// SPDX-License-Identifier: GPL-2.0-or-later
#include "alloc_nid_api.h"
static int alloc_nid_test_flags = TEST_F_NONE;
/*
* contains the fraction of MEM_SIZE contained in each node in basis point
* units (one hundredth of 1% or 1/10000)
*/
static const unsigned int node_fractions[] = {
2500, /* 1/4 */
625, /* 1/16 */
1250, /* 1/8 */
1250, /* 1/8 */
625, /* 1/16 */
625, /* 1/16 */
2500, /* 1/4 */
625, /* 1/16 */
};
static inline const char * const get_memblock_alloc_nid_name(int flags)
{
if (flags & TEST_F_EXACT)
return "memblock_alloc_exact_nid_raw";
if (flags & TEST_F_RAW)
return "memblock_alloc_try_nid_raw";
return "memblock_alloc_try_nid";
}
static inline void *run_memblock_alloc_nid(phys_addr_t size,
phys_addr_t align,
phys_addr_t min_addr,
phys_addr_t max_addr, int nid)
{
assert(!(alloc_nid_test_flags & TEST_F_EXACT) ||
(alloc_nid_test_flags & TEST_F_RAW));
/*
* TEST_F_EXACT should be checked before TEST_F_RAW since
* memblock_alloc_exact_nid_raw() performs raw allocations.
*/
if (alloc_nid_test_flags & TEST_F_EXACT)
return memblock_alloc_exact_nid_raw(size, align, min_addr,
max_addr, nid);
if (alloc_nid_test_flags & TEST_F_RAW)
return memblock_alloc_try_nid_raw(size, align, min_addr,
max_addr, nid);
return memblock_alloc_try_nid(size, align, min_addr, max_addr, nid);
}
/*
* A simple test that tries to allocate a memory region within min_addr and
* max_addr range:
*
* + +
* | + +-----------+ |
* | | | rgn | |
* +----+-------+-----------+------+
* ^ ^
* | |
* min_addr max_addr
*
* Expect to allocate a region that ends at max_addr.
*/
static int alloc_nid_top_down_simple_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_128;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t rgn_end;
PREFIX_PUSH();
setup_memblock();
min_addr = memblock_start_of_DRAM() + SMP_CACHE_BYTES * 2;
max_addr = min_addr + SZ_512;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
rgn_end = rgn->base + rgn->size;
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(rgn->size, size);
ASSERT_EQ(rgn->base, max_addr - size);
ASSERT_EQ(rgn_end, max_addr);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A simple test that tries to allocate a memory region within min_addr and
* max_addr range, where the end address is misaligned:
*
* + + +
* | + +---------+ + |
* | | | rgn | | |
* +------+-------+---------+--+----+
* ^ ^ ^
* | | |
* min_add | max_addr
* |
* Aligned address
* boundary
*
* Expect to allocate an aligned region that ends before max_addr.
*/
static int alloc_nid_top_down_end_misaligned_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_128;
phys_addr_t misalign = SZ_2;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t rgn_end;
PREFIX_PUSH();
setup_memblock();
min_addr = memblock_start_of_DRAM() + SMP_CACHE_BYTES * 2;
max_addr = min_addr + SZ_512 + misalign;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
rgn_end = rgn->base + rgn->size;
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(rgn->size, size);
ASSERT_EQ(rgn->base, max_addr - size - misalign);
ASSERT_LT(rgn_end, max_addr);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A simple test that tries to allocate a memory region, which spans over the
* min_addr and max_addr range:
*
* + +
* | +---------------+ |
* | | rgn | |
* +------+---------------+-------+
* ^ ^
* | |
* min_addr max_addr
*
* Expect to allocate a region that starts at min_addr and ends at
* max_addr, given that min_addr is aligned.
*/
static int alloc_nid_exact_address_generic_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_1K;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t rgn_end;
PREFIX_PUSH();
setup_memblock();
min_addr = memblock_start_of_DRAM() + SMP_CACHE_BYTES;
max_addr = min_addr + size;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
rgn_end = rgn->base + rgn->size;
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(rgn->size, size);
ASSERT_EQ(rgn->base, min_addr);
ASSERT_EQ(rgn_end, max_addr);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region, which can't fit into
* min_addr and max_addr range:
*
* + + +
* | +----------+-----+ |
* | | rgn + | |
* +--------+----------+-----+----+
* ^ ^ ^
* | | |
* Aligned | max_addr
* address |
* boundary min_add
*
* Expect to drop the lower limit and allocate a memory region which
* ends at max_addr (if the address is aligned).
*/
static int alloc_nid_top_down_narrow_range_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_256;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_memblock();
min_addr = memblock_start_of_DRAM() + SZ_512;
max_addr = min_addr + SMP_CACHE_BYTES;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(rgn->size, size);
ASSERT_EQ(rgn->base, max_addr - size);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region, which can't fit into
* min_addr and max_addr range, with the latter being too close to the beginning
* of the available memory:
*
* +-------------+
* | new |
* +-------------+
* + +
* | + |
* | | |
* +-------+--------------+
* ^ ^
* | |
* | max_addr
* |
* min_addr
*
* Expect no allocation to happen.
*/
static int alloc_nid_low_max_generic_check(void)
{
void *allocated_ptr = NULL;
phys_addr_t size = SZ_1K;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_memblock();
min_addr = memblock_start_of_DRAM();
max_addr = min_addr + SMP_CACHE_BYTES;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
ASSERT_EQ(allocated_ptr, NULL);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region within min_addr min_addr range,
* with min_addr being so close that it's next to an allocated region:
*
* + +
* | +--------+---------------|
* | | r1 | rgn |
* +-------+--------+---------------+
* ^ ^
* | |
* min_addr max_addr
*
* Expect a merge of both regions. Only the region size gets updated.
*/
static int alloc_nid_min_reserved_generic_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
phys_addr_t r1_size = SZ_128;
phys_addr_t r2_size = SZ_64;
phys_addr_t total_size = r1_size + r2_size;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t reserved_base;
PREFIX_PUSH();
setup_memblock();
max_addr = memblock_end_of_DRAM();
min_addr = max_addr - r2_size;
reserved_base = min_addr - r1_size;
memblock_reserve(reserved_base, r1_size);
allocated_ptr = run_memblock_alloc_nid(r2_size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, r2_size, alloc_nid_test_flags);
ASSERT_EQ(rgn->size, total_size);
ASSERT_EQ(rgn->base, reserved_base);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region within min_addr and max_addr,
* with max_addr being so close that it's next to an allocated region:
*
* + +
* | +-------------+--------|
* | | rgn | r1 |
* +----------+-------------+--------+
* ^ ^
* | |
* min_addr max_addr
*
* Expect a merge of regions. Only the region size gets updated.
*/
static int alloc_nid_max_reserved_generic_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
phys_addr_t r1_size = SZ_64;
phys_addr_t r2_size = SZ_128;
phys_addr_t total_size = r1_size + r2_size;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_memblock();
max_addr = memblock_end_of_DRAM() - r1_size;
min_addr = max_addr - r2_size;
memblock_reserve(max_addr, r1_size);
allocated_ptr = run_memblock_alloc_nid(r2_size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, r2_size, alloc_nid_test_flags);
ASSERT_EQ(rgn->size, total_size);
ASSERT_EQ(rgn->base, min_addr);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range, when
* there are two reserved regions at the borders, with a gap big enough to fit
* a new region:
*
* + +
* | +--------+ +-------+------+ |
* | | r2 | | rgn | r1 | |
* +----+--------+---+-------+------+--+
* ^ ^
* | |
* min_addr max_addr
*
* Expect to merge the new region with r1. The second region does not get
* updated. The total size field gets updated.
*/
static int alloc_nid_top_down_reserved_with_space_check(void)
{
struct memblock_region *rgn1 = &memblock.reserved.regions[1];
struct memblock_region *rgn2 = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
struct region r1, r2;
phys_addr_t r3_size = SZ_64;
phys_addr_t gap_size = SMP_CACHE_BYTES;
phys_addr_t total_size;
phys_addr_t max_addr;
phys_addr_t min_addr;
PREFIX_PUSH();
setup_memblock();
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
r1.size = SMP_CACHE_BYTES;
r2.size = SZ_128;
r2.base = r1.base - (r3_size + gap_size + r2.size);
total_size = r1.size + r2.size + r3_size;
min_addr = r2.base + r2.size;
max_addr = r1.base;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, r3_size, alloc_nid_test_flags);
ASSERT_EQ(rgn1->size, r1.size + r3_size);
ASSERT_EQ(rgn1->base, max_addr - r3_size);
ASSERT_EQ(rgn2->size, r2.size);
ASSERT_EQ(rgn2->base, r2.base);
ASSERT_EQ(memblock.reserved.cnt, 2);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range, when
* there are two reserved regions at the borders, with a gap of a size equal to
* the size of the new region:
*
* + +
* | +--------+--------+--------+ |
* | | r2 | r3 | r1 | |
* +-----+--------+--------+--------+-----+
* ^ ^
* | |
* min_addr max_addr
*
* Expect to merge all of the regions into one. The region counter and total
* size fields get updated.
*/
static int alloc_nid_reserved_full_merge_generic_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
struct region r1, r2;
phys_addr_t r3_size = SZ_64;
phys_addr_t total_size;
phys_addr_t max_addr;
phys_addr_t min_addr;
PREFIX_PUSH();
setup_memblock();
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
r1.size = SMP_CACHE_BYTES;
r2.size = SZ_128;
r2.base = r1.base - (r3_size + r2.size);
total_size = r1.size + r2.size + r3_size;
min_addr = r2.base + r2.size;
max_addr = r1.base;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, r3_size, alloc_nid_test_flags);
ASSERT_EQ(rgn->size, total_size);
ASSERT_EQ(rgn->base, r2.base);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range, when
* there are two reserved regions at the borders, with a gap that can't fit
* a new region:
*
* + +
* | +----------+------+ +------+ |
* | | r3 | r2 | | r1 | |
* +--+----------+------+----+------+---+
* ^ ^
* | |
* | max_addr
* |
* min_addr
*
* Expect to merge the new region with r2. The second region does not get
* updated. The total size counter gets updated.
*/
static int alloc_nid_top_down_reserved_no_space_check(void)
{
struct memblock_region *rgn1 = &memblock.reserved.regions[1];
struct memblock_region *rgn2 = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
struct region r1, r2;
phys_addr_t r3_size = SZ_256;
phys_addr_t gap_size = SMP_CACHE_BYTES;
phys_addr_t total_size;
phys_addr_t max_addr;
phys_addr_t min_addr;
PREFIX_PUSH();
setup_memblock();
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
r1.size = SMP_CACHE_BYTES;
r2.size = SZ_128;
r2.base = r1.base - (r2.size + gap_size);
total_size = r1.size + r2.size + r3_size;
min_addr = r2.base + r2.size;
max_addr = r1.base;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, r3_size, alloc_nid_test_flags);
ASSERT_EQ(rgn1->size, r1.size);
ASSERT_EQ(rgn1->base, r1.base);
ASSERT_EQ(rgn2->size, r2.size + r3_size);
ASSERT_EQ(rgn2->base, r2.base - r3_size);
ASSERT_EQ(memblock.reserved.cnt, 2);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range, but
* it's too narrow and everything else is reserved:
*
* +-----------+
* | new |
* +-----------+
* + +
* |--------------+ +----------|
* | r2 | | r1 |
* +--------------+------+----------+
* ^ ^
* | |
* | max_addr
* |
* min_addr
*
* Expect no allocation to happen.
*/
static int alloc_nid_reserved_all_generic_check(void)
{
void *allocated_ptr = NULL;
struct region r1, r2;
phys_addr_t r3_size = SZ_256;
phys_addr_t gap_size = SMP_CACHE_BYTES;
phys_addr_t max_addr;
phys_addr_t min_addr;
PREFIX_PUSH();
setup_memblock();
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES;
r1.size = SMP_CACHE_BYTES;
r2.size = MEM_SIZE - (r1.size + gap_size);
r2.base = memblock_start_of_DRAM();
min_addr = r2.base + r2.size;
max_addr = r1.base;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
ASSERT_EQ(allocated_ptr, NULL);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region, where max_addr is
* bigger than the end address of the available memory. Expect to allocate
* a region that ends before the end of the memory.
*/
static int alloc_nid_top_down_cap_max_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_256;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_memblock();
min_addr = memblock_end_of_DRAM() - SZ_1K;
max_addr = memblock_end_of_DRAM() + SZ_256;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(rgn->size, size);
ASSERT_EQ(rgn->base, memblock_end_of_DRAM() - size);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region, where min_addr is
* smaller than the start address of the available memory. Expect to allocate
* a region that ends before the end of the memory.
*/
static int alloc_nid_top_down_cap_min_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_1K;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_memblock();
min_addr = memblock_start_of_DRAM() - SZ_256;
max_addr = memblock_end_of_DRAM();
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(rgn->size, size);
ASSERT_EQ(rgn->base, memblock_end_of_DRAM() - size);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A simple test that tries to allocate a memory region within min_addr and
* max_addr range:
*
* + +
* | +-----------+ | |
* | | rgn | | |
* +----+-----------+-----------+------+
* ^ ^
* | |
* min_addr max_addr
*
* Expect to allocate a region that ends before max_addr.
*/
static int alloc_nid_bottom_up_simple_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_128;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t rgn_end;
PREFIX_PUSH();
setup_memblock();
min_addr = memblock_start_of_DRAM() + SMP_CACHE_BYTES * 2;
max_addr = min_addr + SZ_512;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
rgn_end = rgn->base + rgn->size;
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(rgn->size, size);
ASSERT_EQ(rgn->base, min_addr);
ASSERT_LT(rgn_end, max_addr);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A simple test that tries to allocate a memory region within min_addr and
* max_addr range, where the start address is misaligned:
*
* + +
* | + +-----------+ + |
* | | | rgn | | |
* +-----+---+-----------+-----+-----+
* ^ ^----. ^
* | | |
* min_add | max_addr
* |
* Aligned address
* boundary
*
* Expect to allocate an aligned region that ends before max_addr.
*/
static int alloc_nid_bottom_up_start_misaligned_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_128;
phys_addr_t misalign = SZ_2;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t rgn_end;
PREFIX_PUSH();
setup_memblock();
min_addr = memblock_start_of_DRAM() + misalign;
max_addr = min_addr + SZ_512;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
rgn_end = rgn->base + rgn->size;
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(rgn->size, size);
ASSERT_EQ(rgn->base, min_addr + (SMP_CACHE_BYTES - misalign));
ASSERT_LT(rgn_end, max_addr);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region, which can't fit into min_addr
* and max_addr range:
*
* + +
* |---------+ + + |
* | rgn | | | |
* +---------+---------+----+------+
* ^ ^
* | |
* | max_addr
* |
* min_add
*
* Expect to drop the lower limit and allocate a memory region which
* starts at the beginning of the available memory.
*/
static int alloc_nid_bottom_up_narrow_range_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_256;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_memblock();
min_addr = memblock_start_of_DRAM() + SZ_512;
max_addr = min_addr + SMP_CACHE_BYTES;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(rgn->size, size);
ASSERT_EQ(rgn->base, memblock_start_of_DRAM());
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range, when
* there are two reserved regions at the borders, with a gap big enough to fit
* a new region:
*
* + +
* | +--------+-------+ +------+ |
* | | r2 | rgn | | r1 | |
* +----+--------+-------+---+------+--+
* ^ ^
* | |
* min_addr max_addr
*
* Expect to merge the new region with r2. The second region does not get
* updated. The total size field gets updated.
*/
static int alloc_nid_bottom_up_reserved_with_space_check(void)
{
struct memblock_region *rgn1 = &memblock.reserved.regions[1];
struct memblock_region *rgn2 = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
struct region r1, r2;
phys_addr_t r3_size = SZ_64;
phys_addr_t gap_size = SMP_CACHE_BYTES;
phys_addr_t total_size;
phys_addr_t max_addr;
phys_addr_t min_addr;
PREFIX_PUSH();
setup_memblock();
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
r1.size = SMP_CACHE_BYTES;
r2.size = SZ_128;
r2.base = r1.base - (r3_size + gap_size + r2.size);
total_size = r1.size + r2.size + r3_size;
min_addr = r2.base + r2.size;
max_addr = r1.base;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, r3_size, alloc_nid_test_flags);
ASSERT_EQ(rgn1->size, r1.size);
ASSERT_EQ(rgn1->base, max_addr);
ASSERT_EQ(rgn2->size, r2.size + r3_size);
ASSERT_EQ(rgn2->base, r2.base);
ASSERT_EQ(memblock.reserved.cnt, 2);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range, when
* there are two reserved regions at the borders, with a gap of a size equal to
* the size of the new region:
*
* + +
* |----------+ +------+ +----+ |
* | r3 | | r2 | | r1 | |
* +----------+----+------+---+----+--+
* ^ ^
* | |
* | max_addr
* |
* min_addr
*
* Expect to drop the lower limit and allocate memory at the beginning of the
* available memory. The region counter and total size fields get updated.
* Other regions are not modified.
*/
static int alloc_nid_bottom_up_reserved_no_space_check(void)
{
struct memblock_region *rgn1 = &memblock.reserved.regions[2];
struct memblock_region *rgn2 = &memblock.reserved.regions[1];
struct memblock_region *rgn3 = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
struct region r1, r2;
phys_addr_t r3_size = SZ_256;
phys_addr_t gap_size = SMP_CACHE_BYTES;
phys_addr_t total_size;
phys_addr_t max_addr;
phys_addr_t min_addr;
PREFIX_PUSH();
setup_memblock();
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
r1.size = SMP_CACHE_BYTES;
r2.size = SZ_128;
r2.base = r1.base - (r2.size + gap_size);
total_size = r1.size + r2.size + r3_size;
min_addr = r2.base + r2.size;
max_addr = r1.base;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, r3_size, alloc_nid_test_flags);
ASSERT_EQ(rgn3->size, r3_size);
ASSERT_EQ(rgn3->base, memblock_start_of_DRAM());
ASSERT_EQ(rgn2->size, r2.size);
ASSERT_EQ(rgn2->base, r2.base);
ASSERT_EQ(rgn1->size, r1.size);
ASSERT_EQ(rgn1->base, r1.base);
ASSERT_EQ(memblock.reserved.cnt, 3);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region, where max_addr is
* bigger than the end address of the available memory. Expect to allocate
* a region that starts at the min_addr.
*/
static int alloc_nid_bottom_up_cap_max_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_256;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_memblock();
min_addr = memblock_start_of_DRAM() + SZ_1K;
max_addr = memblock_end_of_DRAM() + SZ_256;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(rgn->size, size);
ASSERT_EQ(rgn->base, min_addr);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region, where min_addr is
* smaller than the start address of the available memory. Expect to allocate
* a region at the beginning of the available memory.
*/
static int alloc_nid_bottom_up_cap_min_check(void)
{
struct memblock_region *rgn = &memblock.reserved.regions[0];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_1K;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_memblock();
min_addr = memblock_start_of_DRAM();
max_addr = memblock_end_of_DRAM() - SZ_256;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(rgn->size, size);
ASSERT_EQ(rgn->base, memblock_start_of_DRAM());
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/* Test case wrappers for range tests */
static int alloc_nid_simple_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_simple_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_simple_check();
return 0;
}
static int alloc_nid_misaligned_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_end_misaligned_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_start_misaligned_check();
return 0;
}
static int alloc_nid_narrow_range_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_narrow_range_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_narrow_range_check();
return 0;
}
static int alloc_nid_reserved_with_space_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_reserved_with_space_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_reserved_with_space_check();
return 0;
}
static int alloc_nid_reserved_no_space_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_reserved_no_space_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_reserved_no_space_check();
return 0;
}
static int alloc_nid_cap_max_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_cap_max_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_cap_max_check();
return 0;
}
static int alloc_nid_cap_min_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_cap_min_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_cap_min_check();
return 0;
}
static int alloc_nid_min_reserved_check(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_nid_min_reserved_generic_check);
run_bottom_up(alloc_nid_min_reserved_generic_check);
return 0;
}
static int alloc_nid_max_reserved_check(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_nid_max_reserved_generic_check);
run_bottom_up(alloc_nid_max_reserved_generic_check);
return 0;
}
static int alloc_nid_exact_address_check(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_nid_exact_address_generic_check);
run_bottom_up(alloc_nid_exact_address_generic_check);
return 0;
}
static int alloc_nid_reserved_full_merge_check(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_nid_reserved_full_merge_generic_check);
run_bottom_up(alloc_nid_reserved_full_merge_generic_check);
return 0;
}
static int alloc_nid_reserved_all_check(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_nid_reserved_all_generic_check);
run_bottom_up(alloc_nid_reserved_all_generic_check);
return 0;
}
static int alloc_nid_low_max_check(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_nid_low_max_generic_check);
run_bottom_up(alloc_nid_low_max_generic_check);
return 0;
}
static int memblock_alloc_nid_range_checks(void)
{
test_print("Running %s range tests...\n",
get_memblock_alloc_nid_name(alloc_nid_test_flags));
alloc_nid_simple_check();
alloc_nid_misaligned_check();
alloc_nid_narrow_range_check();
alloc_nid_reserved_with_space_check();
alloc_nid_reserved_no_space_check();
alloc_nid_cap_max_check();
alloc_nid_cap_min_check();
alloc_nid_min_reserved_check();
alloc_nid_max_reserved_check();
alloc_nid_exact_address_check();
alloc_nid_reserved_full_merge_check();
alloc_nid_reserved_all_check();
alloc_nid_low_max_check();
return 0;
}
/*
* A test that tries to allocate a memory region in a specific NUMA node that
* has enough memory to allocate a region of the requested size.
* Expect to allocate an aligned region at the end of the requested node.
*/
static int alloc_nid_top_down_numa_simple_check(void)
{
int nid_req = 3;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
void *allocated_ptr = NULL;
phys_addr_t size;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
ASSERT_LE(SZ_4, req_node->size);
size = req_node->size / SZ_4;
min_addr = memblock_start_of_DRAM();
max_addr = memblock_end_of_DRAM();
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, region_end(req_node) - size);
ASSERT_LE(req_node->base, new_rgn->base);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region in a specific NUMA node that
* does not have enough memory to allocate a region of the requested size:
*
* | +-----+ +------------------+ |
* | | req | | expected | |
* +---+-----+----------+------------------+-----+
*
* | +---------+ |
* | | rgn | |
* +-----------------------------+---------+-----+
*
* Expect to allocate an aligned region at the end of the last node that has
* enough memory (in this case, nid = 6) after falling back to NUMA_NO_NODE.
*/
static int alloc_nid_top_down_numa_small_node_check(void)
{
int nid_req = 1;
int nid_exp = 6;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
void *allocated_ptr = NULL;
phys_addr_t size;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
size = SZ_2 * req_node->size;
min_addr = memblock_start_of_DRAM();
max_addr = memblock_end_of_DRAM();
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, region_end(exp_node) - size);
ASSERT_LE(exp_node->base, new_rgn->base);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region in a specific NUMA node that
* is fully reserved:
*
* | +---------+ +------------------+ |
* | |requested| | expected | |
* +--------------+---------+------------+------------------+-----+
*
* | +---------+ +---------+ |
* | | reserved| | new | |
* +--------------+---------+---------------------+---------+-----+
*
* Expect to allocate an aligned region at the end of the last node that is
* large enough and has enough unreserved memory (in this case, nid = 6) after
* falling back to NUMA_NO_NODE. The region count and total size get updated.
*/
static int alloc_nid_top_down_numa_node_reserved_check(void)
{
int nid_req = 2;
int nid_exp = 6;
struct memblock_region *new_rgn = &memblock.reserved.regions[1];
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
void *allocated_ptr = NULL;
phys_addr_t size;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
size = req_node->size;
min_addr = memblock_start_of_DRAM();
max_addr = memblock_end_of_DRAM();
memblock_reserve(req_node->base, req_node->size);
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, region_end(exp_node) - size);
ASSERT_LE(exp_node->base, new_rgn->base);
ASSERT_EQ(memblock.reserved.cnt, 2);
ASSERT_EQ(memblock.reserved.total_size, size + req_node->size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region in a specific NUMA node that
* is partially reserved but has enough memory for the allocated region:
*
* | +---------------------------------------+ |
* | | requested | |
* +-----------+---------------------------------------+----------+
*
* | +------------------+ +-----+ |
* | | reserved | | new | |
* +-----------+------------------+--------------+-----+----------+
*
* Expect to allocate an aligned region at the end of the requested node. The
* region count and total size get updated.
*/
static int alloc_nid_top_down_numa_part_reserved_check(void)
{
int nid_req = 4;
struct memblock_region *new_rgn = &memblock.reserved.regions[1];
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
void *allocated_ptr = NULL;
struct region r1;
phys_addr_t size;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
ASSERT_LE(SZ_8, req_node->size);
r1.base = req_node->base;
r1.size = req_node->size / SZ_2;
size = r1.size / SZ_4;
min_addr = memblock_start_of_DRAM();
max_addr = memblock_end_of_DRAM();
memblock_reserve(r1.base, r1.size);
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, region_end(req_node) - size);
ASSERT_LE(req_node->base, new_rgn->base);
ASSERT_EQ(memblock.reserved.cnt, 2);
ASSERT_EQ(memblock.reserved.total_size, size + r1.size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region in a specific NUMA node that
* is partially reserved and does not have enough contiguous memory for the
* allocated region:
*
* | +-----------------------+ +----------------------|
* | | requested | | expected |
* +-----------+-----------------------+---------+----------------------+
*
* | +----------+ +-----------|
* | | reserved | | new |
* +-----------------+----------+---------------------------+-----------+
*
* Expect to allocate an aligned region at the end of the last node that is
* large enough and has enough unreserved memory (in this case,
* nid = NUMA_NODES - 1) after falling back to NUMA_NO_NODE. The region count
* and total size get updated.
*/
static int alloc_nid_top_down_numa_part_reserved_fallback_check(void)
{
int nid_req = 4;
int nid_exp = NUMA_NODES - 1;
struct memblock_region *new_rgn = &memblock.reserved.regions[1];
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
void *allocated_ptr = NULL;
struct region r1;
phys_addr_t size;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
ASSERT_LE(SZ_4, req_node->size);
size = req_node->size / SZ_2;
r1.base = req_node->base + (size / SZ_2);
r1.size = size;
min_addr = memblock_start_of_DRAM();
max_addr = memblock_end_of_DRAM();
memblock_reserve(r1.base, r1.size);
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, region_end(exp_node) - size);
ASSERT_LE(exp_node->base, new_rgn->base);
ASSERT_EQ(memblock.reserved.cnt, 2);
ASSERT_EQ(memblock.reserved.total_size, size + r1.size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region that spans over the min_addr
* and max_addr range and overlaps with two different nodes, where the first
* node is the requested node:
*
* min_addr
* | max_addr
* | |
* v v
* | +-----------------------+-----------+ |
* | | requested | node3 | |
* +-----------+-----------------------+-----------+--------------+
* + +
* | +-----------+ |
* | | rgn | |
* +-----------------------+-----------+--------------------------+
*
* Expect to drop the lower limit and allocate a memory region that ends at
* the end of the requested node.
*/
static int alloc_nid_top_down_numa_split_range_low_check(void)
{
int nid_req = 2;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_512;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t req_node_end;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
req_node_end = region_end(req_node);
min_addr = req_node_end - SZ_256;
max_addr = min_addr + size;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, req_node_end - size);
ASSERT_LE(req_node->base, new_rgn->base);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region that spans over the min_addr
* and max_addr range and overlaps with two different nodes, where the second
* node is the requested node:
*
* min_addr
* | max_addr
* | |
* v v
* | +--------------------------+---------+ |
* | | expected |requested| |
* +------+--------------------------+---------+----------------+
* + +
* | +---------+ |
* | | rgn | |
* +-----------------------+---------+--------------------------+
*
* Expect to drop the lower limit and allocate a memory region that
* ends at the end of the first node that overlaps with the range.
*/
static int alloc_nid_top_down_numa_split_range_high_check(void)
{
int nid_req = 3;
int nid_exp = nid_req - 1;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_512;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t exp_node_end;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
exp_node_end = region_end(exp_node);
min_addr = exp_node_end - SZ_256;
max_addr = min_addr + size;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, exp_node_end - size);
ASSERT_LE(exp_node->base, new_rgn->base);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region that spans over the min_addr
* and max_addr range and overlaps with two different nodes, where the requested
* node ends before min_addr:
*
* min_addr
* | max_addr
* | |
* v v
* | +---------------+ +-------------+---------+ |
* | | requested | | node1 | node2 | |
* +----+---------------+--------+-------------+---------+----------+
* + +
* | +---------+ |
* | | rgn | |
* +----------+---------+-------------------------------------------+
*
* Expect to drop the lower limit and allocate a memory region that ends at
* the end of the requested node.
*/
static int alloc_nid_top_down_numa_no_overlap_split_check(void)
{
int nid_req = 2;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
struct memblock_region *node2 = &memblock.memory.regions[6];
void *allocated_ptr = NULL;
phys_addr_t size;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
size = SZ_512;
min_addr = node2->base - SZ_256;
max_addr = min_addr + size;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, region_end(req_node) - size);
ASSERT_LE(req_node->base, new_rgn->base);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range when
* the requested node and the range do not overlap, and requested node ends
* before min_addr. The range overlaps with multiple nodes along node
* boundaries:
*
* min_addr
* | max_addr
* | |
* v v
* |-----------+ +----------+----...----+----------+ |
* | requested | | min node | ... | max node | |
* +-----------+-----------+----------+----...----+----------+------+
* + +
* | +-----+ |
* | | rgn | |
* +---------------------------------------------------+-----+------+
*
* Expect to allocate a memory region at the end of the final node in
* the range after falling back to NUMA_NO_NODE.
*/
static int alloc_nid_top_down_numa_no_overlap_low_check(void)
{
int nid_req = 0;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *min_node = &memblock.memory.regions[2];
struct memblock_region *max_node = &memblock.memory.regions[5];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_64;
phys_addr_t max_addr;
phys_addr_t min_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
min_addr = min_node->base;
max_addr = region_end(max_node);
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, max_addr - size);
ASSERT_LE(max_node->base, new_rgn->base);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range when
* the requested node and the range do not overlap, and requested node starts
* after max_addr. The range overlaps with multiple nodes along node
* boundaries:
*
* min_addr
* | max_addr
* | |
* v v
* | +----------+----...----+----------+ +-----------+ |
* | | min node | ... | max node | | requested | |
* +-----+----------+----...----+----------+--------+-----------+---+
* + +
* | +-----+ |
* | | rgn | |
* +---------------------------------+-----+------------------------+
*
* Expect to allocate a memory region at the end of the final node in
* the range after falling back to NUMA_NO_NODE.
*/
static int alloc_nid_top_down_numa_no_overlap_high_check(void)
{
int nid_req = 7;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *min_node = &memblock.memory.regions[2];
struct memblock_region *max_node = &memblock.memory.regions[5];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_64;
phys_addr_t max_addr;
phys_addr_t min_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
min_addr = min_node->base;
max_addr = region_end(max_node);
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, max_addr - size);
ASSERT_LE(max_node->base, new_rgn->base);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region in a specific NUMA node that
* has enough memory to allocate a region of the requested size.
* Expect to allocate an aligned region at the beginning of the requested node.
*/
static int alloc_nid_bottom_up_numa_simple_check(void)
{
int nid_req = 3;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
void *allocated_ptr = NULL;
phys_addr_t size;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
ASSERT_LE(SZ_4, req_node->size);
size = req_node->size / SZ_4;
min_addr = memblock_start_of_DRAM();
max_addr = memblock_end_of_DRAM();
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, req_node->base);
ASSERT_LE(region_end(new_rgn), region_end(req_node));
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region in a specific NUMA node that
* does not have enough memory to allocate a region of the requested size:
*
* |----------------------+-----+ |
* | expected | req | |
* +----------------------+-----+----------------+
*
* |---------+ |
* | rgn | |
* +---------+-----------------------------------+
*
* Expect to allocate an aligned region at the beginning of the first node that
* has enough memory (in this case, nid = 0) after falling back to NUMA_NO_NODE.
*/
static int alloc_nid_bottom_up_numa_small_node_check(void)
{
int nid_req = 1;
int nid_exp = 0;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
void *allocated_ptr = NULL;
phys_addr_t size;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
size = SZ_2 * req_node->size;
min_addr = memblock_start_of_DRAM();
max_addr = memblock_end_of_DRAM();
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, exp_node->base);
ASSERT_LE(region_end(new_rgn), region_end(exp_node));
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region in a specific NUMA node that
* is fully reserved:
*
* |----------------------+ +-----------+ |
* | expected | | requested | |
* +----------------------+-----+-----------+--------------------+
*
* |-----------+ +-----------+ |
* | new | | reserved | |
* +-----------+----------------+-----------+--------------------+
*
* Expect to allocate an aligned region at the beginning of the first node that
* is large enough and has enough unreserved memory (in this case, nid = 0)
* after falling back to NUMA_NO_NODE. The region count and total size get
* updated.
*/
static int alloc_nid_bottom_up_numa_node_reserved_check(void)
{
int nid_req = 2;
int nid_exp = 0;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
void *allocated_ptr = NULL;
phys_addr_t size;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
size = req_node->size;
min_addr = memblock_start_of_DRAM();
max_addr = memblock_end_of_DRAM();
memblock_reserve(req_node->base, req_node->size);
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, exp_node->base);
ASSERT_LE(region_end(new_rgn), region_end(exp_node));
ASSERT_EQ(memblock.reserved.cnt, 2);
ASSERT_EQ(memblock.reserved.total_size, size + req_node->size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region in a specific NUMA node that
* is partially reserved but has enough memory for the allocated region:
*
* | +---------------------------------------+ |
* | | requested | |
* +-----------+---------------------------------------+---------+
*
* | +------------------+-----+ |
* | | reserved | new | |
* +-----------+------------------+-----+------------------------+
*
* Expect to allocate an aligned region in the requested node that merges with
* the existing reserved region. The total size gets updated.
*/
static int alloc_nid_bottom_up_numa_part_reserved_check(void)
{
int nid_req = 4;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
void *allocated_ptr = NULL;
struct region r1;
phys_addr_t size;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t total_size;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
ASSERT_LE(SZ_8, req_node->size);
r1.base = req_node->base;
r1.size = req_node->size / SZ_2;
size = r1.size / SZ_4;
min_addr = memblock_start_of_DRAM();
max_addr = memblock_end_of_DRAM();
total_size = size + r1.size;
memblock_reserve(r1.base, r1.size);
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, total_size);
ASSERT_EQ(new_rgn->base, req_node->base);
ASSERT_LE(region_end(new_rgn), region_end(req_node));
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region in a specific NUMA node that
* is partially reserved and does not have enough contiguous memory for the
* allocated region:
*
* |----------------------+ +-----------------------+ |
* | expected | | requested | |
* +----------------------+-------+-----------------------+---------+
*
* |-----------+ +----------+ |
* | new | | reserved | |
* +-----------+------------------------+----------+----------------+
*
* Expect to allocate an aligned region at the beginning of the first
* node that is large enough and has enough unreserved memory (in this case,
* nid = 0) after falling back to NUMA_NO_NODE. The region count and total size
* get updated.
*/
static int alloc_nid_bottom_up_numa_part_reserved_fallback_check(void)
{
int nid_req = 4;
int nid_exp = 0;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
void *allocated_ptr = NULL;
struct region r1;
phys_addr_t size;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
ASSERT_LE(SZ_4, req_node->size);
size = req_node->size / SZ_2;
r1.base = req_node->base + (size / SZ_2);
r1.size = size;
min_addr = memblock_start_of_DRAM();
max_addr = memblock_end_of_DRAM();
memblock_reserve(r1.base, r1.size);
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, exp_node->base);
ASSERT_LE(region_end(new_rgn), region_end(exp_node));
ASSERT_EQ(memblock.reserved.cnt, 2);
ASSERT_EQ(memblock.reserved.total_size, size + r1.size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region that spans over the min_addr
* and max_addr range and overlaps with two different nodes, where the first
* node is the requested node:
*
* min_addr
* | max_addr
* | |
* v v
* | +-----------------------+-----------+ |
* | | requested | node3 | |
* +-----------+-----------------------+-----------+--------------+
* + +
* | +-----------+ |
* | | rgn | |
* +-----------+-----------+--------------------------------------+
*
* Expect to drop the lower limit and allocate a memory region at the beginning
* of the requested node.
*/
static int alloc_nid_bottom_up_numa_split_range_low_check(void)
{
int nid_req = 2;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_512;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t req_node_end;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
req_node_end = region_end(req_node);
min_addr = req_node_end - SZ_256;
max_addr = min_addr + size;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, req_node->base);
ASSERT_LE(region_end(new_rgn), req_node_end);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region that spans over the min_addr
* and max_addr range and overlaps with two different nodes, where the second
* node is the requested node:
*
* min_addr
* | max_addr
* | |
* v v
* |------------------+ +----------------------+---------+ |
* | expected | | previous |requested| |
* +------------------+--------+----------------------+---------+------+
* + +
* |---------+ |
* | rgn | |
* +---------+---------------------------------------------------------+
*
* Expect to drop the lower limit and allocate a memory region at the beginning
* of the first node that has enough memory.
*/
static int alloc_nid_bottom_up_numa_split_range_high_check(void)
{
int nid_req = 3;
int nid_exp = 0;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_512;
phys_addr_t min_addr;
phys_addr_t max_addr;
phys_addr_t exp_node_end;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
exp_node_end = region_end(req_node);
min_addr = req_node->base - SZ_256;
max_addr = min_addr + size;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, exp_node->base);
ASSERT_LE(region_end(new_rgn), exp_node_end);
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region that spans over the min_addr
* and max_addr range and overlaps with two different nodes, where the requested
* node ends before min_addr:
*
* min_addr
* | max_addr
* | |
* v v
* | +---------------+ +-------------+---------+ |
* | | requested | | node1 | node2 | |
* +----+---------------+--------+-------------+---------+---------+
* + +
* | +---------+ |
* | | rgn | |
* +----+---------+------------------------------------------------+
*
* Expect to drop the lower limit and allocate a memory region that starts at
* the beginning of the requested node.
*/
static int alloc_nid_bottom_up_numa_no_overlap_split_check(void)
{
int nid_req = 2;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
struct memblock_region *node2 = &memblock.memory.regions[6];
void *allocated_ptr = NULL;
phys_addr_t size;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
size = SZ_512;
min_addr = node2->base - SZ_256;
max_addr = min_addr + size;
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, req_node->base);
ASSERT_LE(region_end(new_rgn), region_end(req_node));
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range when
* the requested node and the range do not overlap, and requested node ends
* before min_addr. The range overlaps with multiple nodes along node
* boundaries:
*
* min_addr
* | max_addr
* | |
* v v
* |-----------+ +----------+----...----+----------+ |
* | requested | | min node | ... | max node | |
* +-----------+-----------+----------+----...----+----------+------+
* + +
* | +-----+ |
* | | rgn | |
* +-----------------------+-----+----------------------------------+
*
* Expect to allocate a memory region at the beginning of the first node
* in the range after falling back to NUMA_NO_NODE.
*/
static int alloc_nid_bottom_up_numa_no_overlap_low_check(void)
{
int nid_req = 0;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *min_node = &memblock.memory.regions[2];
struct memblock_region *max_node = &memblock.memory.regions[5];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_64;
phys_addr_t max_addr;
phys_addr_t min_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
min_addr = min_node->base;
max_addr = region_end(max_node);
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, min_addr);
ASSERT_LE(region_end(new_rgn), region_end(min_node));
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range when
* the requested node and the range do not overlap, and requested node starts
* after max_addr. The range overlaps with multiple nodes along node
* boundaries:
*
* min_addr
* | max_addr
* | |
* v v
* | +----------+----...----+----------+ +---------+ |
* | | min node | ... | max node | |requested| |
* +-----+----------+----...----+----------+---------+---------+---+
* + +
* | +-----+ |
* | | rgn | |
* +-----+-----+---------------------------------------------------+
*
* Expect to allocate a memory region at the beginning of the first node
* in the range after falling back to NUMA_NO_NODE.
*/
static int alloc_nid_bottom_up_numa_no_overlap_high_check(void)
{
int nid_req = 7;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *min_node = &memblock.memory.regions[2];
struct memblock_region *max_node = &memblock.memory.regions[5];
void *allocated_ptr = NULL;
phys_addr_t size = SZ_64;
phys_addr_t max_addr;
phys_addr_t min_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
min_addr = min_node->base;
max_addr = region_end(max_node);
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, size);
ASSERT_EQ(new_rgn->base, min_addr);
ASSERT_LE(region_end(new_rgn), region_end(min_node));
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate a memory region in a specific NUMA node that
* does not have enough memory to allocate a region of the requested size.
* Additionally, none of the nodes have enough memory to allocate the region:
*
* +-----------------------------------+
* | new |
* +-----------------------------------+
* |-------+-------+-------+-------+-------+-------+-------+-------|
* | node0 | node1 | node2 | node3 | node4 | node5 | node6 | node7 |
* +-------+-------+-------+-------+-------+-------+-------+-------+
*
* Expect no allocation to happen.
*/
static int alloc_nid_numa_large_region_generic_check(void)
{
int nid_req = 3;
void *allocated_ptr = NULL;
phys_addr_t size = MEM_SIZE / SZ_2;
phys_addr_t min_addr;
phys_addr_t max_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
min_addr = memblock_start_of_DRAM();
max_addr = memblock_end_of_DRAM();
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_EQ(allocated_ptr, NULL);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_addr range when
* there are two reserved regions at the borders. The requested node starts at
* min_addr and ends at max_addr and is the same size as the region to be
* allocated:
*
* min_addr
* | max_addr
* | |
* v v
* | +-----------+-----------------------+-----------------------|
* | | node5 | requested | node7 |
* +------+-----------+-----------------------+-----------------------+
* + +
* | +----+-----------------------+----+ |
* | | r2 | new | r1 | |
* +-------------+----+-----------------------+----+------------------+
*
* Expect to merge all of the regions into one. The region counter and total
* size fields get updated.
*/
static int alloc_nid_numa_reserved_full_merge_generic_check(void)
{
int nid_req = 6;
int nid_next = nid_req + 1;
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
struct memblock_region *next_node = &memblock.memory.regions[nid_next];
void *allocated_ptr = NULL;
struct region r1, r2;
phys_addr_t size = req_node->size;
phys_addr_t total_size;
phys_addr_t max_addr;
phys_addr_t min_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
r1.base = next_node->base;
r1.size = SZ_128;
r2.size = SZ_128;
r2.base = r1.base - (size + r2.size);
total_size = r1.size + r2.size + size;
min_addr = r2.base + r2.size;
max_addr = r1.base;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr, nid_req);
ASSERT_NE(allocated_ptr, NULL);
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
ASSERT_EQ(new_rgn->size, total_size);
ASSERT_EQ(new_rgn->base, r2.base);
ASSERT_LE(new_rgn->base, req_node->base);
ASSERT_LE(region_end(req_node), region_end(new_rgn));
ASSERT_EQ(memblock.reserved.cnt, 1);
ASSERT_EQ(memblock.reserved.total_size, total_size);
test_pass_pop();
return 0;
}
/*
* A test that tries to allocate memory within min_addr and max_add range,
* where the total range can fit the region, but it is split between two nodes
* and everything else is reserved. Additionally, nid is set to NUMA_NO_NODE
* instead of requesting a specific node:
*
* +-----------+
* | new |
* +-----------+
* | +---------------------+-----------|
* | | prev node | next node |
* +------+---------------------+-----------+
* + +
* |----------------------+ +-----|
* | r1 | | r2 |
* +----------------------+-----------+-----+
* ^ ^
* | |
* | max_addr
* |
* min_addr
*
* Expect no allocation to happen.
*/
static int alloc_nid_numa_split_all_reserved_generic_check(void)
{
void *allocated_ptr = NULL;
struct memblock_region *next_node = &memblock.memory.regions[7];
struct region r1, r2;
phys_addr_t size = SZ_256;
phys_addr_t max_addr;
phys_addr_t min_addr;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
r2.base = next_node->base + SZ_128;
r2.size = memblock_end_of_DRAM() - r2.base;
r1.size = MEM_SIZE - (r2.size + size);
r1.base = memblock_start_of_DRAM();
min_addr = r1.base + r1.size;
max_addr = r2.base;
memblock_reserve(r1.base, r1.size);
memblock_reserve(r2.base, r2.size);
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
min_addr, max_addr,
NUMA_NO_NODE);
ASSERT_EQ(allocated_ptr, NULL);
test_pass_pop();
return 0;
}
/*
* A simple test that tries to allocate a memory region through the
* memblock_alloc_node() on a NUMA node with id `nid`. Expected to have the
* correct NUMA node set for the new region.
*/
static int alloc_node_on_correct_nid(void)
{
int nid_req = 2;
void *allocated_ptr = NULL;
#ifdef CONFIG_NUMA
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
#endif
phys_addr_t size = SZ_512;
PREFIX_PUSH();
setup_numa_memblock(node_fractions);
allocated_ptr = memblock_alloc_node(size, SMP_CACHE_BYTES, nid_req);
ASSERT_NE(allocated_ptr, NULL);
#ifdef CONFIG_NUMA
ASSERT_EQ(nid_req, req_node->nid);
#endif
test_pass_pop();
return 0;
}
/* Test case wrappers for NUMA tests */
static int alloc_nid_numa_simple_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_numa_simple_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_numa_simple_check();
return 0;
}
static int alloc_nid_numa_small_node_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_numa_small_node_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_numa_small_node_check();
return 0;
}
static int alloc_nid_numa_node_reserved_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_numa_node_reserved_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_numa_node_reserved_check();
return 0;
}
static int alloc_nid_numa_part_reserved_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_numa_part_reserved_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_numa_part_reserved_check();
return 0;
}
static int alloc_nid_numa_part_reserved_fallback_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_numa_part_reserved_fallback_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_numa_part_reserved_fallback_check();
return 0;
}
static int alloc_nid_numa_split_range_low_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_numa_split_range_low_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_numa_split_range_low_check();
return 0;
}
static int alloc_nid_numa_split_range_high_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_numa_split_range_high_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_numa_split_range_high_check();
return 0;
}
static int alloc_nid_numa_no_overlap_split_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_numa_no_overlap_split_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_numa_no_overlap_split_check();
return 0;
}
static int alloc_nid_numa_no_overlap_low_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_numa_no_overlap_low_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_numa_no_overlap_low_check();
return 0;
}
static int alloc_nid_numa_no_overlap_high_check(void)
{
test_print("\tRunning %s...\n", __func__);
memblock_set_bottom_up(false);
alloc_nid_top_down_numa_no_overlap_high_check();
memblock_set_bottom_up(true);
alloc_nid_bottom_up_numa_no_overlap_high_check();
return 0;
}
static int alloc_nid_numa_large_region_check(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_nid_numa_large_region_generic_check);
run_bottom_up(alloc_nid_numa_large_region_generic_check);
return 0;
}
static int alloc_nid_numa_reserved_full_merge_check(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_nid_numa_reserved_full_merge_generic_check);
run_bottom_up(alloc_nid_numa_reserved_full_merge_generic_check);
return 0;
}
static int alloc_nid_numa_split_all_reserved_check(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_nid_numa_split_all_reserved_generic_check);
run_bottom_up(alloc_nid_numa_split_all_reserved_generic_check);
return 0;
}
static int alloc_node_numa_on_correct_nid(void)
{
test_print("\tRunning %s...\n", __func__);
run_top_down(alloc_node_on_correct_nid);
run_bottom_up(alloc_node_on_correct_nid);
return 0;
}
int __memblock_alloc_nid_numa_checks(void)
{
test_print("Running %s NUMA tests...\n",
get_memblock_alloc_nid_name(alloc_nid_test_flags));
alloc_nid_numa_simple_check();
alloc_nid_numa_small_node_check();
alloc_nid_numa_node_reserved_check();
alloc_nid_numa_part_reserved_check();
alloc_nid_numa_part_reserved_fallback_check();
alloc_nid_numa_split_range_low_check();
alloc_nid_numa_split_range_high_check();
alloc_nid_numa_no_overlap_split_check();
alloc_nid_numa_no_overlap_low_check();
alloc_nid_numa_no_overlap_high_check();
alloc_nid_numa_large_region_check();
alloc_nid_numa_reserved_full_merge_check();
alloc_nid_numa_split_all_reserved_check();
alloc_node_numa_on_correct_nid();
return 0;
}
static int memblock_alloc_nid_checks_internal(int flags)
{
alloc_nid_test_flags = flags;
prefix_reset();
prefix_push(get_memblock_alloc_nid_name(flags));
reset_memblock_attributes();
dummy_physical_memory_init();
memblock_alloc_nid_range_checks();
memblock_alloc_nid_numa_checks();
dummy_physical_memory_cleanup();
prefix_pop();
return 0;
}
int memblock_alloc_nid_checks(void)
{
memblock_alloc_nid_checks_internal(TEST_F_NONE);
memblock_alloc_nid_checks_internal(TEST_F_RAW);
return 0;
}
int memblock_alloc_exact_nid_range_checks(void)
{
alloc_nid_test_flags = (TEST_F_RAW | TEST_F_EXACT);
memblock_alloc_nid_range_checks();
return 0;
}