#!/bin/bash
# SPDX-License-Identifier: GPL-2.0
#
# author: Andrea Mayer <[email protected]>
# author: Paolo Lungaroni <[email protected]>
#
# This script is designed for testing the support of NEXT-C-SID flavor for SRv6
# End.X behavior.
# A basic knowledge of SRv6 architecture [1] and of the compressed SID approach
# [2] is assumed for the reader.
#
# The network topology used in the selftest is depicted hereafter, composed of
# two hosts and four routers. Hosts hs-1 and hs-2 are connected through an
# IPv4/IPv6 L3 VPN service, offered by routers rt-1, rt-2, rt-3 and rt-4 using
# the NEXT-C-SID flavor. The key components for such VPNs are:
#
# i) The SRv6 H.Encaps/H.Encaps.Red behaviors [1] apply SRv6 Policies on
# traffic received by connected hosts, initiating the VPN tunnel;
#
# ii) The SRv6 End.X behavior [1] (Endpoint with L3 cross connect) is a
# variant of SRv6 End behavior. It advances the active SID in the SID
# List carried by the SRH and forwards the packet to an L3 adjacency;
#
# iii) The NEXT-C-SID mechanism [2] offers the possibility of encoding several
# SRv6 segments within a single 128-bit SID address, referred to as a
# Compressed SID (C-SID) container. In this way, the length of the SID
# List can be drastically reduced.
# The NEXT-C-SID is provided as a "flavor" of the SRv6 End.X behavior
# which advances the current C-SID (i.e. the Locator-Node Function defined
# in [2]) with the next one carried in the Argument, if available.
# When no more C-SIDs are available in the Argument, the SRv6 End.X
# behavior will apply the End.X function selecting the next SID in the SID
# List;
#
# iv) The SRv6 End.DT46 behavior [1] is used for removing the SRv6 Policy and,
# thus, it terminates the VPN tunnel. Such a behavior is capable of
# handling, at the same time, both tunneled IPv4 and IPv6 traffic.
#
# [1] https://datatracker.ietf.org/doc/html/rfc8986
# [2] https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-srh-compression
#
#
# cafe::1 cafe::2
# 10.0.0.1 10.0.0.2
# +--------+ +--------+
# | | | |
# | hs-1 | | hs-2 |
# | | | |
# +---+----+ +----+---+
# cafe::/64 | | cafe::/64
# 10.0.0.0/24 | | 10.0.0.0/24
# +---+----+ +----+---+
# | | fcf0:0:1:2::/64 | |
# | rt-1 +-------------------+ rt-2 |
# | | | |
# +---+----+ +----+---+
# | . . |
# | fcf0:0:1:3::/64 . |
# | . . |
# | . . |
# fcf0:0:1:4::/64 | . | fcf0:0:2:3::/64
# | . . |
# | . . |
# | fcf0:0:2:4::/64 . |
# | . . |
# +---+----+ +----+---+
# | | | |
# | rt-4 +-------------------+ rt-3 |
# | | fcf0:0:3:4::/64 | |
# +---+----+ +----+---+
#
# Every fcf0:0:x:y::/64 network interconnects the SRv6 routers rt-x with rt-y in
# the selftest network.
#
# Local SID/C-SID table
# =====================
#
# Each SRv6 router is configured with a Local SID/C-SID table in which
# SIDs/C-SIDs are stored. Considering an SRv6 router rt-x, SIDs/C-SIDs are
# configured in the Local SID/C-SIDs table as follows:
#
# Local SID/C-SID table for SRv6 router rt-x
# +-----------------------------------------------------------+
# |fcff:x::d46 is associated with the non-compressed SRv6 |
# | End.DT46 behavior |
# +-----------------------------------------------------------+
# |fcbb:0:0x00::/48 is associated with the NEXT-C-SID flavor |
# | of SRv6 End.X behavior |
# +-----------------------------------------------------------+
# |fcbb:0:0x00:d46::/64 is associated with the SRv6 End.DT46 |
# | behavior when NEXT-C-SID compression is turned on |
# +-----------------------------------------------------------+
#
# The fcff::/16 prefix is reserved for implementing SRv6 services with regular
# (non compressed) SIDs. Reachability of SIDs is ensured by proper configuration
# of the IPv6 routing tables in the routers.
# Similarly, the fcbb:0::/32 prefix is reserved for implementing SRv6 VPN
# services leveraging the NEXT-C-SID compression mechanism. Indeed, the
# fcbb:0::/32 is used for encoding the Locator-Block while the Locator-Node
# Function is encoded with 16 bits.
#
# Incoming traffic classification and application of SRv6 Policies
# ================================================================
#
# An SRv6 ingress router applies different SRv6 Policies to the traffic received
# from a connected host, considering the IPv4 or IPv6 destination address.
# SRv6 policy enforcement consists of encapsulating the received traffic into a
# new IPv6 packet with a given SID List contained in the SRH.
# When the SID List contains only one SID, the SRH could be omitted completely
# and that SID is stored directly in the IPv6 Destination Address (DA) (this is
# called "reduced" encapsulation).
#
# Test cases for NEXT-C-SID
# =========================
#
# We consider two test cases for NEXT-C-SID: i) single SID and ii) double SID.
#
# In the single SID test case we have a number of segments that are all
# contained in a single Compressed SID (C-SID) container. Therefore the
# resulting SID List has only one SID. Using the reduced encapsulation format
# this will result in a packet with no SRH.
#
# In the double SID test case we have one segment carried in a Compressed SID
# (C-SID) container, followed by a regular (non compressed) SID. The resulting
# SID List has two segments and it is possible to test the advance to the next
# SID when all the C-SIDs in a C-SID container have been processed. Using the
# reduced encapsulation format this will result in a packet with an SRH
# containing 1 segment.
#
# For the single SID test case, we use the IPv6 addresses of hs-1 and hs-2, for
# the double SID test case, we use their IPv4 addresses. This is only done to
# simplify the test setup and avoid adding other hosts or multiple addresses on
# the same interface of a host.
#
# Traffic from hs-1 to hs-2
# -------------------------
#
# Packets generated from hs-1 and directed towards hs-2 are handled by rt-1
# which applies the SRv6 Policies as follows:
#
# i) IPv6 DA=cafe::2, H.Encaps.Red with SID List=fcbb:0:0300:0200:d46::
# ii) IPv4 DA=10.0.0.2, H.Encaps.Red with SID List=fcbb:0:0300::,fcff:2::d46
#
# ### i) single SID
#
# The router rt-1 is configured to enforce the given Policy through the SRv6
# H.Encaps.Red behavior which avoids the presence of the SRH at all, since it
# pushes the single SID directly in the IPv6 DA. Such a SID encodes a whole
# C-SID container carrying several C-SIDs (e.g. 0300, 0200, etc).
#
# As the packet reaches the router rt-3, the enabled NEXT-C-SID SRv6 End.X
# behavior (associated with fcbb:0:0300::/48) is triggered. This behavior
# analyzes the IPv6 DA and checks whether the Argument of the C-SID container
# is zero or not. In this case, the Argument is *NOT* zero and the IPv6 DA is
# updated as follows:
#
# +-----------------------------------------------------------------+
# | Before applying the rt-3 enabled NEXT-C-SID SRv6 End.X behavior |
# +-----------------------------------------------------------------+
# | +---------- Argument |
# | vvvvvvvvvv |
# | IPv6 DA fcbb:0:0300:0200:d46:: |
# | ^^^^ <-- shifting |
# | | |
# | Locator-Node Function |
# +-----------------------------------------------------------------+
# | After applying the rt-3 enabled NEXT-C-SID SRv6 End.X behavior |
# +-----------------------------------------------------------------+
# | +---------- Argument |
# | vvvvvv |
# | IPv6 DA fcbb:0:0200:d46:: |
# | ^^^^ |
# | | |
# | Locator-Node Function |
# +-----------------------------------------------------------------+
#
# After having applied the enabled NEXT-C-SID SRv6 End.X behavior, the packet
# is sent to rt-4 node using the L3 adjacency address fcf0:0:3:4::4.
#
# The node rt-4 performs a plain IPv6 forward to the rt-2 router according to
# its Local SID table and using the IPv6 DA fcbb:0:0200:d46:: .
#
# The router rt-2 is configured for decapsulating the inner IPv6 packet and,
# for this reason, it applies the SRv6 End.DT46 behavior on the received
# packet. It is worth noting that the SRv6 End.DT46 behavior does not require
# the presence of the SRH: it is fully capable to operate properly on
# IPv4/IPv6-in-IPv6 encapsulations.
# At the end of the decap operation, the packet is sent to the host hs-2.
#
# ### ii) double SID
#
# The router rt-1 is configured to enforce the given Policy through the SRv6
# H.Encaps.Red. As a result, the first SID fcbb:0:0300:: is stored into the
# IPv6 DA, while the SRH pushed into the packet is made of only one SID, i.e.
# fcff:2::d46. Hence, the packet sent by hs-1 to hs-2 is encapsulated in an
# outer IPv6 header plus the SRH.
#
# As the packet reaches the node rt-3, the router applies the enabled NEXT-C-SID
# SRv6 End.X behavior.
#
# +-----------------------------------------------------------------+
# | Before applying the rt-3 enabled NEXT-C-SID SRv6 End.X behavior |
# +-----------------------------------------------------------------+
# | +---------- Argument |
# | vvvv (Argument is all filled with zeros) |
# | IPv6 DA fcbb:0:0300:: |
# | ^^^^ |
# | | |
# | Locator-Node Function |
# +-----------------------------------------------------------------+
# | After applying the rt-3 enabled NEXT-C-SID SRv6 End.X behavior |
# +-----------------------------------------------------------------+
# | |
# | IPv6 DA fcff:2::d46 |
# | ^^^^^^^^^^^ |
# | | |
# | SID copied from the SID List contained in the SRH |
# +-----------------------------------------------------------------+
#
# Since the Argument of the C-SID container is zero, the behavior can not
# update the Locator-Node function with the next C-SID carried in the Argument
# itself. Thus, the enabled NEXT-C-SID SRv6 End.X behavior operates as the
# traditional End.X behavior: it updates the IPv6 DA by copying the next
# available SID in the SID List carried by the SRH. Next, the packet is
# forwarded to the rt-4 node using the L3 adjacency fcf0:3:4::4 previously
# configured for this behavior.
#
# The node rt-4 performs a plain IPv6 forward to the rt-2 router according to
# its Local SID table and using the IPv6 DA fcff:2::d46.
#
# Once the packet is received by rt-2, the router decapsulates the inner IPv4
# packet using the SRv6 End.DT46 behavior (associated with the SID fcff:2::d46)
# and sends it to the host hs-2.
#
# Traffic from hs-2 to hs-1
# -------------------------
#
# Packets generated from hs-2 and directed towards hs-1 are handled by rt-2
# which applies the SRv6 Policies as follows:
#
# i) IPv6 DA=cafe::1, SID List=fcbb:0:0400:0100:d46::
# ii) IPv4 DA=10.0.0.1, SID List=fcbb:0:0300::,fcff:1::d46
#
# ### i) single SID
#
# The node hs-2 sends an IPv6 packet directed to node hs-1. The router rt-2 is
# directly connected to hs-2 and receives the packet. Rt-2 applies the
# H.Encap.Red behavior with policy i) described above. Since there is only one
# SID, the SRH header is omitted and the policy is inserted directly into the DA
# of IPv6 packet.
#
# The packet reaches the router rt-4 and the enabled NEXT-C-SID SRv6 End.X
# behavior (associated with fcbb:0:0400::/48) is triggered. This behavior
# analyzes the IPv6 DA and checks whether the Argument of the C-SID container
# is zero or not. The Argument is *NOT* zero and the C-SID in the IPv6 DA is
# advanced. At this point, the current IPv6 DA is fcbb:0:0100:d46:: .
# The enabled NEXT-C-SID SRv6 End.X behavior is configured with the L3 adjacency
# fcf0:0:1:4::1, used to route traffic to the rt-1 node.
#
# The router rt-1 is configured for decapsulating the inner packet. It applies
# the SRv6 End.DT46 behavior on the received packet. Decapsulation does not
# require the presence of the SRH. At the end of the decap operation, the packet
# is sent to the host hs-1.
#
# ### ii) double SID
#
# The router rt-2 is configured to enforce the given Policy through the SRv6
# H.Encaps.Red. As a result, the first SID fcbb:0:0300:: is stored into the
# IPv6 DA, while the SRH pushed into the packet is made of only one SID, i.e.
# fcff:1::d46. Hence, the packet sent by hs-2 to hs-1 is encapsulated in an
# outer IPv6 header plus the SRH.
#
# As the packet reaches the node rt-3, the enabled NEXT-C-SID SRv6 End.X
# behavior bound to the SID fcbb:0:0300::/48 is triggered.
# Since the Argument of the C-SID container is zero, the behavior can not
# update the Locator-Node function with the next C-SID carried in the Argument
# itself. Thus, the enabled NEXT-C-SID SRv6 End-X behavior operates as the
# traditional End.X behavior: it updates the IPv6 DA by copying the next
# available SID in the SID List carried by the SRH. After that, the packet is
# forwarded to the rt-4 node using the L3 adjacency (fcf0:3:4::4) previously
# configured for this behavior.
#
# The node rt-4 performs a plain IPv6 forward to the rt-1 router according to
# its Local SID table, considering the IPv6 DA fcff:1::d46.
#
# Once the packet is received by rt-1, the router decapsulates the inner IPv4
# packet using the SRv6 End.DT46 behavior (associated with the SID fcff:1::d46)
# and sends it to the host hs-1.
# Kselftest framework requirement - SKIP code is 4.
readonly ksft_skip=4
readonly RDMSUFF="$(mktemp -u XXXXXXXX)"
readonly DUMMY_DEVNAME="dum0"
readonly VRF_TID=100
readonly VRF_DEVNAME="vrf-${VRF_TID}"
readonly RT2HS_DEVNAME="veth-t${VRF_TID}"
readonly LOCALSID_TABLE_ID=90
readonly IPv6_RT_NETWORK=fcf0:0
readonly IPv6_HS_NETWORK=cafe
readonly IPv4_HS_NETWORK=10.0.0
readonly VPN_LOCATOR_SERVICE=fcff
readonly DT46_FUNC=0d46
readonly HEADEND_ENCAP="encap.red"
# do not add ':' as separator
readonly LCBLOCK_ADDR=fcbb0000
readonly LCBLOCK_BLEN=32
# do not add ':' as separator
readonly LCNODEFUNC_FMT="0%d00"
readonly LCNODEFUNC_BLEN=16
readonly LCBLOCK_NODEFUNC_BLEN=$((LCBLOCK_BLEN + LCNODEFUNC_BLEN))
readonly CSID_CNTR_PREFIX="dead:beaf::/32"
# ID of the router used for testing the C-SID container cfgs
readonly CSID_CNTR_RT_ID_TEST=1
# Routing table used for testing the C-SID container cfgs
readonly CSID_CNTR_RT_TABLE=91
# C-SID container configurations to be tested
#
# An entry of the array is defined as "a,b,c" where:
# - 'a' and 'b' elements represent respectively the Locator-Block length
# (lblen) in bits and the Locator-Node Function length (nflen) in bits.
# 'a' and 'b' can be set to default values using the placeholder "d" which
# indicates the default kernel values (32 for lblen and 16 for nflen);
# otherwise, any numeric value is accepted;
# - 'c' indicates whether the C-SID configuration provided by the values 'a'
# and 'b' should be considered valid ("y") or invalid ("n").
declare -ra CSID_CONTAINER_CFGS=(
"d,d,y"
"d,16,y"
"16,d,y"
"16,32,y"
"32,16,y"
"48,8,y"
"8,48,y"
"d,0,n"
"0,d,n"
"32,0,n"
"0,32,n"
"17,d,n"
"d,17,n"
"120,16,n"
"16,120,n"
"0,128,n"
"128,0,n"
"130,0,n"
"0,130,n"
"0,0,n"
)
PING_TIMEOUT_SEC=4
PAUSE_ON_FAIL=${PAUSE_ON_FAIL:=no}
# IDs of routers and hosts are initialized during the setup of the testing
# network
ROUTERS=''
HOSTS=''
SETUP_ERR=1
ret=${ksft_skip}
nsuccess=0
nfail=0
log_test()
{
local rc="$1"
local expected="$2"
local msg="$3"
if [ "${rc}" -eq "${expected}" ]; then
nsuccess=$((nsuccess+1))
printf "\n TEST: %-60s [ OK ]\n" "${msg}"
else
ret=1
nfail=$((nfail+1))
printf "\n TEST: %-60s [FAIL]\n" "${msg}"
if [ "${PAUSE_ON_FAIL}" = "yes" ]; then
echo
echo "hit enter to continue, 'q' to quit"
read a
[ "$a" = "q" ] && exit 1
fi
fi
}
print_log_test_results()
{
printf "\nTests passed: %3d\n" "${nsuccess}"
printf "Tests failed: %3d\n" "${nfail}"
# when a test fails, the value of 'ret' is set to 1 (error code).
# Conversely, when all tests are passed successfully, the 'ret' value
# is set to 0 (success code).
if [ "${ret}" -ne 1 ]; then
ret=0
fi
}
log_section()
{
echo
echo "################################################################################"
echo "TEST SECTION: $*"
echo "################################################################################"
}
test_command_or_ksft_skip()
{
local cmd="$1"
if [ ! -x "$(command -v "${cmd}")" ]; then
echo "SKIP: Could not run test without \"${cmd}\" tool";
exit "${ksft_skip}"
fi
}
get_nodename()
{
local name="$1"
echo "${name}-${RDMSUFF}"
}
get_rtname()
{
local rtid="$1"
get_nodename "rt-${rtid}"
}
get_hsname()
{
local hsid="$1"
get_nodename "hs-${hsid}"
}
__create_namespace()
{
local name="$1"
ip netns add "${name}"
}
create_router()
{
local rtid="$1"
local nsname
nsname="$(get_rtname "${rtid}")"
__create_namespace "${nsname}"
ip netns exec "${nsname}" sysctl -wq net.ipv6.conf.all.accept_dad=0
ip netns exec "${nsname}" sysctl -wq net.ipv6.conf.default.accept_dad=0
ip netns exec "${nsname}" sysctl -wq net.ipv6.conf.all.forwarding=1
ip netns exec "${nsname}" sysctl -wq net.ipv4.conf.all.rp_filter=0
ip netns exec "${nsname}" sysctl -wq net.ipv4.conf.default.rp_filter=0
ip netns exec "${nsname}" sysctl -wq net.ipv4.ip_forward=1
}
create_host()
{
local hsid="$1"
local nsname
nsname="$(get_hsname "${hsid}")"
__create_namespace "${nsname}"
}
cleanup()
{
local nsname
local i
# destroy routers
for i in ${ROUTERS}; do
nsname="$(get_rtname "${i}")"
ip netns del "${nsname}" &>/dev/null || true
done
# destroy hosts
for i in ${HOSTS}; do
nsname="$(get_hsname "${i}")"
ip netns del "${nsname}" &>/dev/null || true
done
# check whether the setup phase was completed successfully or not. In
# case of an error during the setup phase of the testing environment,
# the selftest is considered as "skipped".
if [ "${SETUP_ERR}" -ne 0 ]; then
echo "SKIP: Setting up the testing environment failed"
exit "${ksft_skip}"
fi
exit "${ret}"
}
add_link_rt_pairs()
{
local rt="$1"
local rt_neighs="$2"
local neigh
local nsname
local neigh_nsname
nsname="$(get_rtname "${rt}")"
for neigh in ${rt_neighs}; do
neigh_nsname="$(get_rtname "${neigh}")"
ip link add "veth-rt-${rt}-${neigh}" netns "${nsname}" \
type veth peer name "veth-rt-${neigh}-${rt}" \
netns "${neigh_nsname}"
done
}
get_network_prefix()
{
local rt="$1"
local neigh="$2"
local p="${rt}"
local q="${neigh}"
if [ "${p}" -gt "${q}" ]; then
p="${q}"; q="${rt}"
fi
echo "${IPv6_RT_NETWORK}:${p}:${q}"
}
# Setup the basic networking for the routers
setup_rt_networking()
{
local rt="$1"
local rt_neighs="$2"
local nsname
local net_prefix
local devname
local neigh
nsname="$(get_rtname "${rt}")"
for neigh in ${rt_neighs}; do
devname="veth-rt-${rt}-${neigh}"
net_prefix="$(get_network_prefix "${rt}" "${neigh}")"
ip -netns "${nsname}" addr \
add "${net_prefix}::${rt}/64" dev "${devname}" nodad
ip -netns "${nsname}" link set "${devname}" up
done
ip -netns "${nsname}" link add "${DUMMY_DEVNAME}" type dummy
ip -netns "${nsname}" link set "${DUMMY_DEVNAME}" up
ip -netns "${nsname}" link set lo up
}
# build an ipv6 prefix/address based on the input string
# Note that the input string does not contain ':' and '::' which are considered
# to be implicit.
# e.g.:
# - input: fbcc00000400300
# - output: fbcc:0000:0400:0300:0000:0000:0000:0000
# ^^^^^^^^^^^^^^^^^^^
# fill the address with 0s
build_ipv6_addr()
{
local addr="$1"
local out=""
local strlen="${#addr}"
local padn
local i
# add ":" every 4 digits (16 bits)
for (( i = 0; i < strlen; i++ )); do
if (( i > 0 && i < 32 && (i % 4) == 0 )); then
out="${out}:"
fi
out="${out}${addr:$i:1}"
done
# fill the remaining bits of the address with 0s
padn=$((32 - strlen))
for (( i = padn; i > 0; i-- )); do
if (( i > 0 && i < 32 && (i % 4) == 0 )); then
out="${out}:"
fi
out="${out}0"
done
printf "${out}"
}
build_csid()
{
local nodeid="$1"
printf "${LCNODEFUNC_FMT}" "${nodeid}"
}
build_lcnode_func_prefix()
{
local nodeid="$1"
local lcnodefunc
local prefix
local out
lcnodefunc="$(build_csid "${nodeid}")"
prefix="$(build_ipv6_addr "${LCBLOCK_ADDR}${lcnodefunc}")"
out="${prefix}/${LCBLOCK_NODEFUNC_BLEN}"
echo "${out}"
}
set_end_x_nextcsid()
{
local rt="$1"
local adj="$2"
nsname="$(get_rtname "${rt}")"
net_prefix="$(get_network_prefix "${rt}" "${adj}")"
lcnode_func_prefix="$(build_lcnode_func_prefix "${rt}")"
# enabled NEXT-C-SID SRv6 End.X behavior (note that "dev" is the dummy
# dum0 device chosen for the sake of simplicity).
ip -netns "${nsname}" -6 route \
replace "${lcnode_func_prefix}" \
table "${LOCALSID_TABLE_ID}" \
encap seg6local action End.X nh6 "${net_prefix}::${adj}" \
flavors next-csid lblen "${LCBLOCK_BLEN}" \
nflen "${LCNODEFUNC_BLEN}" dev "${DUMMY_DEVNAME}"
}
set_underlay_sids_reachability()
{
local rt="$1"
local rt_neighs="$2"
nsname="$(get_rtname "${rt}")"
for neigh in ${rt_neighs}; do
devname="veth-rt-${rt}-${neigh}"
net_prefix="$(get_network_prefix "${rt}" "${neigh}")"
# set underlay network routes for SIDs reachability
ip -netns "${nsname}" -6 route \
replace "${VPN_LOCATOR_SERVICE}:${neigh}::/32" \
table "${LOCALSID_TABLE_ID}" \
via "${net_prefix}::${neigh}" dev "${devname}"
# set the underlay network for C-SIDs reachability
lcnode_func_prefix="$(build_lcnode_func_prefix "${neigh}")"
ip -netns "${nsname}" -6 route \
replace "${lcnode_func_prefix}" \
table "${LOCALSID_TABLE_ID}" \
via "${net_prefix}::${neigh}" dev "${devname}"
done
}
# Setup local SIDs for an SRv6 router
setup_rt_local_sids()
{
local rt="$1"
local rt_neighs="$2"
local net_prefix
local devname
local nsname
local neigh
local lcnode_func_prefix
local lcblock_prefix
nsname="$(get_rtname "${rt}")"
set_underlay_sids_reachability "${rt}" "${rt_neighs}"
# all SIDs for VPNs start with a common locator. Routes and SRv6
# Endpoint behavior instaces are grouped together in the 'localsid'
# table.
ip -netns "${nsname}" -6 rule \
add to "${VPN_LOCATOR_SERVICE}::/16" \
lookup "${LOCALSID_TABLE_ID}" prio 999
# common locator block for NEXT-C-SIDS compression mechanism.
lcblock_prefix="$(build_ipv6_addr "${LCBLOCK_ADDR}")"
ip -netns "${nsname}" -6 rule \
add to "${lcblock_prefix}/${LCBLOCK_BLEN}" \
lookup "${LOCALSID_TABLE_ID}" prio 999
}
# build and install the SRv6 policy into the ingress SRv6 router as well as the
# decap SID in the egress one.
# args:
# $1 - src host (evaluate automatically the ingress router)
# $2 - dst host (evaluate automatically the egress router)
# $3 - SRv6 routers configured for steering traffic (End.X behaviors)
# $4 - single SID or double SID
# $5 - traffic type (IPv6 or IPv4)
__setup_l3vpn()
{
local src="$1"
local dst="$2"
local end_rts="$3"
local mode="$4"
local traffic="$5"
local nsname
local policy
local container
local decapsid
local lcnfunc
local dt
local n
local rtsrc_nsname
local rtdst_nsname
rtsrc_nsname="$(get_rtname "${src}")"
rtdst_nsname="$(get_rtname "${dst}")"
container="${LCBLOCK_ADDR}"
# build first SID (C-SID container)
for n in ${end_rts}; do
lcnfunc="$(build_csid "${n}")"
container="${container}${lcnfunc}"
done
if [ "${mode}" -eq 1 ]; then
# single SID policy
dt="$(build_csid "${dst}")${DT46_FUNC}"
container="${container}${dt}"
# build the full ipv6 address for the container
policy="$(build_ipv6_addr "${container}")"
# build the decap SID used in the decap node
container="${LCBLOCK_ADDR}${dt}"
decapsid="$(build_ipv6_addr "${container}")"
else
# double SID policy
decapsid="${VPN_LOCATOR_SERVICE}:${dst}::${DT46_FUNC}"
policy="$(build_ipv6_addr "${container}"),${decapsid}"
fi
# apply encap policy
if [ "${traffic}" -eq 6 ]; then
ip -netns "${rtsrc_nsname}" -6 route \
add "${IPv6_HS_NETWORK}::${dst}" vrf "${VRF_DEVNAME}" \
encap seg6 mode "${HEADEND_ENCAP}" segs "${policy}" \
dev "${VRF_DEVNAME}"
ip -netns "${rtsrc_nsname}" -6 neigh \
add proxy "${IPv6_HS_NETWORK}::${dst}" \
dev "${RT2HS_DEVNAME}"
else
# "dev" must be different from the one where the packet is
# received, otherwise the proxy arp does not work.
ip -netns "${rtsrc_nsname}" -4 route \
add "${IPv4_HS_NETWORK}.${dst}" vrf "${VRF_DEVNAME}" \
encap seg6 mode "${HEADEND_ENCAP}" segs "${policy}" \
dev "${VRF_DEVNAME}"
fi
# apply decap
# Local End.DT46 behavior (decap)
ip -netns "${rtdst_nsname}" -6 route \
add "${decapsid}" \
table "${LOCALSID_TABLE_ID}" \
encap seg6local action End.DT46 vrftable "${VRF_TID}" \
dev "${VRF_DEVNAME}"
}
# see __setup_l3vpn()
setup_ipv4_vpn_2sids()
{
__setup_l3vpn "$1" "$2" "$3" 2 4
}
# see __setup_l3vpn()
setup_ipv6_vpn_1sid()
{
__setup_l3vpn "$1" "$2" "$3" 1 6
}
setup_hs()
{
local hs="$1"
local rt="$2"
local hsname
local rtname
hsname="$(get_hsname "${hs}")"
rtname="$(get_rtname "${rt}")"
ip netns exec "${hsname}" sysctl -wq net.ipv6.conf.all.accept_dad=0
ip netns exec "${hsname}" sysctl -wq net.ipv6.conf.default.accept_dad=0
ip -netns "${hsname}" link add veth0 type veth \
peer name "${RT2HS_DEVNAME}" netns "${rtname}"
ip -netns "${hsname}" addr \
add "${IPv6_HS_NETWORK}::${hs}/64" dev veth0 nodad
ip -netns "${hsname}" addr add "${IPv4_HS_NETWORK}.${hs}/24" dev veth0
ip -netns "${hsname}" link set veth0 up
ip -netns "${hsname}" link set lo up
# configure the VRF on the router which is directly connected to the
# source host.
ip -netns "${rtname}" link \
add "${VRF_DEVNAME}" type vrf table "${VRF_TID}"
ip -netns "${rtname}" link set "${VRF_DEVNAME}" up
# enslave the veth interface connecting the router with the host to the
# VRF in the access router
ip -netns "${rtname}" link \
set "${RT2HS_DEVNAME}" master "${VRF_DEVNAME}"
# set default routes to unreachable for both ipv6 and ipv4
ip -netns "${rtname}" -6 route \
add unreachable default metric 4278198272 \
vrf "${VRF_DEVNAME}"
ip -netns "${rtname}" -4 route \
add unreachable default metric 4278198272 \
vrf "${VRF_DEVNAME}"
ip -netns "${rtname}" addr \
add "${IPv6_HS_NETWORK}::254/64" dev "${RT2HS_DEVNAME}" nodad
ip -netns "${rtname}" addr \
add "${IPv4_HS_NETWORK}.254/24" dev "${RT2HS_DEVNAME}"
ip -netns "${rtname}" link set "${RT2HS_DEVNAME}" up
ip netns exec "${rtname}" \
sysctl -wq net.ipv6.conf."${RT2HS_DEVNAME}".proxy_ndp=1
ip netns exec "${rtname}" \
sysctl -wq net.ipv4.conf."${RT2HS_DEVNAME}".proxy_arp=1
# disable the rp_filter otherwise the kernel gets confused about how
# to route decap ipv4 packets.
ip netns exec "${rtname}" \
sysctl -wq net.ipv4.conf."${RT2HS_DEVNAME}".rp_filter=0
ip netns exec "${rtname}" sh -c "echo 1 > /proc/sys/net/vrf/strict_mode"
}
setup()
{
local i
# create routers
ROUTERS="1 2 3 4"; readonly ROUTERS
for i in ${ROUTERS}; do
create_router "${i}"
done
# create hosts
HOSTS="1 2"; readonly HOSTS
for i in ${HOSTS}; do
create_host "${i}"
done
# set up the links for connecting routers
add_link_rt_pairs 1 "2 3 4"
add_link_rt_pairs 2 "3 4"
add_link_rt_pairs 3 "4"
# set up the basic connectivity of routers and routes required for
# reachability of SIDs.
setup_rt_networking 1 "2 3 4"
setup_rt_networking 2 "1 3 4"
setup_rt_networking 3 "1 2 4"
setup_rt_networking 4 "1 2 3"
# set up the hosts connected to routers
setup_hs 1 1
setup_hs 2 2
# set up default SRv6 Endpoints (i.e. SRv6 End and SRv6 End.DT46)
setup_rt_local_sids 1 "2 3 4"
setup_rt_local_sids 2 "1 3 4"
setup_rt_local_sids 3 "1 2 4"
setup_rt_local_sids 4 "1 2 3"
# set up SRv6 Policies
# create an IPv6 VPN between hosts hs-1 and hs-2.
#
# Direction hs-1 -> hs-2
# - rt-1 encap (H.Encaps.Red)
# - rt-3 SRv6 End.X behavior adj rt-4 (NEXT-C-SID flavor)
# - rt-4 Plain IPv6 Forwarding to rt-2
# - rt-2 SRv6 End.DT46 behavior
setup_ipv6_vpn_1sid 1 2 "3"
# Direction hs2 -> hs-1
# - rt-2 encap (H.Encaps.Red)
# - rt-4 SRv6 End.X behavior adj rt-1 (NEXT-C-SID flavor)
# - rt-1 SRv6 End.DT46 behavior
setup_ipv6_vpn_1sid 2 1 "4"
# create an IPv4 VPN between hosts hs-1 and hs-2
#
# Direction hs-1 -> hs-2
# - rt-1 encap (H.Encaps.Red)
# - rt-3 SRv6 End.X behavior adj rt-4 (NEXT-C-SID flavor)
# - rt-4 Plain IPv6 Forwarding to rt-2
# - rt-2 SRv6 End.DT46 behavior
setup_ipv4_vpn_2sids 1 2 "3"
# Direction hs-2 -> hs-1
# - rt-2 encap (H.Encaps.Red)
# - rt-3 SRv6 End.X behavior adj rt-4 (NEXT-C-SID flavor)
# - rt-4 Plain IPv6 Forwarding to rt-1
# - rt-1 SRv6 End.DT46 behavior
setup_ipv4_vpn_2sids 2 1 "3"
# Setup the adjacencies in the SRv6 aware routers
# - rt-3 SRv6 End.X adjacency with rt-4
# - rt-4 SRv6 End.X adjacency with rt-1
set_end_x_nextcsid 3 4
set_end_x_nextcsid 4 1
# testing environment was set up successfully
SETUP_ERR=0
}
check_rt_connectivity()
{
local rtsrc="$1"
local rtdst="$2"
local prefix
local rtsrc_nsname
rtsrc_nsname="$(get_rtname "${rtsrc}")"
prefix="$(get_network_prefix "${rtsrc}" "${rtdst}")"
ip netns exec "${rtsrc_nsname}" ping -c 1 -W "${PING_TIMEOUT_SEC}" \
"${prefix}::${rtdst}" >/dev/null 2>&1
}
check_and_log_rt_connectivity()
{
local rtsrc="$1"
local rtdst="$2"
check_rt_connectivity "${rtsrc}" "${rtdst}"
log_test $? 0 "Routers connectivity: rt-${rtsrc} -> rt-${rtdst}"
}
check_hs_ipv6_connectivity()
{
local hssrc="$1"
local hsdst="$2"
local hssrc_nsname
hssrc_nsname="$(get_hsname "${hssrc}")"
ip netns exec "${hssrc_nsname}" ping -c 1 -W "${PING_TIMEOUT_SEC}" \
"${IPv6_HS_NETWORK}::${hsdst}" >/dev/null 2>&1
}
check_hs_ipv4_connectivity()
{
local hssrc="$1"
local hsdst="$2"
local hssrc_nsname
hssrc_nsname="$(get_hsname "${hssrc}")"
ip netns exec "${hssrc_nsname}" ping -c 1 -W "${PING_TIMEOUT_SEC}" \
"${IPv4_HS_NETWORK}.${hsdst}" >/dev/null 2>&1
}
check_and_log_hs2gw_connectivity()
{
local hssrc="$1"
check_hs_ipv6_connectivity "${hssrc}" 254
log_test $? 0 "IPv6 Hosts connectivity: hs-${hssrc} -> gw"
check_hs_ipv4_connectivity "${hssrc}" 254
log_test $? 0 "IPv4 Hosts connectivity: hs-${hssrc} -> gw"
}
check_and_log_hs_ipv6_connectivity()
{
local hssrc="$1"
local hsdst="$2"
check_hs_ipv6_connectivity "${hssrc}" "${hsdst}"
log_test $? 0 "IPv6 Hosts connectivity: hs-${hssrc} -> hs-${hsdst}"
}
check_and_log_hs_ipv4_connectivity()
{
local hssrc="$1"
local hsdst="$2"
check_hs_ipv4_connectivity "${hssrc}" "${hsdst}"
log_test $? 0 "IPv4 Hosts connectivity: hs-${hssrc} -> hs-${hsdst}"
}
router_tests()
{
local i
local j
log_section "IPv6 routers connectivity test"
for i in ${ROUTERS}; do
for j in ${ROUTERS}; do
if [ "${i}" -eq "${j}" ]; then
continue
fi
check_and_log_rt_connectivity "${i}" "${j}"
done
done
}
host2gateway_tests()
{
local hs
log_section "IPv4/IPv6 connectivity test among hosts and gateways"
for hs in ${HOSTS}; do
check_and_log_hs2gw_connectivity "${hs}"
done
}
host_vpn_tests()
{
log_section "SRv6 VPN connectivity test hosts (h1 <-> h2, IPv6)"
check_and_log_hs_ipv6_connectivity 1 2
check_and_log_hs_ipv6_connectivity 2 1
log_section "SRv6 VPN connectivity test hosts (h1 <-> h2, IPv4)"
check_and_log_hs_ipv4_connectivity 1 2
check_and_log_hs_ipv4_connectivity 2 1
}
__nextcsid_end_x_behavior_test()
{
local nsname="$1"
local cmd="$2"
local blen="$3"
local flen="$4"
local layout=""
if [ "${blen}" != "d" ]; then
layout="${layout} lblen ${blen}"
fi
if [ "${flen}" != "d" ]; then
layout="${layout} nflen ${flen}"
fi
ip -netns "${nsname}" -6 route \
"${cmd}" "${CSID_CNTR_PREFIX}" \
table "${CSID_CNTR_RT_TABLE}" \
encap seg6local action End.X nh6 :: \
flavors next-csid ${layout} \
dev "${DUMMY_DEVNAME}" &>/dev/null
return "$?"
}
rt_x_nextcsid_end_x_behavior_test()
{
local rt="$1"
local blen="$2"
local flen="$3"
local nsname
local ret
nsname="$(get_rtname "${rt}")"
__nextcsid_end_x_behavior_test "${nsname}" "add" "${blen}" "${flen}"
ret="$?"
__nextcsid_end_x_behavior_test "${nsname}" "del" "${blen}" "${flen}"
return "${ret}"
}
__parse_csid_container_cfg()
{
local cfg="$1"
local index="$2"
local out
echo "${cfg}" | cut -d',' -f"${index}"
}
csid_container_cfg_tests()
{
local valid
local blen
local flen
local cfg
local ret
log_section "C-SID Container config tests (legend: d='kernel default')"
for cfg in "${CSID_CONTAINER_CFGS[@]}"; do
blen="$(__parse_csid_container_cfg "${cfg}" 1)"
flen="$(__parse_csid_container_cfg "${cfg}" 2)"
valid="$(__parse_csid_container_cfg "${cfg}" 3)"
rt_x_nextcsid_end_x_behavior_test \
"${CSID_CNTR_RT_ID_TEST}" \
"${blen}" \
"${flen}"
ret="$?"
if [ "${valid}" == "y" ]; then
log_test "${ret}" 0 \
"Accept valid C-SID container cfg (lblen=${blen}, nflen=${flen})"
else
log_test "${ret}" 2 \
"Reject invalid C-SID container cfg (lblen=${blen}, nflen=${flen})"
fi
done
}
test_iproute2_supp_or_ksft_skip()
{
if ! ip route help 2>&1 | grep -qo "next-csid"; then
echo "SKIP: Missing SRv6 NEXT-C-SID flavor support in iproute2"
exit "${ksft_skip}"
fi
}
test_dummy_dev_or_ksft_skip()
{
local test_netns
test_netns="dummy-$(mktemp -u XXXXXXXX)"
if ! ip netns add "${test_netns}"; then
echo "SKIP: Cannot set up netns for testing dummy dev support"
exit "${ksft_skip}"
fi
modprobe dummy &>/dev/null || true
if ! ip -netns "${test_netns}" link \
add "${DUMMY_DEVNAME}" type dummy; then
echo "SKIP: dummy dev not supported"
ip netns del "${test_netns}"
exit "${ksft_skip}"
fi
ip netns del "${test_netns}"
}
test_vrf_or_ksft_skip()
{
modprobe vrf &>/dev/null || true
if [ ! -e /proc/sys/net/vrf/strict_mode ]; then
echo "SKIP: vrf sysctl does not exist"
exit "${ksft_skip}"
fi
}
if [ "$(id -u)" -ne 0 ]; then
echo "SKIP: Need root privileges"
exit "${ksft_skip}"
fi
# required programs to carry out this selftest
test_command_or_ksft_skip ip
test_command_or_ksft_skip ping
test_command_or_ksft_skip sysctl
test_command_or_ksft_skip grep
test_command_or_ksft_skip cut
test_iproute2_supp_or_ksft_skip
test_dummy_dev_or_ksft_skip
test_vrf_or_ksft_skip
set -e
trap cleanup EXIT
setup
set +e
csid_container_cfg_tests
router_tests
host2gateway_tests
host_vpn_tests
print_log_test_results