linux/drivers/ras/amd/atl/dehash.c

// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * AMD Address Translation Library
 *
 * dehash.c : Functions to account for hashing bits
 *
 * Copyright (c) 2023, Advanced Micro Devices, Inc.
 * All Rights Reserved.
 *
 * Author: Yazen Ghannam <[email protected]>
 */

#include "internal.h"

static int df2_dehash_addr(struct addr_ctx *ctx)
{
	u8 hashed_bit, intlv_bit, intlv_bit_pos;

	intlv_bit_pos = ctx->map.intlv_bit_pos;
	intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);

	hashed_bit = intlv_bit;
	hashed_bit ^= FIELD_GET(BIT_ULL(12), ctx->ret_addr);
	hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr);
	hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr);
	hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr);

	if (hashed_bit != intlv_bit)
		ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);

	return 0;
}

static int df3_dehash_addr(struct addr_ctx *ctx)
{
	bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G;
	u8 hashed_bit, intlv_bit, intlv_bit_pos;

	hash_ctl_64k = FIELD_GET(DF3_HASH_CTL_64K, ctx->map.ctl);
	hash_ctl_2M  = FIELD_GET(DF3_HASH_CTL_2M, ctx->map.ctl);
	hash_ctl_1G  = FIELD_GET(DF3_HASH_CTL_1G, ctx->map.ctl);

	intlv_bit_pos = ctx->map.intlv_bit_pos;
	intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);

	hashed_bit = intlv_bit;
	hashed_bit ^= FIELD_GET(BIT_ULL(14), ctx->ret_addr);
	hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k;
	hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
	hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;

	if (hashed_bit != intlv_bit)
		ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);

	/* Calculation complete for 2 channels. Continue for 4 and 8 channels. */
	if (ctx->map.intlv_mode == DF3_COD4_2CHAN_HASH)
		return 0;

	intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr);

	hashed_bit = intlv_bit;
	hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k;
	hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
	hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;

	if (hashed_bit != intlv_bit)
		ctx->ret_addr ^= BIT_ULL(12);

	/* Calculation complete for 4 channels. Continue for 8 channels. */
	if (ctx->map.intlv_mode == DF3_COD2_4CHAN_HASH)
		return 0;

	intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr);

	hashed_bit = intlv_bit;
	hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k;
	hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
	hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;

	if (hashed_bit != intlv_bit)
		ctx->ret_addr ^= BIT_ULL(13);

	return 0;
}

static int df3_6chan_dehash_addr(struct addr_ctx *ctx)
{
	u8 intlv_bit_pos = ctx->map.intlv_bit_pos;
	u8 hashed_bit, intlv_bit, num_intlv_bits;
	bool hash_ctl_2M, hash_ctl_1G;

	if (ctx->map.intlv_mode != DF3_6CHAN) {
		atl_debug_on_bad_intlv_mode(ctx);
		return -EINVAL;
	}

	num_intlv_bits = ilog2(ctx->map.num_intlv_chan) + 1;

	hash_ctl_2M = FIELD_GET(DF3_HASH_CTL_2M, ctx->map.ctl);
	hash_ctl_1G = FIELD_GET(DF3_HASH_CTL_1G, ctx->map.ctl);

	intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);

	hashed_bit = intlv_bit;
	hashed_bit ^= !!(BIT_ULL(intlv_bit_pos + num_intlv_bits) & ctx->ret_addr);
	hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
	hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;

	if (hashed_bit != intlv_bit)
		ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);

	intlv_bit_pos++;
	intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);

	hashed_bit = intlv_bit;
	hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
	hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;

	if (hashed_bit != intlv_bit)
		ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);

	intlv_bit_pos++;
	intlv_bit = !!(BIT_ULL(intlv_bit_pos) & ctx->ret_addr);

	hashed_bit = intlv_bit;
	hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
	hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;

	if (hashed_bit != intlv_bit)
		ctx->ret_addr ^= BIT_ULL(intlv_bit_pos);

	return 0;
}

static int df4_dehash_addr(struct addr_ctx *ctx)
{
	bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G;
	u8 hashed_bit, intlv_bit;

	hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl);
	hash_ctl_2M  = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl);
	hash_ctl_1G  = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl);

	intlv_bit = FIELD_GET(BIT_ULL(8), ctx->ret_addr);

	hashed_bit = intlv_bit;
	hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k;
	hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
	hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;

	if (ctx->map.num_intlv_sockets == 1)
		hashed_bit ^= FIELD_GET(BIT_ULL(14), ctx->ret_addr);

	if (hashed_bit != intlv_bit)
		ctx->ret_addr ^= BIT_ULL(8);

	/*
	 * Hashing is possible with socket interleaving, so check the total number
	 * of channels in the system rather than DRAM map interleaving mode.
	 *
	 * Calculation complete for 2 channels. Continue for 4, 8, and 16 channels.
	 */
	if (ctx->map.total_intlv_chan <= 2)
		return 0;

	intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr);

	hashed_bit = intlv_bit;
	hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k;
	hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
	hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;

	if (hashed_bit != intlv_bit)
		ctx->ret_addr ^= BIT_ULL(12);

	/* Calculation complete for 4 channels. Continue for 8 and 16 channels. */
	if (ctx->map.total_intlv_chan <= 4)
		return 0;

	intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr);

	hashed_bit = intlv_bit;
	hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k;
	hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
	hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;

	if (hashed_bit != intlv_bit)
		ctx->ret_addr ^= BIT_ULL(13);

	/* Calculation complete for 8 channels. Continue for 16 channels. */
	if (ctx->map.total_intlv_chan <= 8)
		return 0;

	intlv_bit = FIELD_GET(BIT_ULL(14), ctx->ret_addr);

	hashed_bit = intlv_bit;
	hashed_bit ^= FIELD_GET(BIT_ULL(19), ctx->ret_addr) & hash_ctl_64k;
	hashed_bit ^= FIELD_GET(BIT_ULL(24), ctx->ret_addr) & hash_ctl_2M;
	hashed_bit ^= FIELD_GET(BIT_ULL(33), ctx->ret_addr) & hash_ctl_1G;

	if (hashed_bit != intlv_bit)
		ctx->ret_addr ^= BIT_ULL(14);

	return 0;
}

static int df4p5_dehash_addr(struct addr_ctx *ctx)
{
	bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G, hash_ctl_1T;
	u8 hashed_bit, intlv_bit;
	u64 rehash_vector;

	hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl);
	hash_ctl_2M  = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl);
	hash_ctl_1G  = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl);
	hash_ctl_1T  = FIELD_GET(DF4p5_HASH_CTL_1T, ctx->map.ctl);

	/*
	 * Generate a unique address to determine which bits
	 * need to be dehashed.
	 *
	 * Start with a contiguous bitmask for the total
	 * number of channels starting at bit 8.
	 *
	 * Then make a gap in the proper place based on
	 * interleave mode.
	 */
	rehash_vector = ctx->map.total_intlv_chan - 1;
	rehash_vector <<= 8;

	if (ctx->map.intlv_mode == DF4p5_NPS2_4CHAN_1K_HASH ||
	    ctx->map.intlv_mode == DF4p5_NPS1_8CHAN_1K_HASH ||
	    ctx->map.intlv_mode == DF4p5_NPS1_16CHAN_1K_HASH)
		rehash_vector = expand_bits(10, 2, rehash_vector);
	else
		rehash_vector = expand_bits(9, 3, rehash_vector);

	if (rehash_vector & BIT_ULL(8)) {
		intlv_bit = FIELD_GET(BIT_ULL(8), ctx->ret_addr);

		hashed_bit = intlv_bit;
		hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k;
		hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
		hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;
		hashed_bit ^= FIELD_GET(BIT_ULL(40), ctx->ret_addr) & hash_ctl_1T;

		if (hashed_bit != intlv_bit)
			ctx->ret_addr ^= BIT_ULL(8);
	}

	if (rehash_vector & BIT_ULL(9)) {
		intlv_bit = FIELD_GET(BIT_ULL(9), ctx->ret_addr);

		hashed_bit = intlv_bit;
		hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k;
		hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
		hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;
		hashed_bit ^= FIELD_GET(BIT_ULL(41), ctx->ret_addr) & hash_ctl_1T;

		if (hashed_bit != intlv_bit)
			ctx->ret_addr ^= BIT_ULL(9);
	}

	if (rehash_vector & BIT_ULL(12)) {
		intlv_bit = FIELD_GET(BIT_ULL(12), ctx->ret_addr);

		hashed_bit = intlv_bit;
		hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k;
		hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
		hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;
		hashed_bit ^= FIELD_GET(BIT_ULL(42), ctx->ret_addr) & hash_ctl_1T;

		if (hashed_bit != intlv_bit)
			ctx->ret_addr ^= BIT_ULL(12);
	}

	if (rehash_vector & BIT_ULL(13)) {
		intlv_bit = FIELD_GET(BIT_ULL(13), ctx->ret_addr);

		hashed_bit = intlv_bit;
		hashed_bit ^= FIELD_GET(BIT_ULL(19), ctx->ret_addr) & hash_ctl_64k;
		hashed_bit ^= FIELD_GET(BIT_ULL(24), ctx->ret_addr) & hash_ctl_2M;
		hashed_bit ^= FIELD_GET(BIT_ULL(33), ctx->ret_addr) & hash_ctl_1G;
		hashed_bit ^= FIELD_GET(BIT_ULL(43), ctx->ret_addr) & hash_ctl_1T;

		if (hashed_bit != intlv_bit)
			ctx->ret_addr ^= BIT_ULL(13);
	}

	if (rehash_vector & BIT_ULL(14)) {
		intlv_bit = FIELD_GET(BIT_ULL(14), ctx->ret_addr);

		hashed_bit = intlv_bit;
		hashed_bit ^= FIELD_GET(BIT_ULL(20), ctx->ret_addr) & hash_ctl_64k;
		hashed_bit ^= FIELD_GET(BIT_ULL(25), ctx->ret_addr) & hash_ctl_2M;
		hashed_bit ^= FIELD_GET(BIT_ULL(34), ctx->ret_addr) & hash_ctl_1G;
		hashed_bit ^= FIELD_GET(BIT_ULL(44), ctx->ret_addr) & hash_ctl_1T;

		if (hashed_bit != intlv_bit)
			ctx->ret_addr ^= BIT_ULL(14);
	}

	return 0;
}

/*
 * MI300 hash bits
 *					  4K 64K  2M  1G  1T  1T
 * COH_ST_Select[0]	= XOR of addr{8,  12, 15, 22, 29, 36, 43}
 * COH_ST_Select[1]	= XOR of addr{9,  13, 16, 23, 30, 37, 44}
 * COH_ST_Select[2]	= XOR of addr{10, 14, 17, 24, 31, 38, 45}
 * COH_ST_Select[3]	= XOR of addr{11,     18, 25, 32, 39, 46}
 * COH_ST_Select[4]	= XOR of addr{14,     19, 26, 33, 40, 47} aka Stack
 * DieID[0]		= XOR of addr{12,     20, 27, 34, 41    }
 * DieID[1]		= XOR of addr{13,     21, 28, 35, 42    }
 */
static int mi300_dehash_addr(struct addr_ctx *ctx)
{
	bool hash_ctl_4k, hash_ctl_64k, hash_ctl_2M, hash_ctl_1G, hash_ctl_1T;
	bool hashed_bit, intlv_bit, test_bit;
	u8 num_intlv_bits, base_bit, i;

	hash_ctl_4k  = FIELD_GET(DF4p5_HASH_CTL_4K, ctx->map.ctl);
	hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K,  ctx->map.ctl);
	hash_ctl_2M  = FIELD_GET(DF4_HASH_CTL_2M,   ctx->map.ctl);
	hash_ctl_1G  = FIELD_GET(DF4_HASH_CTL_1G,   ctx->map.ctl);
	hash_ctl_1T  = FIELD_GET(DF4p5_HASH_CTL_1T, ctx->map.ctl);

	/* Channel bits */
	num_intlv_bits = ilog2(ctx->map.num_intlv_chan);

	for (i = 0; i < num_intlv_bits; i++) {
		base_bit = 8 + i;

		/* COH_ST_Select[4] jumps to a base bit of 14. */
		if (i == 4)
			base_bit = 14;

		intlv_bit = BIT_ULL(base_bit) & ctx->ret_addr;

		hashed_bit = intlv_bit;

		/* 4k hash bit only applies to the first 3 bits. */
		if (i <= 2) {
			test_bit    = BIT_ULL(12 + i) & ctx->ret_addr;
			hashed_bit ^= test_bit & hash_ctl_4k;
		}

		/* Use temporary 'test_bit' value to avoid Sparse warnings. */
		test_bit    = BIT_ULL(15 + i) & ctx->ret_addr;
		hashed_bit ^= test_bit & hash_ctl_64k;
		test_bit    = BIT_ULL(22 + i) & ctx->ret_addr;
		hashed_bit ^= test_bit & hash_ctl_2M;
		test_bit    = BIT_ULL(29 + i) & ctx->ret_addr;
		hashed_bit ^= test_bit & hash_ctl_1G;
		test_bit    = BIT_ULL(36 + i) & ctx->ret_addr;
		hashed_bit ^= test_bit & hash_ctl_1T;
		test_bit    = BIT_ULL(43 + i) & ctx->ret_addr;
		hashed_bit ^= test_bit & hash_ctl_1T;

		if (hashed_bit != intlv_bit)
			ctx->ret_addr ^= BIT_ULL(base_bit);
	}

	/* Die bits */
	num_intlv_bits = ilog2(ctx->map.num_intlv_dies);

	for (i = 0; i < num_intlv_bits; i++) {
		base_bit = 12 + i;

		intlv_bit = BIT_ULL(base_bit) & ctx->ret_addr;

		hashed_bit = intlv_bit;

		test_bit    = BIT_ULL(20 + i) & ctx->ret_addr;
		hashed_bit ^= test_bit & hash_ctl_64k;
		test_bit    = BIT_ULL(27 + i) & ctx->ret_addr;
		hashed_bit ^= test_bit & hash_ctl_2M;
		test_bit    = BIT_ULL(34 + i) & ctx->ret_addr;
		hashed_bit ^= test_bit & hash_ctl_1G;
		test_bit    = BIT_ULL(41 + i) & ctx->ret_addr;
		hashed_bit ^= test_bit & hash_ctl_1T;

		if (hashed_bit != intlv_bit)
			ctx->ret_addr ^= BIT_ULL(base_bit);
	}

	return 0;
}

int dehash_address(struct addr_ctx *ctx)
{
	switch (ctx->map.intlv_mode) {
	/* No hashing cases. */
	case NONE:
	case NOHASH_2CHAN:
	case NOHASH_4CHAN:
	case NOHASH_8CHAN:
	case NOHASH_16CHAN:
	case NOHASH_32CHAN:
	/* Hashing bits handled earlier during CS ID calculation. */
	case DF4_NPS4_3CHAN_HASH:
	case DF4_NPS2_5CHAN_HASH:
	case DF4_NPS2_6CHAN_HASH:
	case DF4_NPS1_10CHAN_HASH:
	case DF4_NPS1_12CHAN_HASH:
	case DF4p5_NPS2_6CHAN_1K_HASH:
	case DF4p5_NPS2_6CHAN_2K_HASH:
	case DF4p5_NPS1_10CHAN_1K_HASH:
	case DF4p5_NPS1_10CHAN_2K_HASH:
	case DF4p5_NPS1_12CHAN_1K_HASH:
	case DF4p5_NPS1_12CHAN_2K_HASH:
	case DF4p5_NPS0_24CHAN_1K_HASH:
	case DF4p5_NPS0_24CHAN_2K_HASH:
	/* No hash physical address bits, so nothing to do. */
	case DF4p5_NPS4_3CHAN_1K_HASH:
	case DF4p5_NPS4_3CHAN_2K_HASH:
	case DF4p5_NPS2_5CHAN_1K_HASH:
	case DF4p5_NPS2_5CHAN_2K_HASH:
		return 0;

	case DF2_2CHAN_HASH:
		return df2_dehash_addr(ctx);

	case DF3_COD4_2CHAN_HASH:
	case DF3_COD2_4CHAN_HASH:
	case DF3_COD1_8CHAN_HASH:
		return df3_dehash_addr(ctx);

	case DF3_6CHAN:
		return df3_6chan_dehash_addr(ctx);

	case DF4_NPS4_2CHAN_HASH:
	case DF4_NPS2_4CHAN_HASH:
	case DF4_NPS1_8CHAN_HASH:
		return df4_dehash_addr(ctx);

	case DF4p5_NPS4_2CHAN_1K_HASH:
	case DF4p5_NPS4_2CHAN_2K_HASH:
	case DF4p5_NPS2_4CHAN_2K_HASH:
	case DF4p5_NPS2_4CHAN_1K_HASH:
	case DF4p5_NPS1_8CHAN_1K_HASH:
	case DF4p5_NPS1_8CHAN_2K_HASH:
	case DF4p5_NPS1_16CHAN_1K_HASH:
	case DF4p5_NPS1_16CHAN_2K_HASH:
		return df4p5_dehash_addr(ctx);

	case MI3_HASH_8CHAN:
	case MI3_HASH_16CHAN:
	case MI3_HASH_32CHAN:
		return mi300_dehash_addr(ctx);

	default:
		atl_debug_on_bad_intlv_mode(ctx);
		return -EINVAL;
	}
}