// SPDX-License-Identifier: GPL-2.0-only
//
// nau8325.c -- Nuvoton NAU8325 audio codec driver
//
// Copyright 2023 Nuvoton Technology Crop.
// Author: Seven Lee <[email protected]>
// David Lin <[email protected]>
//
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/tlv.h>
#include "nau8325.h"
/* Range of Master Clock MCLK (Hz) */
#define MASTER_CLK_MAX 49152000
#define MASTER_CLK_MIN 2048000
/* scaling for MCLK source */
#define CLK_PROC_BYPASS (-1)
/* the maximum CLK_DAC */
#define CLK_DA_AD_MAX 6144000
/* from MCLK input */
#define MCLK_SRC 4
static const struct nau8325_src_attr mclk_n1_div[] = {
{ 1, 0x0 },
{ 2, 0x1 },
{ 3, 0x2 },
};
/* over sampling rate */
static const struct nau8325_osr_attr osr_dac_sel[] = {
{ 64, 2 }, /* OSR 64, SRC 1/4 */
{ 256, 0 }, /* OSR 256, SRC 1 */
{ 128, 1 }, /* OSR 128, SRC 1/2 */
{ 0, 0 },
{ 32, 3 }, /* OSR 32, SRC 1/8 */
};
static const struct nau8325_src_attr mclk_n2_div[] = {
{ 0, 0x0 },
{ 1, 0x1 },
{ 2, 0x2 },
{ 3, 0x3 },
{ 4, 0x4 },
};
static const struct nau8325_src_attr mclk_n3_mult[] = {
{ 0, 0x1 },
{ 1, 0x2 },
{ 2, 0x3 },
{ 3, 0x4 },
};
/* Sample Rate and MCLK_SRC selections */
static const struct nau8325_srate_attr target_srate_table[] = {
/* { FS, range, max, { MCLK source }} */
{ 48000, 2, true, { 12288000, 19200000, 24000000 } },
{ 16000, 1, false, { 4096000, 6400000, 8000000 } },
{ 8000, 0, false, { 2048000, 3200000, 4000000 }},
{ 44100, 2, true, { 11289600, 17640000, 22050000 }},
{ 64000, 3, false, { 16384000, 25600000, 32000000 } },
{ 96000, 3, true, { 24576000, 38400000, 48000000 } },
{ 12000, 0, true, { 3072000, 4800000, 6000000 } },
{ 24000, 1, true, { 6144000, 9600000, 12000000 } },
{ 32000, 2, false, { 8192000, 12800000, 16000000 } },
};
static const struct reg_default nau8325_reg_defaults[] = {
{ NAU8325_R00_HARDWARE_RST, 0x0000 },
{ NAU8325_R01_SOFTWARE_RST, 0x0000 },
{ NAU8325_R03_CLK_CTRL, 0x0000 },
{ NAU8325_R04_ENA_CTRL, 0x0000 },
{ NAU8325_R05_INTERRUPT_CTRL, 0x007f },
{ NAU8325_R09_IRQOUT, 0x0000 },
{ NAU8325_R0A_IO_CTRL, 0x0000 },
{ NAU8325_R0B_PDM_CTRL, 0x0000 },
{ NAU8325_R0C_TDM_CTRL, 0x0000 },
{ NAU8325_R0D_I2S_PCM_CTRL1, 0x000a },
{ NAU8325_R0E_I2S_PCM_CTRL2, 0x0000 },
{ NAU8325_R0F_L_TIME_SLOT, 0x0000 },
{ NAU8325_R10_R_TIME_SLOT, 0x0000 },
{ NAU8325_R11_HPF_CTRL, 0x0000 },
{ NAU8325_R12_MUTE_CTRL, 0x0000 },
{ NAU8325_R13_DAC_VOLUME, 0xf3f3 },
{ NAU8325_R29_DAC_CTRL1, 0x0081 },
{ NAU8325_R2A_DAC_CTRL2, 0x0000 },
{ NAU8325_R2C_ALC_CTRL1, 0x000e },
{ NAU8325_R2D_ALC_CTRL2, 0x8400 },
{ NAU8325_R2E_ALC_CTRL3, 0x0000 },
{ NAU8325_R2F_ALC_CTRL4, 0x003f },
{ NAU8325_R40_CLK_DET_CTRL, 0xa801 },
{ NAU8325_R50_MIXER_CTRL, 0x0000 },
{ NAU8325_R55_MISC_CTRL, 0x0000 },
{ NAU8325_R60_BIAS_ADJ, 0x0000 },
{ NAU8325_R61_ANALOG_CONTROL_1, 0x0000 },
{ NAU8325_R62_ANALOG_CONTROL_2, 0x0000 },
{ NAU8325_R63_ANALOG_CONTROL_3, 0x0000 },
{ NAU8325_R64_ANALOG_CONTROL_4, 0x0000 },
{ NAU8325_R65_ANALOG_CONTROL_5, 0x0000 },
{ NAU8325_R66_ANALOG_CONTROL_6, 0x0000 },
{ NAU8325_R69_CLIP_CTRL, 0x0000 },
{ NAU8325_R73_RDAC, 0x0008 },
};
static bool nau8325_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8325_R02_DEVICE_ID ... NAU8325_R06_INT_CLR_STATUS:
case NAU8325_R09_IRQOUT ... NAU8325_R13_DAC_VOLUME:
case NAU8325_R1D_DEBUG_READ1:
case NAU8325_R1F_DEBUG_READ2:
case NAU8325_R22_DEBUG_READ3:
case NAU8325_R29_DAC_CTRL1 ... NAU8325_R2A_DAC_CTRL2:
case NAU8325_R2C_ALC_CTRL1 ... NAU8325_R2F_ALC_CTRL4:
case NAU8325_R40_CLK_DET_CTRL:
case NAU8325_R49_TEST_STATUS ... NAU8325_R4A_ANALOG_READ:
case NAU8325_R50_MIXER_CTRL:
case NAU8325_R55_MISC_CTRL:
case NAU8325_R60_BIAS_ADJ ... NAU8325_R66_ANALOG_CONTROL_6:
case NAU8325_R69_CLIP_CTRL:
case NAU8325_R73_RDAC:
return true;
default:
return false;
}
}
static bool nau8325_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8325_R00_HARDWARE_RST:
case NAU8325_R03_CLK_CTRL ... NAU8325_R06_INT_CLR_STATUS:
case NAU8325_R09_IRQOUT ... NAU8325_R13_DAC_VOLUME:
case NAU8325_R29_DAC_CTRL1 ... NAU8325_R2A_DAC_CTRL2:
case NAU8325_R2C_ALC_CTRL1 ... NAU8325_R2F_ALC_CTRL4:
case NAU8325_R40_CLK_DET_CTRL:
case NAU8325_R50_MIXER_CTRL:
case NAU8325_R55_MISC_CTRL:
case NAU8325_R60_BIAS_ADJ ... NAU8325_R66_ANALOG_CONTROL_6:
case NAU8325_R69_CLIP_CTRL:
case NAU8325_R73_RDAC:
return true;
default:
return false;
}
}
static bool nau8325_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8325_R00_HARDWARE_RST ... NAU8325_R02_DEVICE_ID:
case NAU8325_R06_INT_CLR_STATUS:
case NAU8325_R1D_DEBUG_READ1:
case NAU8325_R1F_DEBUG_READ2:
case NAU8325_R22_DEBUG_READ3:
case NAU8325_R4A_ANALOG_READ:
return true;
default:
return false;
}
}
static const char * const nau8325_dac_oversampl_texts[] = {
"64", "256", "128", "32",
};
static const unsigned int nau8325_dac_oversampl_values[] = {
0, 1, 2, 4,
};
static const struct soc_enum nau8325_dac_oversampl_enum =
SOC_VALUE_ENUM_SINGLE(NAU8325_R29_DAC_CTRL1,
NAU8325_DAC_OVERSAMPLE_SFT, 0x7,
ARRAY_SIZE(nau8325_dac_oversampl_texts),
nau8325_dac_oversampl_texts,
nau8325_dac_oversampl_values);
static const DECLARE_TLV_DB_MINMAX_MUTE(dac_vol_tlv, -8000, 600);
static const struct snd_kcontrol_new nau8325_snd_controls[] = {
SOC_ENUM("DAC Oversampling Rate", nau8325_dac_oversampl_enum),
SOC_DOUBLE_TLV("Speaker Volume", NAU8325_R13_DAC_VOLUME,
NAU8325_DAC_VOLUME_L_SFT, NAU8325_DAC_VOLUME_R_SFT,
NAU8325_DAC_VOLUME_R_EN, 0, dac_vol_tlv),
SOC_SINGLE("ALC Max Gain", NAU8325_R2C_ALC_CTRL1,
NAU8325_ALC_MAXGAIN_SFT, NAU8325_ALC_MAXGAIN_MAX, 0),
SOC_SINGLE("ALC Min Gain", NAU8325_R2C_ALC_CTRL1,
NAU8325_ALC_MINGAIN_SFT, NAU8325_ALC_MINGAIN_MAX, 0),
SOC_SINGLE("ALC Decay Timer", NAU8325_R2D_ALC_CTRL2,
NAU8325_ALC_DCY_SFT, NAU8325_ALC_DCY_MAX, 0),
SOC_SINGLE("ALC Attack Timer", NAU8325_R2D_ALC_CTRL2,
NAU8325_ALC_ATK_SFT, NAU8325_ALC_ATK_MAX, 0),
SOC_SINGLE("ALC Hold Time", NAU8325_R2D_ALC_CTRL2,
NAU8325_ALC_HLD_SFT, NAU8325_ALC_HLD_MAX, 0),
SOC_SINGLE("ALC Target Level", NAU8325_R2D_ALC_CTRL2,
NAU8325_ALC_LVL_SFT, NAU8325_ALC_LVL_MAX, 0),
SOC_SINGLE("ALC Enable Switch", NAU8325_R2E_ALC_CTRL3,
NAU8325_ALC_EN_SFT, 1, 0),
};
static int nau8325_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct nau8325 *nau8325 = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
regmap_update_bits(nau8325->regmap, NAU8325_R12_MUTE_CTRL,
NAU8325_SOFT_MUTE, 0);
msleep(30);
break;
case SND_SOC_DAPM_PRE_PMD:
/* Soft mute the output to prevent the pop noise. */
regmap_update_bits(nau8325->regmap, NAU8325_R12_MUTE_CTRL,
NAU8325_SOFT_MUTE, NAU8325_SOFT_MUTE);
msleep(30);
break;
default:
return -EINVAL;
}
return 0;
}
static int nau8325_powerup_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct nau8325 *nau8325 = snd_soc_component_get_drvdata(component);
if (nau8325->clock_detection)
return 0;
switch (event) {
case SND_SOC_DAPM_POST_PMU:
regmap_update_bits(nau8325->regmap, NAU8325_R40_CLK_DET_CTRL,
NAU8325_PWRUP_DFT, NAU8325_PWRUP_DFT);
break;
case SND_SOC_DAPM_POST_PMD:
regmap_update_bits(nau8325->regmap, NAU8325_R40_CLK_DET_CTRL,
NAU8325_PWRUP_DFT, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static const struct snd_soc_dapm_widget nau8325_dapm_widgets[] = {
SND_SOC_DAPM_SUPPLY("Power Up", SND_SOC_NOPM, 0, 0,
nau8325_powerup_event, SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_DAC_E("DACL", NULL, NAU8325_R04_ENA_CTRL,
NAU8325_DAC_LEFT_CH_EN_SFT, 0, nau8325_dac_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_DAC_E("DACR", NULL, NAU8325_R04_ENA_CTRL,
NAU8325_DAC_RIGHT_CH_EN_SFT, 0, nau8325_dac_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_AIF_IN("AIFRX", "Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_OUTPUT("SPKL"),
SND_SOC_DAPM_OUTPUT("SPKR"),
};
static const struct snd_soc_dapm_route nau8325_dapm_routes[] = {
{ "DACL", NULL, "Power Up" },
{ "DACR", NULL, "Power Up" },
{ "DACL", NULL, "AIFRX" },
{ "DACR", NULL, "AIFRX" },
{ "SPKL", NULL, "DACL" },
{ "SPKR", NULL, "DACR" },
};
static int nau8325_srate_clk_apply(struct nau8325 *nau8325,
const struct nau8325_srate_attr *srate_table,
int n1_sel, int mclk_mult_sel, int n2_sel)
{
if (!srate_table || n2_sel < 0 || n2_sel >= ARRAY_SIZE(mclk_n2_div) ||
n1_sel < 0 || n1_sel >= ARRAY_SIZE(mclk_n1_div)) {
dev_dbg(nau8325->dev, "The CLK isn't supported.");
return -EINVAL;
}
regmap_update_bits(nau8325->regmap, NAU8325_R40_CLK_DET_CTRL,
NAU8325_REG_SRATE_MASK | NAU8325_REG_DIV_MAX,
(srate_table->range << NAU8325_REG_SRATE_SFT) |
(srate_table->max ? NAU8325_REG_DIV_MAX : 0));
regmap_update_bits(nau8325->regmap, NAU8325_R03_CLK_CTRL,
NAU8325_MCLK_SRC_MASK, mclk_n2_div[n2_sel].val);
regmap_update_bits(nau8325->regmap, NAU8325_R03_CLK_CTRL,
NAU8325_CLK_MUL_SRC_MASK,
mclk_n1_div[n1_sel].val << NAU8325_CLK_MUL_SRC_SFT);
if (mclk_mult_sel != CLK_PROC_BYPASS) {
regmap_update_bits(nau8325->regmap, NAU8325_R03_CLK_CTRL,
NAU8325_MCLK_SEL_MASK,
mclk_n3_mult[mclk_mult_sel].val <<
NAU8325_MCLK_SEL_SFT);
} else {
regmap_update_bits(nau8325->regmap, NAU8325_R03_CLK_CTRL,
NAU8325_MCLK_SEL_MASK, 0);
}
switch (mclk_mult_sel) {
case 2:
regmap_update_bits(nau8325->regmap, NAU8325_R65_ANALOG_CONTROL_5,
NAU8325_MCLK4XEN_EN, NAU8325_MCLK4XEN_EN);
break;
case 3:
regmap_update_bits(nau8325->regmap, NAU8325_R65_ANALOG_CONTROL_5,
NAU8325_MCLK4XEN_EN | NAU8325_MCLK8XEN_EN,
NAU8325_MCLK4XEN_EN | NAU8325_MCLK8XEN_EN);
break;
default:
regmap_update_bits(nau8325->regmap, NAU8325_R65_ANALOG_CONTROL_5,
NAU8325_MCLK4XEN_EN | NAU8325_MCLK8XEN_EN, 0);
break;
}
return 0;
}
static int nau8325_clksrc_n2(struct nau8325 *nau8325,
const struct nau8325_srate_attr *srate_table,
int mclk, int *n2_sel)
{
int i, mclk_src, ratio;
ratio = NAU8325_MCLK_FS_RATIO_NUM;
for (i = 0; i < ARRAY_SIZE(mclk_n2_div); i++) {
mclk_src = mclk >> mclk_n2_div[i].param;
if (srate_table->mclk_src[NAU8325_MCLK_FS_RATIO_256] == mclk_src) {
ratio = NAU8325_MCLK_FS_RATIO_256;
break;
} else if (srate_table->mclk_src[NAU8325_MCLK_FS_RATIO_400] == mclk_src) {
ratio = NAU8325_MCLK_FS_RATIO_400;
break;
} else if (srate_table->mclk_src[NAU8325_MCLK_FS_RATIO_500] == mclk_src) {
ratio = NAU8325_MCLK_FS_RATIO_500;
break;
}
}
if (ratio != NAU8325_MCLK_FS_RATIO_NUM)
*n2_sel = i;
return ratio;
}
static const struct nau8325_srate_attr *target_srate_attribute(int srate)
{
int i;
for (i = 0; i < ARRAY_SIZE(target_srate_table); i++)
if (target_srate_table[i].fs == srate)
break;
if (i == ARRAY_SIZE(target_srate_table))
goto proc_err;
return &target_srate_table[i];
proc_err:
return NULL;
}
static int nau8325_clksrc_choose(struct nau8325 *nau8325,
const struct nau8325_srate_attr **srate_table,
int *n1_sel, int *mult_sel, int *n2_sel)
{
int i, j, mclk, mclk_max, ratio, ratio_sel, n2_max;
if (!nau8325->mclk || !nau8325->fs)
goto proc_err;
/* select sampling rate and MCLK_SRC */
*srate_table = target_srate_attribute(nau8325->fs);
if (!*srate_table)
goto proc_err;
/* First check clock from MCLK directly, decide N2 for MCLK_SRC.
* If not good, consider 1/N1 and Multiplier.
*/
ratio = nau8325_clksrc_n2(nau8325, *srate_table, nau8325->mclk, n2_sel);
if (ratio != NAU8325_MCLK_FS_RATIO_NUM) {
*n1_sel = 0;
*mult_sel = CLK_PROC_BYPASS;
*n2_sel = MCLK_SRC;
goto proc_done;
}
/* Get MCLK_SRC through 1/N, Multiplier, and then 1/N2. */
mclk_max = 0;
for (i = 0; i < ARRAY_SIZE(mclk_n1_div); i++) {
for (j = 0; j < ARRAY_SIZE(mclk_n3_mult); j++) {
mclk = nau8325->mclk << mclk_n3_mult[j].param;
mclk = mclk / mclk_n1_div[i].param;
ratio = nau8325_clksrc_n2(nau8325,
*srate_table, mclk, n2_sel);
if (ratio != NAU8325_MCLK_FS_RATIO_NUM &&
(mclk_max < mclk || i > *n1_sel)) {
mclk_max = mclk;
n2_max = *n2_sel;
*n1_sel = i;
*mult_sel = j;
ratio_sel = ratio;
goto proc_done;
}
}
}
if (mclk_max) {
*n2_sel = n2_max;
ratio = ratio_sel;
goto proc_done;
}
proc_err:
dev_dbg(nau8325->dev, "The MCLK %d is invalid. It can't get MCLK_SRC of 256/400/500 FS (%d)",
nau8325->mclk, nau8325->fs);
return -EINVAL;
proc_done:
dev_dbg(nau8325->dev, "nau8325->fs=%d,range=0x%x, %s, (n1,mu,n2,dmu):(%d,%d,%d), MCLK_SRC=%uHz (%d)",
nau8325->fs, (*srate_table)->range,
(*srate_table)->max ? "MAX" : "MIN",
*n1_sel == CLK_PROC_BYPASS ?
CLK_PROC_BYPASS : mclk_n1_div[*n1_sel].param,
*mult_sel == CLK_PROC_BYPASS ?
CLK_PROC_BYPASS : 1 << mclk_n3_mult[*mult_sel].param,
1 << mclk_n2_div[*n2_sel].param,
(*srate_table)->mclk_src[ratio],
(*srate_table)->mclk_src[ratio] / nau8325->fs);
return 0;
}
static int nau8325_clock_config(struct nau8325 *nau8325)
{
const struct nau8325_srate_attr *srate_table;
int ret, n1_sel, mult_sel, n2_sel;
ret = nau8325_clksrc_choose(nau8325, &srate_table,
&n1_sel, &mult_sel, &n2_sel);
if (ret)
goto err;
ret = nau8325_srate_clk_apply(nau8325, srate_table,
n1_sel, mult_sel, n2_sel);
if (ret)
goto err;
return 0;
err:
return ret;
}
static const struct nau8325_osr_attr *nau8325_get_osr(struct nau8325 *nau8325)
{
unsigned int osr;
regmap_read(nau8325->regmap, NAU8325_R29_DAC_CTRL1, &osr);
osr &= NAU8325_DAC_OVERSAMPLE_MASK;
if (osr >= ARRAY_SIZE(osr_dac_sel))
return NULL;
return &osr_dac_sel[osr];
}
static int nau8325_dai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct nau8325 *nau8325 = snd_soc_component_get_drvdata(component);
const struct nau8325_osr_attr *osr;
osr = nau8325_get_osr(nau8325);
if (!osr || !osr->osr)
return -EINVAL;
return snd_pcm_hw_constraint_minmax(substream->runtime,
SNDRV_PCM_HW_PARAM_RATE,
0, CLK_DA_AD_MAX / osr->osr);
}
static int nau8325_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct nau8325 *nau8325 = snd_soc_component_get_drvdata(component);
unsigned int val_len = 0;
const struct nau8325_osr_attr *osr;
int ret;
nau8325->fs = params_rate(params);
osr = nau8325_get_osr(nau8325);
if (!osr || !osr->osr || nau8325->fs * osr->osr > CLK_DA_AD_MAX) {
ret = -EINVAL;
goto err;
}
regmap_update_bits(nau8325->regmap, NAU8325_R03_CLK_CTRL,
NAU8325_CLK_DAC_SRC_MASK,
osr->clk_src << NAU8325_CLK_DAC_SRC_SFT);
ret = nau8325_clock_config(nau8325);
if (ret)
goto err;
switch (params_width(params)) {
case 16:
val_len |= NAU8325_I2S_DL_16;
break;
case 20:
val_len |= NAU8325_I2S_DL_20;
break;
case 24:
val_len |= NAU8325_I2S_DL_24;
break;
case 32:
val_len |= NAU8325_I2S_DL_32;
break;
default:
ret = -EINVAL;
goto err;
}
regmap_update_bits(nau8325->regmap, NAU8325_R0D_I2S_PCM_CTRL1,
NAU8325_I2S_DL_MASK, val_len);
return 0;
err:
return ret;
}
static int nau8325_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct snd_soc_component *component = dai->component;
struct nau8325 *nau8325 = snd_soc_component_get_drvdata(component);
unsigned int ctrl1_val = 0;
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBC_CFC:
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
ctrl1_val |= NAU8325_I2S_BP_INV;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
ctrl1_val |= NAU8325_I2S_DF_I2S;
break;
case SND_SOC_DAIFMT_LEFT_J:
ctrl1_val |= NAU8325_I2S_DF_LEFT;
break;
case SND_SOC_DAIFMT_RIGHT_J:
ctrl1_val |= NAU8325_I2S_DF_RIGTH;
break;
case SND_SOC_DAIFMT_DSP_A:
ctrl1_val |= NAU8325_I2S_DF_PCM_AB;
break;
case SND_SOC_DAIFMT_DSP_B:
ctrl1_val |= NAU8325_I2S_DF_PCM_AB;
ctrl1_val |= NAU8325_I2S_PCMB_EN;
break;
default:
return -EINVAL;
}
regmap_update_bits(nau8325->regmap, NAU8325_R0D_I2S_PCM_CTRL1,
NAU8325_I2S_DF_MASK | NAU8325_I2S_BP_MASK |
NAU8325_I2S_PCMB_EN, ctrl1_val);
return 0;
}
static int nau8325_set_sysclk(struct snd_soc_component *component, int clk_id,
int source, unsigned int freq, int dir)
{
struct nau8325 *nau8325 = snd_soc_component_get_drvdata(component);
if (freq < MASTER_CLK_MIN || freq > MASTER_CLK_MAX) {
dev_dbg(nau8325->dev, "MCLK exceeds the range, MCLK:%d", freq);
return -EINVAL;
}
nau8325->mclk = freq;
dev_dbg(nau8325->dev, "MCLK %dHz", nau8325->mclk);
return 0;
}
static const struct snd_soc_component_driver nau8325_component_driver = {
.set_sysclk = nau8325_set_sysclk,
.suspend_bias_off = true,
.controls = nau8325_snd_controls,
.num_controls = ARRAY_SIZE(nau8325_snd_controls),
.dapm_widgets = nau8325_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(nau8325_dapm_widgets),
.dapm_routes = nau8325_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(nau8325_dapm_routes),
};
static const struct snd_soc_dai_ops nau8325_dai_ops = {
.startup = nau8325_dai_startup,
.hw_params = nau8325_hw_params,
.set_fmt = nau8325_set_fmt,
};
#define NAU8325_RATES SNDRV_PCM_RATE_8000_96000
#define NAU8325_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
| SNDRV_PCM_FMTBIT_S24_3LE)
static struct snd_soc_dai_driver nau8325_dai = {
.name = NAU8325_CODEC_DAI,
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = NAU8325_RATES,
.formats = NAU8325_FORMATS,
},
.ops = &nau8325_dai_ops,
};
static const struct regmap_config nau8325_regmap_config = {
.reg_bits = NAU8325_REG_ADDR_LEN,
.val_bits = NAU8325_REG_DATA_LEN,
.max_register = NAU8325_REG_MAX,
.readable_reg = nau8325_readable_reg,
.writeable_reg = nau8325_writeable_reg,
.volatile_reg = nau8325_volatile_reg,
.cache_type = REGCACHE_RBTREE,
.reg_defaults = nau8325_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(nau8325_reg_defaults),
};
static void nau8325_reset_chip(struct regmap *regmap)
{
regmap_write(regmap, NAU8325_R00_HARDWARE_RST, 0x0001);
regmap_write(regmap, NAU8325_R00_HARDWARE_RST, 0x0000);
}
static void nau8325_init_regs(struct nau8325 *nau8325)
{
struct regmap *regmap = nau8325->regmap;
struct device *dev = nau8325->dev;
/* set ALC parameters */
regmap_update_bits(regmap, NAU8325_R2C_ALC_CTRL1,
NAU8325_ALC_MAXGAIN_MASK,
0x7 << NAU8325_ALC_MAXGAIN_SFT);
regmap_update_bits(regmap, NAU8325_R2D_ALC_CTRL2,
NAU8325_ALC_DCY_MASK | NAU8325_ALC_ATK_MASK |
NAU8325_ALC_HLD_MASK, (0x5 << NAU8325_ALC_DCY_SFT) |
(0x3 << NAU8325_ALC_ATK_SFT) |
(0x5 << NAU8325_ALC_HLD_SFT));
/* Enable ALC to avoid signal distortion when battery low. */
if (nau8325->alc_enable)
regmap_update_bits(regmap, NAU8325_R2E_ALC_CTRL3,
NAU8325_ALC_EN, NAU8325_ALC_EN);
if (nau8325->clock_detection)
regmap_update_bits(regmap, NAU8325_R40_CLK_DET_CTRL,
NAU8325_CLKPWRUP_DIS |
NAU8325_PWRUP_DFT, 0);
else
regmap_update_bits(regmap, NAU8325_R40_CLK_DET_CTRL,
NAU8325_CLKPWRUP_DIS | NAU8325_PWRUP_DFT,
NAU8325_CLKPWRUP_DIS);
if (nau8325->clock_det_data)
regmap_update_bits(regmap, NAU8325_R40_CLK_DET_CTRL,
NAU8325_APWRUP_EN, NAU8325_APWRUP_EN);
else
regmap_update_bits(regmap, NAU8325_R40_CLK_DET_CTRL,
NAU8325_APWRUP_EN, 0);
/* DAC Reference Voltage Setting */
switch (nau8325->dac_vref_microvolt) {
case 1800000:
regmap_update_bits(regmap, NAU8325_R73_RDAC,
NAU8325_DACVREFSEL_MASK, 0 << NAU8325_DACVREFSEL_SFT);
break;
case 2700000:
regmap_update_bits(regmap, NAU8325_R73_RDAC,
NAU8325_DACVREFSEL_MASK, 1 << NAU8325_DACVREFSEL_SFT);
break;
case 2880000:
regmap_update_bits(regmap, NAU8325_R73_RDAC,
NAU8325_DACVREFSEL_MASK, 2 << NAU8325_DACVREFSEL_SFT);
break;
case 3060000:
regmap_update_bits(regmap, NAU8325_R73_RDAC,
NAU8325_DACVREFSEL_MASK, 3 << NAU8325_DACVREFSEL_SFT);
break;
default:
dev_dbg(dev, "Invalid dac-vref-microvolt %d", nau8325->dac_vref_microvolt);
}
/* DAC Reference Voltage Decoupling Capacitors. */
regmap_update_bits(regmap, NAU8325_R63_ANALOG_CONTROL_3,
NAU8325_CLASSD_COARSE_GAIN_MASK, 0x4);
/* Auto-Att Min Gain 0dB, Class-D N Driver Slew Rate -25%. */
regmap_update_bits(regmap, NAU8325_R64_ANALOG_CONTROL_4,
NAU8325_CLASSD_SLEWN_MASK, 0x7);
/* VMID Tieoff (VMID Resistor Selection) */
switch (nau8325->vref_impedance_ohms) {
case 0:
regmap_update_bits(regmap, NAU8325_R60_BIAS_ADJ,
NAU8325_BIAS_VMID_SEL_MASK, 0 << NAU8325_BIAS_VMID_SEL_SFT);
break;
case 25000:
regmap_update_bits(regmap, NAU8325_R60_BIAS_ADJ,
NAU8325_BIAS_VMID_SEL_MASK, 1 << NAU8325_BIAS_VMID_SEL_SFT);
break;
case 125000:
regmap_update_bits(regmap, NAU8325_R60_BIAS_ADJ,
NAU8325_BIAS_VMID_SEL_MASK, 2 << NAU8325_BIAS_VMID_SEL_SFT);
break;
case 2500:
regmap_update_bits(regmap, NAU8325_R60_BIAS_ADJ,
NAU8325_BIAS_VMID_SEL_MASK, 3 << NAU8325_BIAS_VMID_SEL_SFT);
break;
default:
dev_dbg(dev, "Invalid vref-impedance-ohms %d", nau8325->vref_impedance_ohms);
}
/* enable VMID, BIAS, DAC, DCA CLOCK, Voltage/Current Amps
*/
regmap_update_bits(regmap, NAU8325_R61_ANALOG_CONTROL_1,
NAU8325_DACEN_MASK | NAU8325_DACCLKEN_MASK |
NAU8325_DACEN_R_MASK | NAU8325_DACCLKEN_R_MASK |
NAU8325_CLASSDEN_MASK | NAU8325_VMDFSTENB_MASK |
NAU8325_BIASEN_MASK | NAU8325_VMIDEN_MASK,
(0x1 << NAU8325_DACEN_SFT) |
(0x1 << NAU8325_DACCLKEN_SFT) |
(0x1 << NAU8325_DACEN_R_SFT) |
(0x1 << NAU8325_DACCLKEN_R_SFT) |
(0x1 << NAU8325_CLASSDEN_SFT) |
(0x1 << NAU8325_VMDFSTENB_SFT) |
(0x1 << NAU8325_BIASEN_SFT) | 0x3);
/* Enable ALC to avoid signal distortion when battery low. */
if (nau8325->alc_enable)
regmap_update_bits(regmap, NAU8325_R2E_ALC_CTRL3,
NAU8325_ALC_EN, NAU8325_ALC_EN);
if (nau8325->clock_det_data)
regmap_update_bits(regmap, NAU8325_R40_CLK_DET_CTRL,
NAU8325_APWRUP_EN, NAU8325_APWRUP_EN);
else
regmap_update_bits(regmap, NAU8325_R40_CLK_DET_CTRL,
NAU8325_APWRUP_EN, 0);
if (nau8325->clock_detection)
regmap_update_bits(regmap, NAU8325_R40_CLK_DET_CTRL,
NAU8325_CLKPWRUP_DIS |
NAU8325_PWRUP_DFT, 0);
else
regmap_update_bits(regmap, NAU8325_R40_CLK_DET_CTRL,
NAU8325_CLKPWRUP_DIS | NAU8325_PWRUP_DFT,
NAU8325_CLKPWRUP_DIS);
regmap_update_bits(regmap, NAU8325_R29_DAC_CTRL1,
NAU8325_DAC_OVERSAMPLE_MASK,
NAU8325_DAC_OVERSAMPLE_128);
}
static void nau8325_print_device_properties(struct nau8325 *nau8325)
{
struct device *dev = nau8325->dev;
dev_dbg(dev, "vref-impedance-ohms: %d", nau8325->vref_impedance_ohms);
dev_dbg(dev, "dac-vref-microvolt: %d", nau8325->dac_vref_microvolt);
dev_dbg(dev, "alc-enable: %d", nau8325->alc_enable);
dev_dbg(dev, "clock-det-data: %d", nau8325->clock_det_data);
dev_dbg(dev, "clock-detection-disable: %d", nau8325->clock_detection);
}
static int nau8325_read_device_properties(struct device *dev,
struct nau8325 *nau8325)
{
int ret;
nau8325->alc_enable =
device_property_read_bool(dev, "nuvoton,alc-enable");
nau8325->clock_det_data =
device_property_read_bool(dev, "nuvoton,clock-det-data");
nau8325->clock_detection =
!device_property_read_bool(dev, "nuvoton,clock-detection-disable");
ret = device_property_read_u32(dev, "nuvoton,vref-impedance-ohms",
&nau8325->vref_impedance_ohms);
if (ret)
nau8325->vref_impedance_ohms = 125000;
ret = device_property_read_u32(dev, "nuvoton,dac-vref-microvolt",
&nau8325->dac_vref_microvolt);
if (ret)
nau8325->dac_vref_microvolt = 2880000;
return 0;
}
static int nau8325_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct device *dev = &i2c->dev;
struct nau8325 *nau8325 = dev_get_platdata(dev);
int ret, value;
if (!nau8325) {
nau8325 = devm_kzalloc(dev, sizeof(*nau8325), GFP_KERNEL);
if (!nau8325) {
ret = -ENOMEM;
goto err;
}
ret = nau8325_read_device_properties(dev, nau8325);
if (ret)
goto err;
}
i2c_set_clientdata(i2c, nau8325);
nau8325->regmap = devm_regmap_init_i2c(i2c, &nau8325_regmap_config);
if (IS_ERR(nau8325->regmap)) {
ret = PTR_ERR(nau8325->regmap);
goto err;
}
nau8325->dev = dev;
nau8325_print_device_properties(nau8325);
nau8325_reset_chip(nau8325->regmap);
ret = regmap_read(nau8325->regmap, NAU8325_R02_DEVICE_ID, &value);
if (ret) {
dev_dbg(dev, "Failed to read device id (%d)", ret);
goto err;
}
nau8325_init_regs(nau8325);
ret = devm_snd_soc_register_component(dev, &nau8325_component_driver,
&nau8325_dai, 1);
err:
return ret;
}
static const struct i2c_device_id nau8325_i2c_ids[] = {
{ "nau8325" },
{ }
};
MODULE_DEVICE_TABLE(i2c, nau8325_i2c_ids);
#ifdef CONFIG_OF
static const struct of_device_id nau8325_of_ids[] = {
{ .compatible = "nuvoton,nau8325", },
{}
};
MODULE_DEVICE_TABLE(of, nau8325_of_ids);
#endif
static struct i2c_driver nau8325_i2c_driver = {
.driver = {
.name = "nau8325",
.of_match_table = of_match_ptr(nau8325_of_ids),
},
.probe = nau8325_i2c_probe,
.id_table = nau8325_i2c_ids,
};
module_i2c_driver(nau8325_i2c_driver);
MODULE_DESCRIPTION("ASoC NAU8325 driver");
MODULE_AUTHOR("Seven Lee <[email protected]>");
MODULE_AUTHOR("David Lin <[email protected]>");
MODULE_LICENSE("GPL");