// SPDX-License-Identifier: GPL-2.0+
/*
* drivers/net/phy/at803x.c
*
* Driver for Qualcomm Atheros AR803x PHY
*
* Author: Matus Ujhelyi <[email protected]>
*/
#include <linux/phy.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool_netlink.h>
#include <linux/bitfield.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/consumer.h>
#include <linux/of.h>
#include <linux/phylink.h>
#include <linux/sfp.h>
#include <dt-bindings/net/qca-ar803x.h>
#include "qcom.h"
#define AT803X_LED_CONTROL 0x18
#define AT803X_PHY_MMD3_WOL_CTRL 0x8012
#define AT803X_WOL_EN BIT(5)
#define AT803X_REG_CHIP_CONFIG 0x1f
#define AT803X_BT_BX_REG_SEL 0x8000
#define AT803X_MODE_CFG_MASK 0x0F
#define AT803X_MODE_CFG_BASET_RGMII 0x00
#define AT803X_MODE_CFG_BASET_SGMII 0x01
#define AT803X_MODE_CFG_BX1000_RGMII_50OHM 0x02
#define AT803X_MODE_CFG_BX1000_RGMII_75OHM 0x03
#define AT803X_MODE_CFG_BX1000_CONV_50OHM 0x04
#define AT803X_MODE_CFG_BX1000_CONV_75OHM 0x05
#define AT803X_MODE_CFG_FX100_RGMII_50OHM 0x06
#define AT803X_MODE_CFG_FX100_CONV_50OHM 0x07
#define AT803X_MODE_CFG_RGMII_AUTO_MDET 0x0B
#define AT803X_MODE_CFG_FX100_RGMII_75OHM 0x0E
#define AT803X_MODE_CFG_FX100_CONV_75OHM 0x0F
#define AT803X_PSSR 0x11 /*PHY-Specific Status Register*/
#define AT803X_PSSR_MR_AN_COMPLETE 0x0200
#define AT803X_DEBUG_REG_1F 0x1F
#define AT803X_DEBUG_PLL_ON BIT(2)
#define AT803X_DEBUG_RGMII_1V8 BIT(3)
/* AT803x supports either the XTAL input pad, an internal PLL or the
* DSP as clock reference for the clock output pad. The XTAL reference
* is only used for 25 MHz output, all other frequencies need the PLL.
* The DSP as a clock reference is used in synchronous ethernet
* applications.
*
* By default the PLL is only enabled if there is a link. Otherwise
* the PHY will go into low power state and disabled the PLL. You can
* set the PLL_ON bit (see debug register 0x1f) to keep the PLL always
* enabled.
*/
#define AT803X_MMD7_CLK25M 0x8016
#define AT803X_CLK_OUT_MASK GENMASK(4, 2)
#define AT803X_CLK_OUT_25MHZ_XTAL 0
#define AT803X_CLK_OUT_25MHZ_DSP 1
#define AT803X_CLK_OUT_50MHZ_PLL 2
#define AT803X_CLK_OUT_50MHZ_DSP 3
#define AT803X_CLK_OUT_62_5MHZ_PLL 4
#define AT803X_CLK_OUT_62_5MHZ_DSP 5
#define AT803X_CLK_OUT_125MHZ_PLL 6
#define AT803X_CLK_OUT_125MHZ_DSP 7
/* The AR8035 has another mask which is compatible with the AR8031/AR8033 mask
* but doesn't support choosing between XTAL/PLL and DSP.
*/
#define AT8035_CLK_OUT_MASK GENMASK(4, 3)
#define AT803X_CLK_OUT_STRENGTH_MASK GENMASK(8, 7)
#define AT803X_CLK_OUT_STRENGTH_FULL 0
#define AT803X_CLK_OUT_STRENGTH_HALF 1
#define AT803X_CLK_OUT_STRENGTH_QUARTER 2
#define AT803X_MMD3_SMARTEEE_CTL1 0x805b
#define AT803X_MMD3_SMARTEEE_CTL2 0x805c
#define AT803X_MMD3_SMARTEEE_CTL3 0x805d
#define AT803X_MMD3_SMARTEEE_CTL3_LPI_EN BIT(8)
#define ATH9331_PHY_ID 0x004dd041
#define ATH8030_PHY_ID 0x004dd076
#define ATH8031_PHY_ID 0x004dd074
#define ATH8032_PHY_ID 0x004dd023
#define ATH8035_PHY_ID 0x004dd072
#define AT8030_PHY_ID_MASK 0xffffffef
#define QCA9561_PHY_ID 0x004dd042
#define AT803X_PAGE_FIBER 0
#define AT803X_PAGE_COPPER 1
/* don't turn off internal PLL */
#define AT803X_KEEP_PLL_ENABLED BIT(0)
#define AT803X_DISABLE_SMARTEEE BIT(1)
/* disable hibernation mode */
#define AT803X_DISABLE_HIBERNATION_MODE BIT(2)
MODULE_DESCRIPTION("Qualcomm Atheros AR803x PHY driver");
MODULE_AUTHOR("Matus Ujhelyi");
MODULE_LICENSE("GPL");
struct at803x_priv {
int flags;
u16 clk_25m_reg;
u16 clk_25m_mask;
u8 smarteee_lpi_tw_1g;
u8 smarteee_lpi_tw_100m;
bool is_fiber;
bool is_1000basex;
struct regulator_dev *vddio_rdev;
struct regulator_dev *vddh_rdev;
};
struct at803x_context {
u16 bmcr;
u16 advertise;
u16 control1000;
u16 int_enable;
u16 smart_speed;
u16 led_control;
};
static int at803x_write_page(struct phy_device *phydev, int page)
{
int mask;
int set;
if (page == AT803X_PAGE_COPPER) {
set = AT803X_BT_BX_REG_SEL;
mask = 0;
} else {
set = 0;
mask = AT803X_BT_BX_REG_SEL;
}
return __phy_modify(phydev, AT803X_REG_CHIP_CONFIG, mask, set);
}
static int at803x_read_page(struct phy_device *phydev)
{
int ccr = __phy_read(phydev, AT803X_REG_CHIP_CONFIG);
if (ccr < 0)
return ccr;
if (ccr & AT803X_BT_BX_REG_SEL)
return AT803X_PAGE_COPPER;
return AT803X_PAGE_FIBER;
}
static int at803x_enable_rx_delay(struct phy_device *phydev)
{
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_ANALOG_TEST_CTRL, 0,
AT803X_DEBUG_RX_CLK_DLY_EN);
}
static int at803x_enable_tx_delay(struct phy_device *phydev)
{
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_SYSTEM_CTRL_MODE, 0,
AT803X_DEBUG_TX_CLK_DLY_EN);
}
static int at803x_disable_rx_delay(struct phy_device *phydev)
{
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_ANALOG_TEST_CTRL,
AT803X_DEBUG_RX_CLK_DLY_EN, 0);
}
static int at803x_disable_tx_delay(struct phy_device *phydev)
{
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_SYSTEM_CTRL_MODE,
AT803X_DEBUG_TX_CLK_DLY_EN, 0);
}
/* save relevant PHY registers to private copy */
static void at803x_context_save(struct phy_device *phydev,
struct at803x_context *context)
{
context->bmcr = phy_read(phydev, MII_BMCR);
context->advertise = phy_read(phydev, MII_ADVERTISE);
context->control1000 = phy_read(phydev, MII_CTRL1000);
context->int_enable = phy_read(phydev, AT803X_INTR_ENABLE);
context->smart_speed = phy_read(phydev, AT803X_SMART_SPEED);
context->led_control = phy_read(phydev, AT803X_LED_CONTROL);
}
/* restore relevant PHY registers from private copy */
static void at803x_context_restore(struct phy_device *phydev,
const struct at803x_context *context)
{
phy_write(phydev, MII_BMCR, context->bmcr);
phy_write(phydev, MII_ADVERTISE, context->advertise);
phy_write(phydev, MII_CTRL1000, context->control1000);
phy_write(phydev, AT803X_INTR_ENABLE, context->int_enable);
phy_write(phydev, AT803X_SMART_SPEED, context->smart_speed);
phy_write(phydev, AT803X_LED_CONTROL, context->led_control);
}
static int at803x_suspend(struct phy_device *phydev)
{
int value;
int wol_enabled;
value = phy_read(phydev, AT803X_INTR_ENABLE);
wol_enabled = value & AT803X_INTR_ENABLE_WOL;
if (wol_enabled)
value = BMCR_ISOLATE;
else
value = BMCR_PDOWN;
phy_modify(phydev, MII_BMCR, 0, value);
return 0;
}
static int at803x_resume(struct phy_device *phydev)
{
return phy_modify(phydev, MII_BMCR, BMCR_PDOWN | BMCR_ISOLATE, 0);
}
static int at803x_parse_dt(struct phy_device *phydev)
{
struct device_node *node = phydev->mdio.dev.of_node;
struct at803x_priv *priv = phydev->priv;
u32 freq, strength, tw;
unsigned int sel;
int ret;
if (!IS_ENABLED(CONFIG_OF_MDIO))
return 0;
if (of_property_read_bool(node, "qca,disable-smarteee"))
priv->flags |= AT803X_DISABLE_SMARTEEE;
if (of_property_read_bool(node, "qca,disable-hibernation-mode"))
priv->flags |= AT803X_DISABLE_HIBERNATION_MODE;
if (!of_property_read_u32(node, "qca,smarteee-tw-us-1g", &tw)) {
if (!tw || tw > 255) {
phydev_err(phydev, "invalid qca,smarteee-tw-us-1g\n");
return -EINVAL;
}
priv->smarteee_lpi_tw_1g = tw;
}
if (!of_property_read_u32(node, "qca,smarteee-tw-us-100m", &tw)) {
if (!tw || tw > 255) {
phydev_err(phydev, "invalid qca,smarteee-tw-us-100m\n");
return -EINVAL;
}
priv->smarteee_lpi_tw_100m = tw;
}
ret = of_property_read_u32(node, "qca,clk-out-frequency", &freq);
if (!ret) {
switch (freq) {
case 25000000:
sel = AT803X_CLK_OUT_25MHZ_XTAL;
break;
case 50000000:
sel = AT803X_CLK_OUT_50MHZ_PLL;
break;
case 62500000:
sel = AT803X_CLK_OUT_62_5MHZ_PLL;
break;
case 125000000:
sel = AT803X_CLK_OUT_125MHZ_PLL;
break;
default:
phydev_err(phydev, "invalid qca,clk-out-frequency\n");
return -EINVAL;
}
priv->clk_25m_reg |= FIELD_PREP(AT803X_CLK_OUT_MASK, sel);
priv->clk_25m_mask |= AT803X_CLK_OUT_MASK;
}
ret = of_property_read_u32(node, "qca,clk-out-strength", &strength);
if (!ret) {
priv->clk_25m_mask |= AT803X_CLK_OUT_STRENGTH_MASK;
switch (strength) {
case AR803X_STRENGTH_FULL:
priv->clk_25m_reg |= AT803X_CLK_OUT_STRENGTH_FULL;
break;
case AR803X_STRENGTH_HALF:
priv->clk_25m_reg |= AT803X_CLK_OUT_STRENGTH_HALF;
break;
case AR803X_STRENGTH_QUARTER:
priv->clk_25m_reg |= AT803X_CLK_OUT_STRENGTH_QUARTER;
break;
default:
phydev_err(phydev, "invalid qca,clk-out-strength\n");
return -EINVAL;
}
}
return 0;
}
static int at803x_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct at803x_priv *priv;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
phydev->priv = priv;
ret = at803x_parse_dt(phydev);
if (ret)
return ret;
return 0;
}
static int at803x_get_features(struct phy_device *phydev)
{
struct at803x_priv *priv = phydev->priv;
int err;
err = genphy_read_abilities(phydev);
if (err)
return err;
if (phydev->drv->phy_id != ATH8031_PHY_ID)
return 0;
/* AR8031/AR8033 have different status registers
* for copper and fiber operation. However, the
* extended status register is the same for both
* operation modes.
*
* As a result of that, ESTATUS_1000_XFULL is set
* to 1 even when operating in copper TP mode.
*
* Remove this mode from the supported link modes
* when not operating in 1000BaseX mode.
*/
if (!priv->is_1000basex)
linkmode_clear_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
phydev->supported);
return 0;
}
static int at803x_smarteee_config(struct phy_device *phydev)
{
struct at803x_priv *priv = phydev->priv;
u16 mask = 0, val = 0;
int ret;
if (priv->flags & AT803X_DISABLE_SMARTEEE)
return phy_modify_mmd(phydev, MDIO_MMD_PCS,
AT803X_MMD3_SMARTEEE_CTL3,
AT803X_MMD3_SMARTEEE_CTL3_LPI_EN, 0);
if (priv->smarteee_lpi_tw_1g) {
mask |= 0xff00;
val |= priv->smarteee_lpi_tw_1g << 8;
}
if (priv->smarteee_lpi_tw_100m) {
mask |= 0x00ff;
val |= priv->smarteee_lpi_tw_100m;
}
if (!mask)
return 0;
ret = phy_modify_mmd(phydev, MDIO_MMD_PCS, AT803X_MMD3_SMARTEEE_CTL1,
mask, val);
if (ret)
return ret;
return phy_modify_mmd(phydev, MDIO_MMD_PCS, AT803X_MMD3_SMARTEEE_CTL3,
AT803X_MMD3_SMARTEEE_CTL3_LPI_EN,
AT803X_MMD3_SMARTEEE_CTL3_LPI_EN);
}
static int at803x_clk_out_config(struct phy_device *phydev)
{
struct at803x_priv *priv = phydev->priv;
if (!priv->clk_25m_mask)
return 0;
return phy_modify_mmd(phydev, MDIO_MMD_AN, AT803X_MMD7_CLK25M,
priv->clk_25m_mask, priv->clk_25m_reg);
}
static int at8031_pll_config(struct phy_device *phydev)
{
struct at803x_priv *priv = phydev->priv;
/* The default after hardware reset is PLL OFF. After a soft reset, the
* values are retained.
*/
if (priv->flags & AT803X_KEEP_PLL_ENABLED)
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_1F,
0, AT803X_DEBUG_PLL_ON);
else
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_1F,
AT803X_DEBUG_PLL_ON, 0);
}
static int at803x_hibernation_mode_config(struct phy_device *phydev)
{
struct at803x_priv *priv = phydev->priv;
/* The default after hardware reset is hibernation mode enabled. After
* software reset, the value is retained.
*/
if (!(priv->flags & AT803X_DISABLE_HIBERNATION_MODE) &&
!(phydev->dev_flags & PHY_F_RXC_ALWAYS_ON))
return 0;
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_HIB_CTRL,
AT803X_DEBUG_HIB_CTRL_PS_HIB_EN, 0);
}
static int at803x_config_init(struct phy_device *phydev)
{
int ret;
/* The RX and TX delay default is:
* after HW reset: RX delay enabled and TX delay disabled
* after SW reset: RX delay enabled, while TX delay retains the
* value before reset.
*/
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
ret = at803x_enable_rx_delay(phydev);
else
ret = at803x_disable_rx_delay(phydev);
if (ret < 0)
return ret;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
ret = at803x_enable_tx_delay(phydev);
else
ret = at803x_disable_tx_delay(phydev);
if (ret < 0)
return ret;
ret = at803x_smarteee_config(phydev);
if (ret < 0)
return ret;
ret = at803x_clk_out_config(phydev);
if (ret < 0)
return ret;
ret = at803x_hibernation_mode_config(phydev);
if (ret < 0)
return ret;
/* Ar803x extended next page bit is enabled by default. Cisco
* multigig switches read this bit and attempt to negotiate 10Gbps
* rates even if the next page bit is disabled. This is incorrect
* behaviour but we still need to accommodate it. XNP is only needed
* for 10Gbps support, so disable XNP.
*/
return phy_modify(phydev, MII_ADVERTISE, MDIO_AN_CTRL1_XNP, 0);
}
static void at803x_link_change_notify(struct phy_device *phydev)
{
/*
* Conduct a hardware reset for AT8030 every time a link loss is
* signalled. This is necessary to circumvent a hardware bug that
* occurs when the cable is unplugged while TX packets are pending
* in the FIFO. In such cases, the FIFO enters an error mode it
* cannot recover from by software.
*/
if (phydev->state == PHY_NOLINK && phydev->mdio.reset_gpio) {
struct at803x_context context;
at803x_context_save(phydev, &context);
phy_device_reset(phydev, 1);
usleep_range(1000, 2000);
phy_device_reset(phydev, 0);
usleep_range(1000, 2000);
at803x_context_restore(phydev, &context);
phydev_dbg(phydev, "%s(): phy was reset\n", __func__);
}
}
static int at803x_config_aneg(struct phy_device *phydev)
{
struct at803x_priv *priv = phydev->priv;
int ret;
ret = at803x_prepare_config_aneg(phydev);
if (ret)
return ret;
if (priv->is_1000basex)
return genphy_c37_config_aneg(phydev);
return genphy_config_aneg(phydev);
}
static int at803x_cable_test_result_trans(u16 status)
{
switch (FIELD_GET(AT803X_CDT_STATUS_STAT_MASK, status)) {
case AT803X_CDT_STATUS_STAT_NORMAL:
return ETHTOOL_A_CABLE_RESULT_CODE_OK;
case AT803X_CDT_STATUS_STAT_SHORT:
return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
case AT803X_CDT_STATUS_STAT_OPEN:
return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
case AT803X_CDT_STATUS_STAT_FAIL:
default:
return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
}
}
static bool at803x_cdt_test_failed(u16 status)
{
return FIELD_GET(AT803X_CDT_STATUS_STAT_MASK, status) ==
AT803X_CDT_STATUS_STAT_FAIL;
}
static bool at803x_cdt_fault_length_valid(u16 status)
{
switch (FIELD_GET(AT803X_CDT_STATUS_STAT_MASK, status)) {
case AT803X_CDT_STATUS_STAT_OPEN:
case AT803X_CDT_STATUS_STAT_SHORT:
return true;
}
return false;
}
static int at803x_cable_test_one_pair(struct phy_device *phydev, int pair)
{
static const int ethtool_pair[] = {
ETHTOOL_A_CABLE_PAIR_A,
ETHTOOL_A_CABLE_PAIR_B,
ETHTOOL_A_CABLE_PAIR_C,
ETHTOOL_A_CABLE_PAIR_D,
};
int ret, val;
val = FIELD_PREP(AT803X_CDT_MDI_PAIR_MASK, pair) |
AT803X_CDT_ENABLE_TEST;
ret = at803x_cdt_start(phydev, val);
if (ret)
return ret;
ret = at803x_cdt_wait_for_completion(phydev, AT803X_CDT_ENABLE_TEST);
if (ret)
return ret;
val = phy_read(phydev, AT803X_CDT_STATUS);
if (val < 0)
return val;
if (at803x_cdt_test_failed(val))
return 0;
ethnl_cable_test_result(phydev, ethtool_pair[pair],
at803x_cable_test_result_trans(val));
if (at803x_cdt_fault_length_valid(val)) {
val = FIELD_GET(AT803X_CDT_STATUS_DELTA_TIME_MASK, val);
ethnl_cable_test_fault_length(phydev, ethtool_pair[pair],
at803x_cdt_fault_length(val));
}
return 1;
}
static int at803x_cable_test_get_status(struct phy_device *phydev,
bool *finished, unsigned long pair_mask)
{
int retries = 20;
int pair, ret;
*finished = false;
/* According to the datasheet the CDT can be performed when
* there is no link partner or when the link partner is
* auto-negotiating. Starting the test will restart the AN
* automatically. It seems that doing this repeatedly we will
* get a slot where our link partner won't disturb our
* measurement.
*/
while (pair_mask && retries--) {
for_each_set_bit(pair, &pair_mask, 4) {
ret = at803x_cable_test_one_pair(phydev, pair);
if (ret < 0)
return ret;
if (ret)
clear_bit(pair, &pair_mask);
}
if (pair_mask)
msleep(250);
}
*finished = true;
return 0;
}
static void at803x_cable_test_autoneg(struct phy_device *phydev)
{
/* Enable auto-negotiation, but advertise no capabilities, no link
* will be established. A restart of the auto-negotiation is not
* required, because the cable test will automatically break the link.
*/
phy_write(phydev, MII_BMCR, BMCR_ANENABLE);
phy_write(phydev, MII_ADVERTISE, ADVERTISE_CSMA);
}
static int at803x_cable_test_start(struct phy_device *phydev)
{
at803x_cable_test_autoneg(phydev);
/* we do all the (time consuming) work later */
return 0;
}
static int at8031_rgmii_reg_set_voltage_sel(struct regulator_dev *rdev,
unsigned int selector)
{
struct phy_device *phydev = rdev_get_drvdata(rdev);
if (selector)
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_1F,
0, AT803X_DEBUG_RGMII_1V8);
else
return at803x_debug_reg_mask(phydev, AT803X_DEBUG_REG_1F,
AT803X_DEBUG_RGMII_1V8, 0);
}
static int at8031_rgmii_reg_get_voltage_sel(struct regulator_dev *rdev)
{
struct phy_device *phydev = rdev_get_drvdata(rdev);
int val;
val = at803x_debug_reg_read(phydev, AT803X_DEBUG_REG_1F);
if (val < 0)
return val;
return (val & AT803X_DEBUG_RGMII_1V8) ? 1 : 0;
}
static const struct regulator_ops vddio_regulator_ops = {
.list_voltage = regulator_list_voltage_table,
.set_voltage_sel = at8031_rgmii_reg_set_voltage_sel,
.get_voltage_sel = at8031_rgmii_reg_get_voltage_sel,
};
static const unsigned int vddio_voltage_table[] = {
1500000,
1800000,
};
static const struct regulator_desc vddio_desc = {
.name = "vddio",
.of_match = of_match_ptr("vddio-regulator"),
.n_voltages = ARRAY_SIZE(vddio_voltage_table),
.volt_table = vddio_voltage_table,
.ops = &vddio_regulator_ops,
.type = REGULATOR_VOLTAGE,
.owner = THIS_MODULE,
};
static const struct regulator_ops vddh_regulator_ops = {
};
static const struct regulator_desc vddh_desc = {
.name = "vddh",
.of_match = of_match_ptr("vddh-regulator"),
.n_voltages = 1,
.fixed_uV = 2500000,
.ops = &vddh_regulator_ops,
.type = REGULATOR_VOLTAGE,
.owner = THIS_MODULE,
};
static int at8031_register_regulators(struct phy_device *phydev)
{
struct at803x_priv *priv = phydev->priv;
struct device *dev = &phydev->mdio.dev;
struct regulator_config config = { };
config.dev = dev;
config.driver_data = phydev;
priv->vddio_rdev = devm_regulator_register(dev, &vddio_desc, &config);
if (IS_ERR(priv->vddio_rdev)) {
phydev_err(phydev, "failed to register VDDIO regulator\n");
return PTR_ERR(priv->vddio_rdev);
}
priv->vddh_rdev = devm_regulator_register(dev, &vddh_desc, &config);
if (IS_ERR(priv->vddh_rdev)) {
phydev_err(phydev, "failed to register VDDH regulator\n");
return PTR_ERR(priv->vddh_rdev);
}
return 0;
}
static int at8031_sfp_insert(void *upstream, const struct sfp_eeprom_id *id)
{
struct phy_device *phydev = upstream;
__ETHTOOL_DECLARE_LINK_MODE_MASK(phy_support);
__ETHTOOL_DECLARE_LINK_MODE_MASK(sfp_support);
DECLARE_PHY_INTERFACE_MASK(interfaces);
phy_interface_t iface;
linkmode_zero(phy_support);
phylink_set(phy_support, 1000baseX_Full);
phylink_set(phy_support, 1000baseT_Full);
phylink_set(phy_support, Autoneg);
phylink_set(phy_support, Pause);
phylink_set(phy_support, Asym_Pause);
linkmode_zero(sfp_support);
sfp_parse_support(phydev->sfp_bus, id, sfp_support, interfaces);
/* Some modules support 10G modes as well as others we support.
* Mask out non-supported modes so the correct interface is picked.
*/
linkmode_and(sfp_support, phy_support, sfp_support);
if (linkmode_empty(sfp_support)) {
dev_err(&phydev->mdio.dev, "incompatible SFP module inserted\n");
return -EINVAL;
}
iface = sfp_select_interface(phydev->sfp_bus, sfp_support);
/* Only 1000Base-X is supported by AR8031/8033 as the downstream SerDes
* interface for use with SFP modules.
* However, some copper modules detected as having a preferred SGMII
* interface do default to and function in 1000Base-X mode, so just
* print a warning and allow such modules, as they may have some chance
* of working.
*/
if (iface == PHY_INTERFACE_MODE_SGMII)
dev_warn(&phydev->mdio.dev, "module may not function if 1000Base-X not supported\n");
else if (iface != PHY_INTERFACE_MODE_1000BASEX)
return -EINVAL;
return 0;
}
static const struct sfp_upstream_ops at8031_sfp_ops = {
.attach = phy_sfp_attach,
.detach = phy_sfp_detach,
.module_insert = at8031_sfp_insert,
.connect_phy = phy_sfp_connect_phy,
.disconnect_phy = phy_sfp_disconnect_phy,
};
static int at8031_parse_dt(struct phy_device *phydev)
{
struct device_node *node = phydev->mdio.dev.of_node;
struct at803x_priv *priv = phydev->priv;
int ret;
if (of_property_read_bool(node, "qca,keep-pll-enabled"))
priv->flags |= AT803X_KEEP_PLL_ENABLED;
ret = at8031_register_regulators(phydev);
if (ret < 0)
return ret;
ret = devm_regulator_get_enable_optional(&phydev->mdio.dev,
"vddio");
if (ret) {
phydev_err(phydev, "failed to get VDDIO regulator\n");
return ret;
}
/* Only AR8031/8033 support 1000Base-X for SFP modules */
return phy_sfp_probe(phydev, &at8031_sfp_ops);
}
static int at8031_probe(struct phy_device *phydev)
{
struct at803x_priv *priv;
int mode_cfg;
int ccr;
int ret;
ret = at803x_probe(phydev);
if (ret)
return ret;
priv = phydev->priv;
/* Only supported on AR8031/AR8033, the AR8030/AR8035 use strapping
* options.
*/
ret = at8031_parse_dt(phydev);
if (ret)
return ret;
ccr = phy_read(phydev, AT803X_REG_CHIP_CONFIG);
if (ccr < 0)
return ccr;
mode_cfg = ccr & AT803X_MODE_CFG_MASK;
switch (mode_cfg) {
case AT803X_MODE_CFG_BX1000_RGMII_50OHM:
case AT803X_MODE_CFG_BX1000_RGMII_75OHM:
priv->is_1000basex = true;
fallthrough;
case AT803X_MODE_CFG_FX100_RGMII_50OHM:
case AT803X_MODE_CFG_FX100_RGMII_75OHM:
priv->is_fiber = true;
break;
}
/* Disable WoL in 1588 register which is enabled
* by default
*/
return phy_modify_mmd(phydev, MDIO_MMD_PCS,
AT803X_PHY_MMD3_WOL_CTRL,
AT803X_WOL_EN, 0);
}
static int at8031_config_init(struct phy_device *phydev)
{
struct at803x_priv *priv = phydev->priv;
int ret;
/* Some bootloaders leave the fiber page selected.
* Switch to the appropriate page (fiber or copper), as otherwise we
* read the PHY capabilities from the wrong page.
*/
phy_lock_mdio_bus(phydev);
ret = at803x_write_page(phydev,
priv->is_fiber ? AT803X_PAGE_FIBER :
AT803X_PAGE_COPPER);
phy_unlock_mdio_bus(phydev);
if (ret)
return ret;
ret = at8031_pll_config(phydev);
if (ret < 0)
return ret;
return at803x_config_init(phydev);
}
static int at8031_set_wol(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
int ret;
/* First setup MAC address and enable WOL interrupt */
ret = at803x_set_wol(phydev, wol);
if (ret)
return ret;
if (wol->wolopts & WAKE_MAGIC)
/* Enable WOL function for 1588 */
ret = phy_modify_mmd(phydev, MDIO_MMD_PCS,
AT803X_PHY_MMD3_WOL_CTRL,
0, AT803X_WOL_EN);
else
/* Disable WoL function for 1588 */
ret = phy_modify_mmd(phydev, MDIO_MMD_PCS,
AT803X_PHY_MMD3_WOL_CTRL,
AT803X_WOL_EN, 0);
return ret;
}
static int at8031_config_intr(struct phy_device *phydev)
{
struct at803x_priv *priv = phydev->priv;
int err, value = 0;
if (phydev->interrupts == PHY_INTERRUPT_ENABLED &&
priv->is_fiber) {
/* Clear any pending interrupts */
err = at803x_ack_interrupt(phydev);
if (err)
return err;
value |= AT803X_INTR_ENABLE_LINK_FAIL_BX;
value |= AT803X_INTR_ENABLE_LINK_SUCCESS_BX;
err = phy_set_bits(phydev, AT803X_INTR_ENABLE, value);
if (err)
return err;
}
return at803x_config_intr(phydev);
}
/* AR8031 and AR8033 share the same read status logic */
static int at8031_read_status(struct phy_device *phydev)
{
struct at803x_priv *priv = phydev->priv;
bool changed;
if (priv->is_1000basex)
return genphy_c37_read_status(phydev, &changed);
return at803x_read_status(phydev);
}
/* AR8031 and AR8035 share the same cable test get status reg */
static int at8031_cable_test_get_status(struct phy_device *phydev,
bool *finished)
{
return at803x_cable_test_get_status(phydev, finished, 0xf);
}
/* AR8031 and AR8035 share the same cable test start logic */
static int at8031_cable_test_start(struct phy_device *phydev)
{
at803x_cable_test_autoneg(phydev);
phy_write(phydev, MII_CTRL1000, 0);
/* we do all the (time consuming) work later */
return 0;
}
/* AR8032, AR9331 and QCA9561 share the same cable test get status reg */
static int at8032_cable_test_get_status(struct phy_device *phydev,
bool *finished)
{
return at803x_cable_test_get_status(phydev, finished, 0x3);
}
static int at8035_parse_dt(struct phy_device *phydev)
{
struct at803x_priv *priv = phydev->priv;
/* Mask is set by the generic at803x_parse_dt
* if property is set. Assume property is set
* with the mask not zero.
*/
if (priv->clk_25m_mask) {
/* Fixup for the AR8030/AR8035. This chip has another mask and
* doesn't support the DSP reference. Eg. the lowest bit of the
* mask. The upper two bits select the same frequencies. Mask
* the lowest bit here.
*
* Warning:
* There was no datasheet for the AR8030 available so this is
* just a guess. But the AR8035 is listed as pin compatible
* to the AR8030 so there might be a good chance it works on
* the AR8030 too.
*/
priv->clk_25m_reg &= AT8035_CLK_OUT_MASK;
priv->clk_25m_mask &= AT8035_CLK_OUT_MASK;
}
return 0;
}
/* AR8030 and AR8035 shared the same special mask for clk_25m */
static int at8035_probe(struct phy_device *phydev)
{
int ret;
ret = at803x_probe(phydev);
if (ret)
return ret;
return at8035_parse_dt(phydev);
}
static struct phy_driver at803x_driver[] = {
{
/* Qualcomm Atheros AR8035 */
PHY_ID_MATCH_EXACT(ATH8035_PHY_ID),
.name = "Qualcomm Atheros AR8035",
.flags = PHY_POLL_CABLE_TEST,
.probe = at8035_probe,
.config_aneg = at803x_config_aneg,
.config_init = at803x_config_init,
.soft_reset = genphy_soft_reset,
.set_wol = at803x_set_wol,
.get_wol = at803x_get_wol,
.suspend = at803x_suspend,
.resume = at803x_resume,
/* PHY_GBIT_FEATURES */
.read_status = at803x_read_status,
.config_intr = at803x_config_intr,
.handle_interrupt = at803x_handle_interrupt,
.get_tunable = at803x_get_tunable,
.set_tunable = at803x_set_tunable,
.cable_test_start = at8031_cable_test_start,
.cable_test_get_status = at8031_cable_test_get_status,
}, {
/* Qualcomm Atheros AR8030 */
.phy_id = ATH8030_PHY_ID,
.name = "Qualcomm Atheros AR8030",
.phy_id_mask = AT8030_PHY_ID_MASK,
.probe = at8035_probe,
.config_init = at803x_config_init,
.link_change_notify = at803x_link_change_notify,
.set_wol = at803x_set_wol,
.get_wol = at803x_get_wol,
.suspend = at803x_suspend,
.resume = at803x_resume,
/* PHY_BASIC_FEATURES */
.config_intr = at803x_config_intr,
.handle_interrupt = at803x_handle_interrupt,
}, {
/* Qualcomm Atheros AR8031/AR8033 */
PHY_ID_MATCH_EXACT(ATH8031_PHY_ID),
.name = "Qualcomm Atheros AR8031/AR8033",
.flags = PHY_POLL_CABLE_TEST,
.probe = at8031_probe,
.config_init = at8031_config_init,
.config_aneg = at803x_config_aneg,
.soft_reset = genphy_soft_reset,
.set_wol = at8031_set_wol,
.get_wol = at803x_get_wol,
.suspend = at803x_suspend,
.resume = at803x_resume,
.read_page = at803x_read_page,
.write_page = at803x_write_page,
.get_features = at803x_get_features,
.read_status = at8031_read_status,
.config_intr = at8031_config_intr,
.handle_interrupt = at803x_handle_interrupt,
.get_tunable = at803x_get_tunable,
.set_tunable = at803x_set_tunable,
.cable_test_start = at8031_cable_test_start,
.cable_test_get_status = at8031_cable_test_get_status,
}, {
/* Qualcomm Atheros AR8032 */
PHY_ID_MATCH_EXACT(ATH8032_PHY_ID),
.name = "Qualcomm Atheros AR8032",
.probe = at803x_probe,
.flags = PHY_POLL_CABLE_TEST,
.config_init = at803x_config_init,
.link_change_notify = at803x_link_change_notify,
.suspend = at803x_suspend,
.resume = at803x_resume,
/* PHY_BASIC_FEATURES */
.config_intr = at803x_config_intr,
.handle_interrupt = at803x_handle_interrupt,
.cable_test_start = at803x_cable_test_start,
.cable_test_get_status = at8032_cable_test_get_status,
}, {
/* ATHEROS AR9331 */
PHY_ID_MATCH_EXACT(ATH9331_PHY_ID),
.name = "Qualcomm Atheros AR9331 built-in PHY",
.probe = at803x_probe,
.suspend = at803x_suspend,
.resume = at803x_resume,
.flags = PHY_POLL_CABLE_TEST,
/* PHY_BASIC_FEATURES */
.config_intr = at803x_config_intr,
.handle_interrupt = at803x_handle_interrupt,
.cable_test_start = at803x_cable_test_start,
.cable_test_get_status = at8032_cable_test_get_status,
.read_status = at803x_read_status,
.soft_reset = genphy_soft_reset,
.config_aneg = at803x_config_aneg,
}, {
/* Qualcomm Atheros QCA9561 */
PHY_ID_MATCH_EXACT(QCA9561_PHY_ID),
.name = "Qualcomm Atheros QCA9561 built-in PHY",
.probe = at803x_probe,
.suspend = at803x_suspend,
.resume = at803x_resume,
.flags = PHY_POLL_CABLE_TEST,
/* PHY_BASIC_FEATURES */
.config_intr = at803x_config_intr,
.handle_interrupt = at803x_handle_interrupt,
.cable_test_start = at803x_cable_test_start,
.cable_test_get_status = at8032_cable_test_get_status,
.read_status = at803x_read_status,
.soft_reset = genphy_soft_reset,
.config_aneg = at803x_config_aneg,
}, };
module_phy_driver(at803x_driver);
static struct mdio_device_id __maybe_unused atheros_tbl[] = {
{ ATH8030_PHY_ID, AT8030_PHY_ID_MASK },
{ PHY_ID_MATCH_EXACT(ATH8031_PHY_ID) },
{ PHY_ID_MATCH_EXACT(ATH8032_PHY_ID) },
{ PHY_ID_MATCH_EXACT(ATH8035_PHY_ID) },
{ PHY_ID_MATCH_EXACT(ATH9331_PHY_ID) },
{ PHY_ID_MATCH_EXACT(QCA9561_PHY_ID) },
{ }
};
MODULE_DEVICE_TABLE(mdio, atheros_tbl);