*finished = true;
return 0;
}
EXPORT_SYMBOL_GPL(qca808x_cable_test_get_status);
int qca808x_led_reg_hw_control_enable(struct phy_device *phydev, u16 reg)
{
return phy_clear_bits_mmd(phydev, MDIO_MMD_AN, reg,
QCA808X_LED_FORCE_EN);
}
EXPORT_SYMBOL_GPL(qca808x_led_reg_hw_control_enable);
bool qca808x_led_reg_hw_control_status(struct phy_device *phydev, u16 reg)
{
int val;
val = phy_read_mmd(phydev, MDIO_MMD_AN, reg);
return !(val & QCA808X_LED_FORCE_EN);
}
EXPORT_SYMBOL_GPL(qca808x_led_reg_hw_control_status);
int qca808x_led_reg_brightness_set(struct phy_device *phydev,
u16 reg, enum led_brightness value)
{
return phy_modify_mmd(phydev, MDIO_MMD_AN, reg,
QCA808X_LED_FORCE_EN | QCA808X_LED_FORCE_MODE_MASK,
QCA808X_LED_FORCE_EN | (value ? QCA808X_LED_FORCE_ON :
QCA808X_LED_FORCE_OFF));
}
EXPORT_SYMBOL_GPL(qca808x_led_reg_brightness_set);
int qca808x_led_reg_blink_set(struct phy_device *phydev, u16 reg,
unsigned long *delay_on,
unsigned long *delay_off)
{
int ret;
/* Set blink to 50% off, 50% on at 4Hz by default */
ret = phy_modify_mmd(phydev, MDIO_MMD_AN, QCA808X_MMD7_LED_GLOBAL,
QCA808X_LED_BLINK_FREQ_MASK | QCA808X_LED_BLINK_DUTY_MASK,
QCA808X_LED_BLINK_FREQ_4HZ | QCA808X_LED_BLINK_DUTY_50_50);
if (ret)
return ret;
/* We use BLINK_1 for normal blinking */
ret = phy_modify_mmd(phydev, MDIO_MMD_AN, reg,
QCA808X_LED_FORCE_EN | QCA808X_LED_FORCE_MODE_MASK,
QCA808X_LED_FORCE_EN | QCA808X_LED_FORCE_BLINK_1);
if (ret)
return ret;
/* We set blink to 4Hz, aka 250ms */
*delay_on = 250 / 2;
*delay_off = 250 / 2;
return 0;
}
EXPORT_SYMBOL_GPL(qca808x_led_reg_blink_set);