/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright 2023 Red Hat
*/
#ifndef VDO_ENCODINGS_H
#define VDO_ENCODINGS_H
#include <linux/blk_types.h>
#include <linux/crc32.h>
#include <linux/limits.h>
#include <linux/uuid.h>
#include "numeric.h"
#include "constants.h"
#include "types.h"
/*
* An in-memory representation of a version number for versioned structures on disk.
*
* A version number consists of two portions, a major version and a minor version. Any format
* change which does not require an explicit upgrade step from the previous version should
* increment the minor version. Any format change which either requires an explicit upgrade step,
* or is wholly incompatible (i.e. can not be upgraded to), should increment the major version, and
* set the minor version to 0.
*/
struct version_number {
u32 major_version;
u32 minor_version;
};
/*
* A packed, machine-independent, on-disk representation of a version_number. Both fields are
* stored in little-endian byte order.
*/
struct packed_version_number {
__le32 major_version;
__le32 minor_version;
} __packed;
/* The registry of component ids for use in headers */
#define VDO_SUPER_BLOCK 0
#define VDO_LAYOUT 1
#define VDO_RECOVERY_JOURNAL 2
#define VDO_SLAB_DEPOT 3
#define VDO_BLOCK_MAP 4
#define VDO_GEOMETRY_BLOCK 5
/* The header for versioned data stored on disk. */
struct header {
u32 id; /* The component this is a header for */
struct version_number version; /* The version of the data format */
size_t size; /* The size of the data following this header */
};
/* A packed, machine-independent, on-disk representation of a component header. */
struct packed_header {
__le32 id;
struct packed_version_number version;
__le64 size;
} __packed;
enum {
VDO_GEOMETRY_BLOCK_LOCATION = 0,
VDO_GEOMETRY_MAGIC_NUMBER_SIZE = 8,
VDO_DEFAULT_GEOMETRY_BLOCK_VERSION = 5,
};
struct index_config {
u32 mem;
u32 unused;
bool sparse;
} __packed;
enum volume_region_id {
VDO_INDEX_REGION = 0,
VDO_DATA_REGION = 1,
VDO_VOLUME_REGION_COUNT,
};
struct volume_region {
/* The ID of the region */
enum volume_region_id id;
/*
* The absolute starting offset on the device. The region continues until the next region
* begins.
*/
physical_block_number_t start_block;
} __packed;
struct volume_geometry {
/* For backwards compatibility */
u32 unused;
/* The nonce of this volume */
nonce_t nonce;
/* The uuid of this volume */
uuid_t uuid;
/* The block offset to be applied to bios */
block_count_t bio_offset;
/* The regions in ID order */
struct volume_region regions[VDO_VOLUME_REGION_COUNT];
/* The index config */
struct index_config index_config;
} __packed;
/* This volume geometry struct is used for sizing only */
struct volume_geometry_4_0 {
/* For backwards compatibility */
u32 unused;
/* The nonce of this volume */
nonce_t nonce;
/* The uuid of this volume */
uuid_t uuid;
/* The regions in ID order */
struct volume_region regions[VDO_VOLUME_REGION_COUNT];
/* The index config */
struct index_config index_config;
} __packed;
extern const u8 VDO_GEOMETRY_MAGIC_NUMBER[VDO_GEOMETRY_MAGIC_NUMBER_SIZE + 1];
/**
* DOC: Block map entries
*
* The entry for each logical block in the block map is encoded into five bytes, which saves space
* in both the on-disk and in-memory layouts. It consists of the 36 low-order bits of a
* physical_block_number_t (addressing 256 terabytes with a 4KB block size) and a 4-bit encoding of
* a block_mapping_state.
*
* Of the 8 high bits of the 5-byte structure:
*
* Bits 7..4: The four highest bits of the 36-bit physical block number
* Bits 3..0: The 4-bit block_mapping_state
*
* The following 4 bytes are the low order bytes of the physical block number, in little-endian
* order.
*
* Conversion functions to and from a data location are provided.
*/
struct block_map_entry {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
unsigned mapping_state : 4;
unsigned pbn_high_nibble : 4;
#else
unsigned pbn_high_nibble : 4;
unsigned mapping_state : 4;
#endif
__le32 pbn_low_word;
} __packed;
struct block_map_page_header {
__le64 nonce;
__le64 pbn;
/* May be non-zero on disk */
u8 unused_long_word[8];
/* Whether this page has been written twice to disk */
bool initialized;
/* Always zero on disk */
u8 unused_byte1;
/* May be non-zero on disk */
u8 unused_byte2;
u8 unused_byte3;
} __packed;
struct block_map_page {
struct packed_version_number version;
struct block_map_page_header header;
struct block_map_entry entries[];
} __packed;
enum block_map_page_validity {
VDO_BLOCK_MAP_PAGE_VALID,
VDO_BLOCK_MAP_PAGE_INVALID,
/* Valid page found in the wrong location on disk */
VDO_BLOCK_MAP_PAGE_BAD,
};
struct block_map_state_2_0 {
physical_block_number_t flat_page_origin;
block_count_t flat_page_count;
physical_block_number_t root_origin;
block_count_t root_count;
} __packed;
struct boundary {
page_number_t levels[VDO_BLOCK_MAP_TREE_HEIGHT];
};
extern const struct header VDO_BLOCK_MAP_HEADER_2_0;
/* The state of the recovery journal as encoded in the VDO super block. */
struct recovery_journal_state_7_0 {
/* Sequence number to start the journal */
sequence_number_t journal_start;
/* Number of logical blocks used by VDO */
block_count_t logical_blocks_used;
/* Number of block map pages allocated */
block_count_t block_map_data_blocks;
} __packed;
extern const struct header VDO_RECOVERY_JOURNAL_HEADER_7_0;
typedef u16 journal_entry_count_t;
/*
* A recovery journal entry stores three physical locations: a data location that is the value of a
* single mapping in the block map tree, and the two locations of the block map pages and slots
* that are acquiring and releasing a reference to the location. The journal entry also stores an
* operation code that says whether the mapping is for a logical block or for the block map tree
* itself.
*/
struct recovery_journal_entry {
struct block_map_slot slot;
struct data_location mapping;
struct data_location unmapping;
enum journal_operation operation;
};
/* The packed, on-disk representation of a recovery journal entry. */
struct packed_recovery_journal_entry {
/*
* In little-endian bit order:
* Bits 15..12: The four highest bits of the 36-bit physical block number of the block map
* tree page
* Bits 11..2: The 10-bit block map page slot number
* Bit 1..0: The journal_operation of the entry (this actually only requires 1 bit, but
* it is convenient to keep the extra bit as part of this field.
*/
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
unsigned operation : 2;
unsigned slot_low : 6;
unsigned slot_high : 4;
unsigned pbn_high_nibble : 4;
#else
unsigned slot_low : 6;
unsigned operation : 2;
unsigned pbn_high_nibble : 4;
unsigned slot_high : 4;
#endif
/*
* Bits 47..16: The 32 low-order bits of the block map page PBN, in little-endian byte
* order
*/
__le32 pbn_low_word;
/*
* Bits 87..48: The five-byte block map entry encoding the location that will be stored in
* the block map page slot
*/
struct block_map_entry mapping;
/*
* Bits 127..88: The five-byte block map entry encoding the location that was stored in the
* block map page slot
*/
struct block_map_entry unmapping;
} __packed;
/* The packed, on-disk representation of an old format recovery journal entry. */
struct packed_recovery_journal_entry_1 {
/*
* In little-endian bit order:
* Bits 15..12: The four highest bits of the 36-bit physical block number of the block map
* tree page
* Bits 11..2: The 10-bit block map page slot number
* Bits 1..0: The 2-bit journal_operation of the entry
*
*/
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
unsigned operation : 2;
unsigned slot_low : 6;
unsigned slot_high : 4;
unsigned pbn_high_nibble : 4;
#else
unsigned slot_low : 6;
unsigned operation : 2;
unsigned pbn_high_nibble : 4;
unsigned slot_high : 4;
#endif
/*
* Bits 47..16: The 32 low-order bits of the block map page PBN, in little-endian byte
* order
*/
__le32 pbn_low_word;
/*
* Bits 87..48: The five-byte block map entry encoding the location that was or will be
* stored in the block map page slot
*/
struct block_map_entry block_map_entry;
} __packed;
enum journal_operation_1 {
VDO_JOURNAL_DATA_DECREMENT = 0,
VDO_JOURNAL_DATA_INCREMENT = 1,
VDO_JOURNAL_BLOCK_MAP_DECREMENT = 2,
VDO_JOURNAL_BLOCK_MAP_INCREMENT = 3,
} __packed;
struct recovery_block_header {
sequence_number_t block_map_head; /* Block map head sequence number */
sequence_number_t slab_journal_head; /* Slab journal head seq. number */
sequence_number_t sequence_number; /* Sequence number for this block */
nonce_t nonce; /* A given VDO instance's nonce */
block_count_t logical_blocks_used; /* Logical blocks in use */
block_count_t block_map_data_blocks; /* Allocated block map pages */
journal_entry_count_t entry_count; /* Number of entries written */
u8 check_byte; /* The protection check byte */
u8 recovery_count; /* Number of recoveries completed */
enum vdo_metadata_type metadata_type; /* Metadata type */
};
/*
* The packed, on-disk representation of a recovery journal block header. All fields are kept in
* little-endian byte order.
*/
struct packed_journal_header {
/* Block map head 64-bit sequence number */
__le64 block_map_head;
/* Slab journal head 64-bit sequence number */
__le64 slab_journal_head;
/* The 64-bit sequence number for this block */
__le64 sequence_number;
/* A given VDO instance's 64-bit nonce */
__le64 nonce;
/* 8-bit metadata type (should always be one for the recovery journal) */
u8 metadata_type;
/* 16-bit count of the entries encoded in the block */
__le16 entry_count;
/* 64-bit count of the logical blocks used when this block was opened */
__le64 logical_blocks_used;
/* 64-bit count of the block map blocks used when this block was opened */
__le64 block_map_data_blocks;
/* The protection check byte */
u8 check_byte;
/* The number of recoveries completed */
u8 recovery_count;
} __packed;
struct packed_journal_sector {
/* The protection check byte */
u8 check_byte;
/* The number of recoveries completed */
u8 recovery_count;
/* The number of entries in this sector */
u8 entry_count;
/* Journal entries for this sector */
struct packed_recovery_journal_entry entries[];
} __packed;
enum {
/* The number of entries in each sector (except the last) when filled */
RECOVERY_JOURNAL_ENTRIES_PER_SECTOR =
((VDO_SECTOR_SIZE - sizeof(struct packed_journal_sector)) /
sizeof(struct packed_recovery_journal_entry)),
RECOVERY_JOURNAL_ENTRIES_PER_BLOCK = RECOVERY_JOURNAL_ENTRIES_PER_SECTOR * 7,
/* The number of entries in a v1 recovery journal block. */
RECOVERY_JOURNAL_1_ENTRIES_PER_BLOCK = 311,
/* The number of entries in each v1 sector (except the last) when filled */
RECOVERY_JOURNAL_1_ENTRIES_PER_SECTOR =
((VDO_SECTOR_SIZE - sizeof(struct packed_journal_sector)) /
sizeof(struct packed_recovery_journal_entry_1)),
/* The number of entries in the last sector when a block is full */
RECOVERY_JOURNAL_1_ENTRIES_IN_LAST_SECTOR =
(RECOVERY_JOURNAL_1_ENTRIES_PER_BLOCK % RECOVERY_JOURNAL_1_ENTRIES_PER_SECTOR),
};
/* A type representing a reference count of a block. */
typedef u8 vdo_refcount_t;
/* The absolute position of an entry in a recovery journal or slab journal. */
struct journal_point {
sequence_number_t sequence_number;
journal_entry_count_t entry_count;
};
/* A packed, platform-independent encoding of a struct journal_point. */
struct packed_journal_point {
/*
* The packed representation is the little-endian 64-bit representation of the low-order 48
* bits of the sequence number, shifted up 16 bits, or'ed with the 16-bit entry count.
*
* Very long-term, the top 16 bits of the sequence number may not always be zero, as this
* encoding assumes--see BZ 1523240.
*/
__le64 encoded_point;
} __packed;
/* Special vdo_refcount_t values. */
#define EMPTY_REFERENCE_COUNT 0
enum {
MAXIMUM_REFERENCE_COUNT = 254,
PROVISIONAL_REFERENCE_COUNT = 255,
};
enum {
COUNTS_PER_SECTOR =
((VDO_SECTOR_SIZE - sizeof(struct packed_journal_point)) / sizeof(vdo_refcount_t)),
COUNTS_PER_BLOCK = COUNTS_PER_SECTOR * VDO_SECTORS_PER_BLOCK,
};
/* The format of each sector of a reference_block on disk. */
struct packed_reference_sector {
struct packed_journal_point commit_point;
vdo_refcount_t counts[COUNTS_PER_SECTOR];
} __packed;
struct packed_reference_block {
struct packed_reference_sector sectors[VDO_SECTORS_PER_BLOCK];
};
struct slab_depot_state_2_0 {
struct slab_config slab_config;
physical_block_number_t first_block;
physical_block_number_t last_block;
zone_count_t zone_count;
} __packed;
extern const struct header VDO_SLAB_DEPOT_HEADER_2_0;
/*
* vdo_slab journal blocks may have one of two formats, depending upon whether or not any of the
* entries in the block are block map increments. Since the steady state for a VDO is that all of
* the necessary block map pages will be allocated, most slab journal blocks will have only data
* entries. Such blocks can hold more entries, hence the two formats.
*/
/* A single slab journal entry */
struct slab_journal_entry {
slab_block_number sbn;
enum journal_operation operation;
bool increment;
};
/* A single slab journal entry in its on-disk form */
typedef struct {
u8 offset_low8;
u8 offset_mid8;
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
unsigned offset_high7 : 7;
unsigned increment : 1;
#else
unsigned increment : 1;
unsigned offset_high7 : 7;
#endif
} __packed packed_slab_journal_entry;
/* The unpacked representation of the header of a slab journal block */
struct slab_journal_block_header {
/* Sequence number for head of journal */
sequence_number_t head;
/* Sequence number for this block */
sequence_number_t sequence_number;
/* The nonce for a given VDO instance */
nonce_t nonce;
/* Recovery journal point for last entry */
struct journal_point recovery_point;
/* Metadata type */
enum vdo_metadata_type metadata_type;
/* Whether this block contains block map increments */
bool has_block_map_increments;
/* The number of entries in the block */
journal_entry_count_t entry_count;
};
/*
* The packed, on-disk representation of a slab journal block header. All fields are kept in
* little-endian byte order.
*/
struct packed_slab_journal_block_header {
/* 64-bit sequence number for head of journal */
__le64 head;
/* 64-bit sequence number for this block */
__le64 sequence_number;
/* Recovery journal point for the last entry, packed into 64 bits */
struct packed_journal_point recovery_point;
/* The 64-bit nonce for a given VDO instance */
__le64 nonce;
/* 8-bit metadata type (should always be two, for the slab journal) */
u8 metadata_type;
/* Whether this block contains block map increments */
bool has_block_map_increments;
/* 16-bit count of the entries encoded in the block */
__le16 entry_count;
} __packed;
enum {
VDO_SLAB_JOURNAL_PAYLOAD_SIZE =
VDO_BLOCK_SIZE - sizeof(struct packed_slab_journal_block_header),
VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK = (VDO_SLAB_JOURNAL_PAYLOAD_SIZE * 8) / 25,
VDO_SLAB_JOURNAL_ENTRY_TYPES_SIZE =
((VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK - 1) / 8) + 1,
VDO_SLAB_JOURNAL_ENTRIES_PER_BLOCK =
(VDO_SLAB_JOURNAL_PAYLOAD_SIZE / sizeof(packed_slab_journal_entry)),
};
/* The payload of a slab journal block which has block map increments */
struct full_slab_journal_entries {
/* The entries themselves */
packed_slab_journal_entry entries[VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK];
/* The bit map indicating which entries are block map increments */
u8 entry_types[VDO_SLAB_JOURNAL_ENTRY_TYPES_SIZE];
} __packed;
typedef union {
/* Entries which include block map increments */
struct full_slab_journal_entries full_entries;
/* Entries which are only data updates */
packed_slab_journal_entry entries[VDO_SLAB_JOURNAL_ENTRIES_PER_BLOCK];
/* Ensure the payload fills to the end of the block */
u8 space[VDO_SLAB_JOURNAL_PAYLOAD_SIZE];
} __packed slab_journal_payload;
struct packed_slab_journal_block {
struct packed_slab_journal_block_header header;
slab_journal_payload payload;
} __packed;
/* The offset of a slab journal tail block. */
typedef u8 tail_block_offset_t;
struct slab_summary_entry {
/* Bits 7..0: The offset of the tail block within the slab journal */
tail_block_offset_t tail_block_offset;
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
/* Bits 13..8: A hint about the fullness of the slab */
unsigned int fullness_hint : 6;
/* Bit 14: Whether the ref_counts must be loaded from the layer */
unsigned int load_ref_counts : 1;
/* Bit 15: The believed cleanliness of this slab */
unsigned int is_dirty : 1;
#else
/* Bit 15: The believed cleanliness of this slab */
unsigned int is_dirty : 1;
/* Bit 14: Whether the ref_counts must be loaded from the layer */
unsigned int load_ref_counts : 1;
/* Bits 13..8: A hint about the fullness of the slab */
unsigned int fullness_hint : 6;
#endif
} __packed;
enum {
VDO_SLAB_SUMMARY_FULLNESS_HINT_BITS = 6,
VDO_SLAB_SUMMARY_ENTRIES_PER_BLOCK = VDO_BLOCK_SIZE / sizeof(struct slab_summary_entry),
VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE = MAX_VDO_SLABS / VDO_SLAB_SUMMARY_ENTRIES_PER_BLOCK,
VDO_SLAB_SUMMARY_BLOCKS = VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE * MAX_VDO_PHYSICAL_ZONES,
};
struct layout {
physical_block_number_t start;
block_count_t size;
physical_block_number_t first_free;
physical_block_number_t last_free;
size_t num_partitions;
struct partition *head;
};
struct partition {
enum partition_id id; /* The id of this partition */
physical_block_number_t offset; /* The offset into the layout of this partition */
block_count_t count; /* The number of blocks in the partition */
struct partition *next; /* A pointer to the next partition in the layout */
};
struct layout_3_0 {
physical_block_number_t first_free;
physical_block_number_t last_free;
u8 partition_count;
} __packed;
struct partition_3_0 {
enum partition_id id;
physical_block_number_t offset;
physical_block_number_t base; /* unused but retained for backwards compatibility */
block_count_t count;
} __packed;
/*
* The configuration of the VDO service.
*/
struct vdo_config {
block_count_t logical_blocks; /* number of logical blocks */
block_count_t physical_blocks; /* number of physical blocks */
block_count_t slab_size; /* number of blocks in a slab */
block_count_t recovery_journal_size; /* number of recovery journal blocks */
block_count_t slab_journal_blocks; /* number of slab journal blocks */
};
/* This is the structure that captures the vdo fields saved as a super block component. */
struct vdo_component {
enum vdo_state state;
u64 complete_recoveries;
u64 read_only_recoveries;
struct vdo_config config;
nonce_t nonce;
};
/*
* A packed, machine-independent, on-disk representation of the vdo_config in the VDO component
* data in the super block.
*/
struct packed_vdo_config {
__le64 logical_blocks;
__le64 physical_blocks;
__le64 slab_size;
__le64 recovery_journal_size;
__le64 slab_journal_blocks;
} __packed;
/*
* A packed, machine-independent, on-disk representation of version 41.0 of the VDO component data
* in the super block.
*/
struct packed_vdo_component_41_0 {
__le32 state;
__le64 complete_recoveries;
__le64 read_only_recoveries;
struct packed_vdo_config config;
__le64 nonce;
} __packed;
/*
* The version of the on-disk format of a VDO volume. This should be incremented any time the
* on-disk representation of any VDO structure changes. Changes which require only online upgrade
* steps should increment the minor version. Changes which require an offline upgrade or which can
* not be upgraded to at all should increment the major version and set the minor version to 0.
*/
extern const struct version_number VDO_VOLUME_VERSION_67_0;
enum {
VDO_ENCODED_HEADER_SIZE = sizeof(struct packed_header),
BLOCK_MAP_COMPONENT_ENCODED_SIZE =
VDO_ENCODED_HEADER_SIZE + sizeof(struct block_map_state_2_0),
RECOVERY_JOURNAL_COMPONENT_ENCODED_SIZE =
VDO_ENCODED_HEADER_SIZE + sizeof(struct recovery_journal_state_7_0),
SLAB_DEPOT_COMPONENT_ENCODED_SIZE =
VDO_ENCODED_HEADER_SIZE + sizeof(struct slab_depot_state_2_0),
VDO_PARTITION_COUNT = 4,
VDO_LAYOUT_ENCODED_SIZE = (VDO_ENCODED_HEADER_SIZE +
sizeof(struct layout_3_0) +
(sizeof(struct partition_3_0) * VDO_PARTITION_COUNT)),
VDO_SUPER_BLOCK_FIXED_SIZE = VDO_ENCODED_HEADER_SIZE + sizeof(u32),
VDO_MAX_COMPONENT_DATA_SIZE = VDO_SECTOR_SIZE - VDO_SUPER_BLOCK_FIXED_SIZE,
VDO_COMPONENT_ENCODED_SIZE =
(sizeof(struct packed_version_number) + sizeof(struct packed_vdo_component_41_0)),
VDO_COMPONENT_DATA_OFFSET = VDO_ENCODED_HEADER_SIZE,
VDO_COMPONENT_DATA_SIZE = (sizeof(u32) +
sizeof(struct packed_version_number) +
VDO_COMPONENT_ENCODED_SIZE +
VDO_LAYOUT_ENCODED_SIZE +
RECOVERY_JOURNAL_COMPONENT_ENCODED_SIZE +
SLAB_DEPOT_COMPONENT_ENCODED_SIZE +
BLOCK_MAP_COMPONENT_ENCODED_SIZE),
};
/* The entirety of the component data encoded in the VDO super block. */
struct vdo_component_states {
/* For backwards compatibility */
u32 unused;
/* The VDO volume version */
struct version_number volume_version;
/* Components */
struct vdo_component vdo;
struct block_map_state_2_0 block_map;
struct recovery_journal_state_7_0 recovery_journal;
struct slab_depot_state_2_0 slab_depot;
/* Our partitioning of the underlying storage */
struct layout layout;
};
/**
* vdo_are_same_version() - Check whether two version numbers are the same.
* @version_a: The first version.
* @version_b: The second version.
*
* Return: true if the two versions are the same.
*/
static inline bool vdo_are_same_version(struct version_number version_a,
struct version_number version_b)
{
return ((version_a.major_version == version_b.major_version) &&
(version_a.minor_version == version_b.minor_version));
}
/**
* vdo_is_upgradable_version() - Check whether an actual version is upgradable to an expected
* version.
* @expected_version: The expected version.
* @actual_version: The version being validated.
*
* An actual version is upgradable if its major number is expected but its minor number differs,
* and the expected version's minor number is greater than the actual version's minor number.
*
* Return: true if the actual version is upgradable.
*/
static inline bool vdo_is_upgradable_version(struct version_number expected_version,
struct version_number actual_version)
{
return ((expected_version.major_version == actual_version.major_version) &&
(expected_version.minor_version > actual_version.minor_version));
}
int __must_check vdo_validate_header(const struct header *expected_header,
const struct header *actual_header, bool exact_size,
const char *component_name);
void vdo_encode_header(u8 *buffer, size_t *offset, const struct header *header);
void vdo_decode_header(u8 *buffer, size_t *offset, struct header *header);
/**
* vdo_pack_version_number() - Convert a version_number to its packed on-disk representation.
* @version: The version number to convert.
*
* Return: the platform-independent representation of the version
*/
static inline struct packed_version_number vdo_pack_version_number(struct version_number version)
{
return (struct packed_version_number) {
.major_version = __cpu_to_le32(version.major_version),
.minor_version = __cpu_to_le32(version.minor_version),
};
}
/**
* vdo_unpack_version_number() - Convert a packed_version_number to its native in-memory
* representation.
* @version: The version number to convert.
*
* Return: The platform-independent representation of the version.
*/
static inline struct version_number vdo_unpack_version_number(struct packed_version_number version)
{
return (struct version_number) {
.major_version = __le32_to_cpu(version.major_version),
.minor_version = __le32_to_cpu(version.minor_version),
};
}
/**
* vdo_pack_header() - Convert a component header to its packed on-disk representation.
* @header: The header to convert.
*
* Return: the platform-independent representation of the header
*/
static inline struct packed_header vdo_pack_header(const struct header *header)
{
return (struct packed_header) {
.id = __cpu_to_le32(header->id),
.version = vdo_pack_version_number(header->version),
.size = __cpu_to_le64(header->size),
};
}
/**
* vdo_unpack_header() - Convert a packed_header to its native in-memory representation.
* @header: The header to convert.
*
* Return: The platform-independent representation of the version.
*/
static inline struct header vdo_unpack_header(const struct packed_header *header)
{
return (struct header) {
.id = __le32_to_cpu(header->id),
.version = vdo_unpack_version_number(header->version),
.size = __le64_to_cpu(header->size),
};
}
/**
* vdo_get_index_region_start() - Get the start of the index region from a geometry.
* @geometry: The geometry.
*
* Return: The start of the index region.
*/
static inline physical_block_number_t __must_check
vdo_get_index_region_start(struct volume_geometry geometry)
{
return geometry.regions[VDO_INDEX_REGION].start_block;
}
/**
* vdo_get_data_region_start() - Get the start of the data region from a geometry.
* @geometry: The geometry.
*
* Return: The start of the data region.
*/
static inline physical_block_number_t __must_check
vdo_get_data_region_start(struct volume_geometry geometry)
{
return geometry.regions[VDO_DATA_REGION].start_block;
}
/**
* vdo_get_index_region_size() - Get the size of the index region from a geometry.
* @geometry: The geometry.
*
* Return: The size of the index region.
*/
static inline physical_block_number_t __must_check
vdo_get_index_region_size(struct volume_geometry geometry)
{
return vdo_get_data_region_start(geometry) -
vdo_get_index_region_start(geometry);
}
int __must_check vdo_parse_geometry_block(unsigned char *block,
struct volume_geometry *geometry);
static inline bool vdo_is_state_compressed(const enum block_mapping_state mapping_state)
{
return (mapping_state > VDO_MAPPING_STATE_UNCOMPRESSED);
}
static inline struct block_map_entry
vdo_pack_block_map_entry(physical_block_number_t pbn, enum block_mapping_state mapping_state)
{
return (struct block_map_entry) {
.mapping_state = (mapping_state & 0x0F),
.pbn_high_nibble = ((pbn >> 32) & 0x0F),
.pbn_low_word = __cpu_to_le32(pbn & UINT_MAX),
};
}
static inline struct data_location vdo_unpack_block_map_entry(const struct block_map_entry *entry)
{
physical_block_number_t low32 = __le32_to_cpu(entry->pbn_low_word);
physical_block_number_t high4 = entry->pbn_high_nibble;
return (struct data_location) {
.pbn = ((high4 << 32) | low32),
.state = entry->mapping_state,
};
}
static inline bool vdo_is_mapped_location(const struct data_location *location)
{
return (location->state != VDO_MAPPING_STATE_UNMAPPED);
}
static inline bool vdo_is_valid_location(const struct data_location *location)
{
if (location->pbn == VDO_ZERO_BLOCK)
return !vdo_is_state_compressed(location->state);
else
return vdo_is_mapped_location(location);
}
static inline physical_block_number_t __must_check
vdo_get_block_map_page_pbn(const struct block_map_page *page)
{
return __le64_to_cpu(page->header.pbn);
}
struct block_map_page *vdo_format_block_map_page(void *buffer, nonce_t nonce,
physical_block_number_t pbn,
bool initialized);
enum block_map_page_validity __must_check vdo_validate_block_map_page(struct block_map_page *page,
nonce_t nonce,
physical_block_number_t pbn);
static inline page_count_t vdo_compute_block_map_page_count(block_count_t entries)
{
return DIV_ROUND_UP(entries, VDO_BLOCK_MAP_ENTRIES_PER_PAGE);
}
block_count_t __must_check vdo_compute_new_forest_pages(root_count_t root_count,
struct boundary *old_sizes,
block_count_t entries,
struct boundary *new_sizes);
/**
* vdo_pack_recovery_journal_entry() - Return the packed, on-disk representation of a recovery
* journal entry.
* @entry: The journal entry to pack.
*
* Return: The packed representation of the journal entry.
*/
static inline struct packed_recovery_journal_entry
vdo_pack_recovery_journal_entry(const struct recovery_journal_entry *entry)
{
return (struct packed_recovery_journal_entry) {
.operation = entry->operation,
.slot_low = entry->slot.slot & 0x3F,
.slot_high = (entry->slot.slot >> 6) & 0x0F,
.pbn_high_nibble = (entry->slot.pbn >> 32) & 0x0F,
.pbn_low_word = __cpu_to_le32(entry->slot.pbn & UINT_MAX),
.mapping = vdo_pack_block_map_entry(entry->mapping.pbn,
entry->mapping.state),
.unmapping = vdo_pack_block_map_entry(entry->unmapping.pbn,
entry->unmapping.state),
};
}
/**
* vdo_unpack_recovery_journal_entry() - Unpack the on-disk representation of a recovery journal
* entry.
* @entry: The recovery journal entry to unpack.
*
* Return: The unpacked entry.
*/
static inline struct recovery_journal_entry
vdo_unpack_recovery_journal_entry(const struct packed_recovery_journal_entry *entry)
{
physical_block_number_t low32 = __le32_to_cpu(entry->pbn_low_word);
physical_block_number_t high4 = entry->pbn_high_nibble;
return (struct recovery_journal_entry) {
.operation = entry->operation,
.slot = {
.pbn = ((high4 << 32) | low32),
.slot = (entry->slot_low | (entry->slot_high << 6)),
},
.mapping = vdo_unpack_block_map_entry(&entry->mapping),
.unmapping = vdo_unpack_block_map_entry(&entry->unmapping),
};
}
const char * __must_check vdo_get_journal_operation_name(enum journal_operation operation);
/**
* vdo_is_valid_recovery_journal_sector() - Determine whether the header of the given sector could
* describe a valid sector for the given journal block
* header.
* @header: The unpacked block header to compare against.
* @sector: The packed sector to check.
* @sector_number: The number of the sector being checked.
*
* Return: true if the sector matches the block header.
*/
static inline bool __must_check
vdo_is_valid_recovery_journal_sector(const struct recovery_block_header *header,
const struct packed_journal_sector *sector,
u8 sector_number)
{
if ((header->check_byte != sector->check_byte) ||
(header->recovery_count != sector->recovery_count))
return false;
if (header->metadata_type == VDO_METADATA_RECOVERY_JOURNAL_2)
return sector->entry_count <= RECOVERY_JOURNAL_ENTRIES_PER_SECTOR;
if (sector_number == 7)
return sector->entry_count <= RECOVERY_JOURNAL_1_ENTRIES_IN_LAST_SECTOR;
return sector->entry_count <= RECOVERY_JOURNAL_1_ENTRIES_PER_SECTOR;
}
/**
* vdo_compute_recovery_journal_block_number() - Compute the physical block number of the recovery
* journal block which would have a given sequence
* number.
* @journal_size: The size of the journal.
* @sequence_number: The sequence number.
*
* Return: The pbn of the journal block which would the specified sequence number.
*/
static inline physical_block_number_t __must_check
vdo_compute_recovery_journal_block_number(block_count_t journal_size,
sequence_number_t sequence_number)
{
/*
* Since journal size is a power of two, the block number modulus can just be extracted
* from the low-order bits of the sequence.
*/
return (sequence_number & (journal_size - 1));
}
/**
* vdo_get_journal_block_sector() - Find the recovery journal sector from the block header and
* sector number.
* @header: The header of the recovery journal block.
* @sector_number: The index of the sector (1-based).
*
* Return: A packed recovery journal sector.
*/
static inline struct packed_journal_sector * __must_check
vdo_get_journal_block_sector(struct packed_journal_header *header, int sector_number)
{
char *sector_data = ((char *) header) + (VDO_SECTOR_SIZE * sector_number);
return (struct packed_journal_sector *) sector_data;
}
/**
* vdo_pack_recovery_block_header() - Generate the packed representation of a recovery block
* header.
* @header: The header containing the values to encode.
* @packed: The header into which to pack the values.
*/
static inline void vdo_pack_recovery_block_header(const struct recovery_block_header *header,
struct packed_journal_header *packed)
{
*packed = (struct packed_journal_header) {
.block_map_head = __cpu_to_le64(header->block_map_head),
.slab_journal_head = __cpu_to_le64(header->slab_journal_head),
.sequence_number = __cpu_to_le64(header->sequence_number),
.nonce = __cpu_to_le64(header->nonce),
.logical_blocks_used = __cpu_to_le64(header->logical_blocks_used),
.block_map_data_blocks = __cpu_to_le64(header->block_map_data_blocks),
.entry_count = __cpu_to_le16(header->entry_count),
.check_byte = header->check_byte,
.recovery_count = header->recovery_count,
.metadata_type = header->metadata_type,
};
}
/**
* vdo_unpack_recovery_block_header() - Decode the packed representation of a recovery block
* header.
* @packed: The packed header to decode.
*
* Return: The unpacked header.
*/
static inline struct recovery_block_header
vdo_unpack_recovery_block_header(const struct packed_journal_header *packed)
{
return (struct recovery_block_header) {
.block_map_head = __le64_to_cpu(packed->block_map_head),
.slab_journal_head = __le64_to_cpu(packed->slab_journal_head),
.sequence_number = __le64_to_cpu(packed->sequence_number),
.nonce = __le64_to_cpu(packed->nonce),
.logical_blocks_used = __le64_to_cpu(packed->logical_blocks_used),
.block_map_data_blocks = __le64_to_cpu(packed->block_map_data_blocks),
.entry_count = __le16_to_cpu(packed->entry_count),
.check_byte = packed->check_byte,
.recovery_count = packed->recovery_count,
.metadata_type = packed->metadata_type,
};
}
/**
* vdo_compute_slab_count() - Compute the number of slabs a depot with given parameters would have.
* @first_block: PBN of the first data block.
* @last_block: PBN of the last data block.
* @slab_size_shift: Exponent for the number of blocks per slab.
*
* Return: The number of slabs.
*/
static inline slab_count_t vdo_compute_slab_count(physical_block_number_t first_block,
physical_block_number_t last_block,
unsigned int slab_size_shift)
{
return (slab_count_t) ((last_block - first_block) >> slab_size_shift);
}
int __must_check vdo_configure_slab_depot(const struct partition *partition,
struct slab_config slab_config,
zone_count_t zone_count,
struct slab_depot_state_2_0 *state);
int __must_check vdo_configure_slab(block_count_t slab_size,
block_count_t slab_journal_blocks,
struct slab_config *slab_config);
/**
* vdo_get_saved_reference_count_size() - Get the number of blocks required to save a reference
* counts state covering the specified number of data
* blocks.
* @block_count: The number of physical data blocks that can be referenced.
*
* Return: The number of blocks required to save reference counts with the given block count.
*/
static inline block_count_t vdo_get_saved_reference_count_size(block_count_t block_count)
{
return DIV_ROUND_UP(block_count, COUNTS_PER_BLOCK);
}
/**
* vdo_get_slab_journal_start_block() - Get the physical block number of the start of the slab
* journal relative to the start block allocator partition.
* @slab_config: The slab configuration of the VDO.
* @origin: The first block of the slab.
*/
static inline physical_block_number_t __must_check
vdo_get_slab_journal_start_block(const struct slab_config *slab_config,
physical_block_number_t origin)
{
return origin + slab_config->data_blocks + slab_config->reference_count_blocks;
}
/**
* vdo_advance_journal_point() - Move the given journal point forward by one entry.
* @point: The journal point to adjust.
* @entries_per_block: The number of entries in one full block.
*/
static inline void vdo_advance_journal_point(struct journal_point *point,
journal_entry_count_t entries_per_block)
{
point->entry_count++;
if (point->entry_count == entries_per_block) {
point->sequence_number++;
point->entry_count = 0;
}
}
/**
* vdo_before_journal_point() - Check whether the first point precedes the second point.
* @first: The first journal point.
* @second: The second journal point.
*
* Return: true if the first point precedes the second point.
*/
static inline bool vdo_before_journal_point(const struct journal_point *first,
const struct journal_point *second)
{
return ((first->sequence_number < second->sequence_number) ||
((first->sequence_number == second->sequence_number) &&
(first->entry_count < second->entry_count)));
}
/**
* vdo_pack_journal_point() - Encode the journal location represented by a
* journal_point into a packed_journal_point.
* @unpacked: The unpacked input point.
* @packed: The packed output point.
*/
static inline void vdo_pack_journal_point(const struct journal_point *unpacked,
struct packed_journal_point *packed)
{
packed->encoded_point =
__cpu_to_le64((unpacked->sequence_number << 16) | unpacked->entry_count);
}
/**
* vdo_unpack_journal_point() - Decode the journal location represented by a packed_journal_point
* into a journal_point.
* @packed: The packed input point.
* @unpacked: The unpacked output point.
*/
static inline void vdo_unpack_journal_point(const struct packed_journal_point *packed,
struct journal_point *unpacked)
{
u64 native = __le64_to_cpu(packed->encoded_point);
unpacked->sequence_number = (native >> 16);
unpacked->entry_count = (native & 0xffff);
}
/**
* vdo_pack_slab_journal_block_header() - Generate the packed representation of a slab block
* header.
* @header: The header containing the values to encode.
* @packed: The header into which to pack the values.
*/
static inline void
vdo_pack_slab_journal_block_header(const struct slab_journal_block_header *header,
struct packed_slab_journal_block_header *packed)
{
packed->head = __cpu_to_le64(header->head);
packed->sequence_number = __cpu_to_le64(header->sequence_number);
packed->nonce = __cpu_to_le64(header->nonce);
packed->entry_count = __cpu_to_le16(header->entry_count);
packed->metadata_type = header->metadata_type;
packed->has_block_map_increments = header->has_block_map_increments;
vdo_pack_journal_point(&header->recovery_point, &packed->recovery_point);
}
/**
* vdo_unpack_slab_journal_block_header() - Decode the packed representation of a slab block
* header.
* @packed: The packed header to decode.
* @header: The header into which to unpack the values.
*/
static inline void
vdo_unpack_slab_journal_block_header(const struct packed_slab_journal_block_header *packed,
struct slab_journal_block_header *header)
{
*header = (struct slab_journal_block_header) {
.head = __le64_to_cpu(packed->head),
.sequence_number = __le64_to_cpu(packed->sequence_number),
.nonce = __le64_to_cpu(packed->nonce),
.entry_count = __le16_to_cpu(packed->entry_count),
.metadata_type = packed->metadata_type,
.has_block_map_increments = packed->has_block_map_increments,
};
vdo_unpack_journal_point(&packed->recovery_point, &header->recovery_point);
}
/**
* vdo_pack_slab_journal_entry() - Generate the packed encoding of a slab journal entry.
* @packed: The entry into which to pack the values.
* @sbn: The slab block number of the entry to encode.
* @is_increment: The increment flag.
*/
static inline void vdo_pack_slab_journal_entry(packed_slab_journal_entry *packed,
slab_block_number sbn, bool is_increment)
{
packed->offset_low8 = (sbn & 0x0000FF);
packed->offset_mid8 = (sbn & 0x00FF00) >> 8;
packed->offset_high7 = (sbn & 0x7F0000) >> 16;
packed->increment = is_increment ? 1 : 0;
}
/**
* vdo_unpack_slab_journal_entry() - Decode the packed representation of a slab journal entry.
* @packed: The packed entry to decode.
*
* Return: The decoded slab journal entry.
*/
static inline struct slab_journal_entry __must_check
vdo_unpack_slab_journal_entry(const packed_slab_journal_entry *packed)
{
struct slab_journal_entry entry;
entry.sbn = packed->offset_high7;
entry.sbn <<= 8;
entry.sbn |= packed->offset_mid8;
entry.sbn <<= 8;
entry.sbn |= packed->offset_low8;
entry.operation = VDO_JOURNAL_DATA_REMAPPING;
entry.increment = packed->increment;
return entry;
}
struct slab_journal_entry __must_check
vdo_decode_slab_journal_entry(struct packed_slab_journal_block *block,
journal_entry_count_t entry_count);
/**
* vdo_get_slab_summary_hint_shift() - Compute the shift for slab summary hints.
* @slab_size_shift: Exponent for the number of blocks per slab.
*
* Return: The hint shift.
*/
static inline u8 __must_check vdo_get_slab_summary_hint_shift(unsigned int slab_size_shift)
{
return ((slab_size_shift > VDO_SLAB_SUMMARY_FULLNESS_HINT_BITS) ?
(slab_size_shift - VDO_SLAB_SUMMARY_FULLNESS_HINT_BITS) :
0);
}
int __must_check vdo_initialize_layout(block_count_t size,
physical_block_number_t offset,
block_count_t block_map_blocks,
block_count_t journal_blocks,
block_count_t summary_blocks,
struct layout *layout);
void vdo_uninitialize_layout(struct layout *layout);
int __must_check vdo_get_partition(struct layout *layout, enum partition_id id,
struct partition **partition_ptr);
struct partition * __must_check vdo_get_known_partition(struct layout *layout,
enum partition_id id);
int vdo_validate_config(const struct vdo_config *config,
block_count_t physical_block_count,
block_count_t logical_block_count);
void vdo_destroy_component_states(struct vdo_component_states *states);
int __must_check vdo_decode_component_states(u8 *buffer,
struct volume_geometry *geometry,
struct vdo_component_states *states);
int __must_check vdo_validate_component_states(struct vdo_component_states *states,
nonce_t geometry_nonce,
block_count_t physical_size,
block_count_t logical_size);
void vdo_encode_super_block(u8 *buffer, struct vdo_component_states *states);
int __must_check vdo_decode_super_block(u8 *buffer);
/* We start with 0L and postcondition with ~0L to match our historical usage in userspace. */
static inline u32 vdo_crc32(const void *buf, unsigned long len)
{
return (crc32(0L, buf, len) ^ ~0L);
}
#endif /* VDO_ENCODINGS_H */