linux/kernel/time/tick-internal.h

/* SPDX-License-Identifier: GPL-2.0 */
/*
 * tick internal variable and functions used by low/high res code
 */
#include <linux/hrtimer.h>
#include <linux/tick.h>

#include "timekeeping.h"
#include "tick-sched.h"

struct timer_events {
	u64	local;
	u64	global;
};

#ifdef CONFIG_GENERIC_CLOCKEVENTS

# define TICK_DO_TIMER_NONE	-1
# define TICK_DO_TIMER_BOOT	-2

DECLARE_PER_CPU(struct tick_device, tick_cpu_device);
extern ktime_t tick_next_period;
extern int tick_do_timer_cpu __read_mostly;

extern void tick_setup_periodic(struct clock_event_device *dev, int broadcast);
extern void tick_handle_periodic(struct clock_event_device *dev);
extern void tick_check_new_device(struct clock_event_device *dev);
extern void tick_shutdown(unsigned int cpu);
extern void tick_suspend(void);
extern void tick_resume(void);
extern bool tick_check_replacement(struct clock_event_device *curdev,
				   struct clock_event_device *newdev);
extern void tick_install_replacement(struct clock_event_device *dev);
extern int tick_is_oneshot_available(void);
extern struct tick_device *tick_get_device(int cpu);

extern int clockevents_tick_resume(struct clock_event_device *dev);
/* Check, if the device is functional or a dummy for broadcast */
static inline int tick_device_is_functional(struct clock_event_device *dev)
{
	return !(dev->features & CLOCK_EVT_FEAT_DUMMY);
}

static inline enum clock_event_state clockevent_get_state(struct clock_event_device *dev)
{
	return dev->state_use_accessors;
}

static inline void clockevent_set_state(struct clock_event_device *dev,
					enum clock_event_state state)
{
	dev->state_use_accessors = state;
}

extern void clockevents_shutdown(struct clock_event_device *dev);
extern void clockevents_exchange_device(struct clock_event_device *old,
					struct clock_event_device *new);
extern void clockevents_switch_state(struct clock_event_device *dev,
				     enum clock_event_state state);
extern int clockevents_program_event(struct clock_event_device *dev,
				     ktime_t expires, bool force);
extern void clockevents_handle_noop(struct clock_event_device *dev);
extern int __clockevents_update_freq(struct clock_event_device *dev, u32 freq);

/* Broadcasting support */
# ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
extern int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu);
extern void tick_install_broadcast_device(struct clock_event_device *dev, int cpu);
extern int tick_is_broadcast_device(struct clock_event_device *dev);
extern void tick_suspend_broadcast(void);
extern void tick_resume_broadcast(void);
extern bool tick_resume_check_broadcast(void);
extern void tick_broadcast_init(void);
extern void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast);
extern int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq);
extern struct tick_device *tick_get_broadcast_device(void);
extern struct cpumask *tick_get_broadcast_mask(void);
extern const struct clock_event_device *tick_get_wakeup_device(int cpu);
# else /* !CONFIG_GENERIC_CLOCKEVENTS_BROADCAST: */
static inline void tick_install_broadcast_device(struct clock_event_device *dev, int cpu) { }
static inline int tick_is_broadcast_device(struct clock_event_device *dev) { return 0; }
static inline int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) { return 0; }
static inline void tick_do_periodic_broadcast(struct clock_event_device *d) { }
static inline void tick_suspend_broadcast(void) { }
static inline void tick_resume_broadcast(void) { }
static inline bool tick_resume_check_broadcast(void) { return false; }
static inline void tick_broadcast_init(void) { }
static inline int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq) { return -ENODEV; }

/* Set the periodic handler in non broadcast mode */
static inline void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
{
	dev->event_handler = tick_handle_periodic;
}
# endif /* !CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */

#else /* !GENERIC_CLOCKEVENTS: */
static inline void tick_suspend(void) { }
static inline void tick_resume(void) { }
#endif /* !GENERIC_CLOCKEVENTS */

/* Oneshot related functions */
#ifdef CONFIG_TICK_ONESHOT
extern void tick_setup_oneshot(struct clock_event_device *newdev,
			       void (*handler)(struct clock_event_device *),
			       ktime_t nextevt);
extern int tick_program_event(ktime_t expires, int force);
extern void tick_oneshot_notify(void);
extern int tick_switch_to_oneshot(void (*handler)(struct clock_event_device *));
extern void tick_resume_oneshot(void);
static inline bool tick_oneshot_possible(void) { return true; }
extern int tick_oneshot_mode_active(void);
extern void tick_clock_notify(void);
extern int tick_check_oneshot_change(int allow_nohz);
extern int tick_init_highres(void);
#else /* !CONFIG_TICK_ONESHOT: */
static inline
void tick_setup_oneshot(struct clock_event_device *newdev,
			void (*handler)(struct clock_event_device *),
			ktime_t nextevt) { BUG(); }
static inline void tick_resume_oneshot(void) { BUG(); }
static inline int tick_program_event(ktime_t expires, int force) { return 0; }
static inline void tick_oneshot_notify(void) { }
static inline bool tick_oneshot_possible(void) { return false; }
static inline int tick_oneshot_mode_active(void) { return 0; }
static inline void tick_clock_notify(void) { }
static inline int tick_check_oneshot_change(int allow_nohz) { return 0; }
#endif /* !CONFIG_TICK_ONESHOT */

/* Functions related to oneshot broadcasting */
#if defined(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST) && defined(CONFIG_TICK_ONESHOT)
extern void tick_broadcast_switch_to_oneshot(void);
extern int tick_broadcast_oneshot_active(void);
extern void tick_check_oneshot_broadcast_this_cpu(void);
bool tick_broadcast_oneshot_available(void);
extern struct cpumask *tick_get_broadcast_oneshot_mask(void);
#else /* !(BROADCAST && ONESHOT): */
static inline void tick_broadcast_switch_to_oneshot(void) { }
static inline int tick_broadcast_oneshot_active(void) { return 0; }
static inline void tick_check_oneshot_broadcast_this_cpu(void) { }
static inline bool tick_broadcast_oneshot_available(void) { return tick_oneshot_possible(); }
#endif /* !(BROADCAST && ONESHOT) */

#if defined(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST) && defined(CONFIG_HOTPLUG_CPU)
extern void tick_offline_cpu(unsigned int cpu);
extern void tick_broadcast_offline(unsigned int cpu);
#else
static inline void tick_offline_cpu(unsigned int cpu) { }
static inline void tick_broadcast_offline(unsigned int cpu) { }
#endif

/* NO_HZ_FULL internal */
#ifdef CONFIG_NO_HZ_FULL
extern void tick_nohz_init(void);
# else
static inline void tick_nohz_init(void) { }
#endif

#ifdef CONFIG_NO_HZ_COMMON
extern unsigned long tick_nohz_active;
extern void timers_update_nohz(void);
extern u64 get_jiffies_update(unsigned long *basej);
# ifdef CONFIG_SMP
extern struct static_key_false timers_migration_enabled;
extern void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem,
					      struct timer_events *tevt,
					      unsigned int cpu);
extern void timer_lock_remote_bases(unsigned int cpu);
extern void timer_unlock_remote_bases(unsigned int cpu);
extern bool timer_base_is_idle(void);
extern void timer_expire_remote(unsigned int cpu);
# endif
#else /* CONFIG_NO_HZ_COMMON */
static inline void timers_update_nohz(void) { }
#define tick_nohz_active (0)
#endif

DECLARE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases);

extern u64 get_next_timer_interrupt(unsigned long basej, u64 basem);
u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle);
void timer_clear_idle(void);

#define CLOCK_SET_WALL							\
	(BIT(HRTIMER_BASE_REALTIME) | BIT(HRTIMER_BASE_REALTIME_SOFT) |	\
	 BIT(HRTIMER_BASE_TAI) | BIT(HRTIMER_BASE_TAI_SOFT))

#define CLOCK_SET_BOOT							\
	(BIT(HRTIMER_BASE_BOOTTIME) | BIT(HRTIMER_BASE_BOOTTIME_SOFT))

void clock_was_set(unsigned int bases);
void clock_was_set_delayed(void);

void hrtimers_resume_local(void);

/* Since jiffies uses a simple TICK_NSEC multiplier
 * conversion, the .shift value could be zero. However
 * this would make NTP adjustments impossible as they are
 * in units of 1/2^.shift. Thus we use JIFFIES_SHIFT to
 * shift both the nominator and denominator the same
 * amount, and give ntp adjustments in units of 1/2^8
 *
 * The value 8 is somewhat carefully chosen, as anything
 * larger can result in overflows. TICK_NSEC grows as HZ
 * shrinks, so values greater than 8 overflow 32bits when
 * HZ=100.
 */
#if HZ < 34
#define JIFFIES_SHIFT	6
#elif HZ < 67
#define JIFFIES_SHIFT	7
#else
#define JIFFIES_SHIFT	8
#endif

extern ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt);