// SPDX-License-Identifier: GPL-2.0-or-later
/*
* PTP 1588 clock support - User space test program
*
* Copyright (C) 2010 OMICRON electronics GmbH
*/
#define _GNU_SOURCE
#define __SANE_USERSPACE_TYPES__ /* For PPC64, to get LL64 types */
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <math.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/timex.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include <linux/ptp_clock.h>
#define DEVICE "/dev/ptp0"
#ifndef ADJ_SETOFFSET
#define ADJ_SETOFFSET 0x0100
#endif
#ifndef CLOCK_INVALID
#define CLOCK_INVALID -1
#endif
#define NSEC_PER_SEC 1000000000LL
/* clock_adjtime is not available in GLIBC < 2.14 */
#if !__GLIBC_PREREQ(2, 14)
#include <sys/syscall.h>
static int clock_adjtime(clockid_t id, struct timex *tx)
{
return syscall(__NR_clock_adjtime, id, tx);
}
#endif
static void show_flag_test(int rq_index, unsigned int flags, int err)
{
printf("PTP_EXTTS_REQUEST%c flags 0x%08x : (%d) %s\n",
rq_index ? '1' + rq_index : ' ',
flags, err, strerror(errno));
/* sigh, uClibc ... */
errno = 0;
}
static void do_flag_test(int fd, unsigned int index)
{
struct ptp_extts_request extts_request;
unsigned long request[2] = {
PTP_EXTTS_REQUEST,
PTP_EXTTS_REQUEST2,
};
unsigned int enable_flags[5] = {
PTP_ENABLE_FEATURE,
PTP_ENABLE_FEATURE | PTP_RISING_EDGE,
PTP_ENABLE_FEATURE | PTP_FALLING_EDGE,
PTP_ENABLE_FEATURE | PTP_RISING_EDGE | PTP_FALLING_EDGE,
PTP_ENABLE_FEATURE | (PTP_EXTTS_VALID_FLAGS + 1),
};
int err, i, j;
memset(&extts_request, 0, sizeof(extts_request));
extts_request.index = index;
for (i = 0; i < 2; i++) {
for (j = 0; j < 5; j++) {
extts_request.flags = enable_flags[j];
err = ioctl(fd, request[i], &extts_request);
show_flag_test(i, extts_request.flags, err);
extts_request.flags = 0;
err = ioctl(fd, request[i], &extts_request);
}
}
}
static clockid_t get_clockid(int fd)
{
#define CLOCKFD 3
return (((unsigned int) ~fd) << 3) | CLOCKFD;
}
static long ppb_to_scaled_ppm(int ppb)
{
/*
* The 'freq' field in the 'struct timex' is in parts per
* million, but with a 16 bit binary fractional field.
* Instead of calculating either one of
*
* scaled_ppm = (ppb / 1000) << 16 [1]
* scaled_ppm = (ppb << 16) / 1000 [2]
*
* we simply use double precision math, in order to avoid the
* truncation in [1] and the possible overflow in [2].
*/
return (long) (ppb * 65.536);
}
static int64_t pctns(struct ptp_clock_time *t)
{
return t->sec * NSEC_PER_SEC + t->nsec;
}
static void usage(char *progname)
{
fprintf(stderr,
"usage: %s [options]\n"
" -c query the ptp clock's capabilities\n"
" -d name device to open\n"
" -e val read 'val' external time stamp events\n"
" -f val adjust the ptp clock frequency by 'val' ppb\n"
" -F chan Enable single channel mask and keep device open for debugfs verification.\n"
" -g get the ptp clock time\n"
" -h prints this message\n"
" -i val index for event/trigger\n"
" -k val measure the time offset between system and phc clock\n"
" for 'val' times (Maximum 25)\n"
" -l list the current pin configuration\n"
" -L pin,val configure pin index 'pin' with function 'val'\n"
" the channel index is taken from the '-i' option\n"
" 'val' specifies the auxiliary function:\n"
" 0 - none\n"
" 1 - external time stamp\n"
" 2 - periodic output\n"
" -n val shift the ptp clock time by 'val' nanoseconds\n"
" -o val phase offset (in nanoseconds) to be provided to the PHC servo\n"
" -p val enable output with a period of 'val' nanoseconds\n"
" -H val set output phase to 'val' nanoseconds (requires -p)\n"
" -w val set output pulse width to 'val' nanoseconds (requires -p)\n"
" -P val enable or disable (val=1|0) the system clock PPS\n"
" -s set the ptp clock time from the system time\n"
" -S set the system time from the ptp clock time\n"
" -t val shift the ptp clock time by 'val' seconds\n"
" -T val set the ptp clock time to 'val' seconds\n"
" -x val get an extended ptp clock time with the desired number of samples (up to %d)\n"
" -X get a ptp clock cross timestamp\n"
" -z test combinations of rising/falling external time stamp flags\n",
progname, PTP_MAX_SAMPLES);
}
int main(int argc, char *argv[])
{
struct ptp_clock_caps caps;
struct ptp_extts_event event;
struct ptp_extts_request extts_request;
struct ptp_perout_request perout_request;
struct ptp_pin_desc desc;
struct timespec ts;
struct timex tx;
struct ptp_clock_time *pct;
struct ptp_sys_offset *sysoff;
struct ptp_sys_offset_extended *soe;
struct ptp_sys_offset_precise *xts;
char *progname;
unsigned int i;
int c, cnt, fd;
char *device = DEVICE;
clockid_t clkid;
int adjfreq = 0x7fffffff;
int adjtime = 0;
int adjns = 0;
int adjphase = 0;
int capabilities = 0;
int extts = 0;
int flagtest = 0;
int gettime = 0;
int index = 0;
int list_pins = 0;
int pct_offset = 0;
int getextended = 0;
int getcross = 0;
int n_samples = 0;
int pin_index = -1, pin_func;
int pps = -1;
int seconds = 0;
int settime = 0;
int channel = -1;
int64_t t1, t2, tp;
int64_t interval, offset;
int64_t perout_phase = -1;
int64_t pulsewidth = -1;
int64_t perout = -1;
progname = strrchr(argv[0], '/');
progname = progname ? 1+progname : argv[0];
while (EOF != (c = getopt(argc, argv, "cd:e:f:F:ghH:i:k:lL:n:o:p:P:sSt:T:w:x:Xz"))) {
switch (c) {
case 'c':
capabilities = 1;
break;
case 'd':
device = optarg;
break;
case 'e':
extts = atoi(optarg);
break;
case 'f':
adjfreq = atoi(optarg);
break;
case 'F':
channel = atoi(optarg);
break;
case 'g':
gettime = 1;
break;
case 'H':
perout_phase = atoll(optarg);
break;
case 'i':
index = atoi(optarg);
break;
case 'k':
pct_offset = 1;
n_samples = atoi(optarg);
break;
case 'l':
list_pins = 1;
break;
case 'L':
cnt = sscanf(optarg, "%d,%d", &pin_index, &pin_func);
if (cnt != 2) {
usage(progname);
return -1;
}
break;
case 'n':
adjns = atoi(optarg);
break;
case 'o':
adjphase = atoi(optarg);
break;
case 'p':
perout = atoll(optarg);
break;
case 'P':
pps = atoi(optarg);
break;
case 's':
settime = 1;
break;
case 'S':
settime = 2;
break;
case 't':
adjtime = atoi(optarg);
break;
case 'T':
settime = 3;
seconds = atoi(optarg);
break;
case 'w':
pulsewidth = atoi(optarg);
break;
case 'x':
getextended = atoi(optarg);
if (getextended < 1 || getextended > PTP_MAX_SAMPLES) {
fprintf(stderr,
"number of extended timestamp samples must be between 1 and %d; was asked for %d\n",
PTP_MAX_SAMPLES, getextended);
return -1;
}
break;
case 'X':
getcross = 1;
break;
case 'z':
flagtest = 1;
break;
case 'h':
usage(progname);
return 0;
case '?':
default:
usage(progname);
return -1;
}
}
fd = open(device, O_RDWR);
if (fd < 0) {
fprintf(stderr, "opening %s: %s\n", device, strerror(errno));
return -1;
}
clkid = get_clockid(fd);
if (CLOCK_INVALID == clkid) {
fprintf(stderr, "failed to read clock id\n");
return -1;
}
if (capabilities) {
if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) {
perror("PTP_CLOCK_GETCAPS");
} else {
printf("capabilities:\n"
" %d maximum frequency adjustment (ppb)\n"
" %d programmable alarms\n"
" %d external time stamp channels\n"
" %d programmable periodic signals\n"
" %d pulse per second\n"
" %d programmable pins\n"
" %d cross timestamping\n"
" %d adjust_phase\n"
" %d maximum phase adjustment (ns)\n",
caps.max_adj,
caps.n_alarm,
caps.n_ext_ts,
caps.n_per_out,
caps.pps,
caps.n_pins,
caps.cross_timestamping,
caps.adjust_phase,
caps.max_phase_adj);
}
}
if (0x7fffffff != adjfreq) {
memset(&tx, 0, sizeof(tx));
tx.modes = ADJ_FREQUENCY;
tx.freq = ppb_to_scaled_ppm(adjfreq);
if (clock_adjtime(clkid, &tx)) {
perror("clock_adjtime");
} else {
puts("frequency adjustment okay");
}
}
if (adjtime || adjns) {
memset(&tx, 0, sizeof(tx));
tx.modes = ADJ_SETOFFSET | ADJ_NANO;
tx.time.tv_sec = adjtime;
tx.time.tv_usec = adjns;
while (tx.time.tv_usec < 0) {
tx.time.tv_sec -= 1;
tx.time.tv_usec += NSEC_PER_SEC;
}
if (clock_adjtime(clkid, &tx) < 0) {
perror("clock_adjtime");
} else {
puts("time shift okay");
}
}
if (adjphase) {
memset(&tx, 0, sizeof(tx));
tx.modes = ADJ_OFFSET | ADJ_NANO;
tx.offset = adjphase;
if (clock_adjtime(clkid, &tx) < 0) {
perror("clock_adjtime");
} else {
puts("phase adjustment okay");
}
}
if (gettime) {
if (clock_gettime(clkid, &ts)) {
perror("clock_gettime");
} else {
printf("clock time: %ld.%09ld or %s",
ts.tv_sec, ts.tv_nsec, ctime(&ts.tv_sec));
}
}
if (settime == 1) {
clock_gettime(CLOCK_REALTIME, &ts);
if (clock_settime(clkid, &ts)) {
perror("clock_settime");
} else {
puts("set time okay");
}
}
if (settime == 2) {
clock_gettime(clkid, &ts);
if (clock_settime(CLOCK_REALTIME, &ts)) {
perror("clock_settime");
} else {
puts("set time okay");
}
}
if (settime == 3) {
ts.tv_sec = seconds;
ts.tv_nsec = 0;
if (clock_settime(clkid, &ts)) {
perror("clock_settime");
} else {
puts("set time okay");
}
}
if (pin_index >= 0) {
memset(&desc, 0, sizeof(desc));
desc.index = pin_index;
desc.func = pin_func;
desc.chan = index;
if (ioctl(fd, PTP_PIN_SETFUNC, &desc)) {
perror("PTP_PIN_SETFUNC");
} else {
puts("set pin function okay");
}
}
if (extts) {
memset(&extts_request, 0, sizeof(extts_request));
extts_request.index = index;
extts_request.flags = PTP_ENABLE_FEATURE;
if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
perror("PTP_EXTTS_REQUEST");
extts = 0;
} else {
puts("external time stamp request okay");
}
for (; extts; extts--) {
cnt = read(fd, &event, sizeof(event));
if (cnt != sizeof(event)) {
perror("read");
break;
}
printf("event index %u at %lld.%09u\n", event.index,
event.t.sec, event.t.nsec);
fflush(stdout);
}
/* Disable the feature again. */
extts_request.flags = 0;
if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
perror("PTP_EXTTS_REQUEST");
}
}
if (flagtest) {
do_flag_test(fd, index);
}
if (list_pins) {
int n_pins = 0;
if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) {
perror("PTP_CLOCK_GETCAPS");
} else {
n_pins = caps.n_pins;
}
for (i = 0; i < n_pins; i++) {
desc.index = i;
if (ioctl(fd, PTP_PIN_GETFUNC, &desc)) {
perror("PTP_PIN_GETFUNC");
break;
}
printf("name %s index %u func %u chan %u\n",
desc.name, desc.index, desc.func, desc.chan);
}
}
if (pulsewidth >= 0 && perout < 0) {
puts("-w can only be specified together with -p");
return -1;
}
if (perout_phase >= 0 && perout < 0) {
puts("-H can only be specified together with -p");
return -1;
}
if (perout >= 0) {
if (clock_gettime(clkid, &ts)) {
perror("clock_gettime");
return -1;
}
memset(&perout_request, 0, sizeof(perout_request));
perout_request.index = index;
perout_request.period.sec = perout / NSEC_PER_SEC;
perout_request.period.nsec = perout % NSEC_PER_SEC;
perout_request.flags = 0;
if (pulsewidth >= 0) {
perout_request.flags |= PTP_PEROUT_DUTY_CYCLE;
perout_request.on.sec = pulsewidth / NSEC_PER_SEC;
perout_request.on.nsec = pulsewidth % NSEC_PER_SEC;
}
if (perout_phase >= 0) {
perout_request.flags |= PTP_PEROUT_PHASE;
perout_request.phase.sec = perout_phase / NSEC_PER_SEC;
perout_request.phase.nsec = perout_phase % NSEC_PER_SEC;
} else {
perout_request.start.sec = ts.tv_sec + 2;
perout_request.start.nsec = 0;
}
if (ioctl(fd, PTP_PEROUT_REQUEST2, &perout_request)) {
perror("PTP_PEROUT_REQUEST");
} else {
puts("periodic output request okay");
}
}
if (pps != -1) {
int enable = pps ? 1 : 0;
if (ioctl(fd, PTP_ENABLE_PPS, enable)) {
perror("PTP_ENABLE_PPS");
} else {
puts("pps for system time request okay");
}
}
if (pct_offset) {
if (n_samples <= 0 || n_samples > 25) {
puts("n_samples should be between 1 and 25");
usage(progname);
return -1;
}
sysoff = calloc(1, sizeof(*sysoff));
if (!sysoff) {
perror("calloc");
return -1;
}
sysoff->n_samples = n_samples;
if (ioctl(fd, PTP_SYS_OFFSET, sysoff))
perror("PTP_SYS_OFFSET");
else
puts("system and phc clock time offset request okay");
pct = &sysoff->ts[0];
for (i = 0; i < sysoff->n_samples; i++) {
t1 = pctns(pct+2*i);
tp = pctns(pct+2*i+1);
t2 = pctns(pct+2*i+2);
interval = t2 - t1;
offset = (t2 + t1) / 2 - tp;
printf("system time: %lld.%09u\n",
(pct+2*i)->sec, (pct+2*i)->nsec);
printf("phc time: %lld.%09u\n",
(pct+2*i+1)->sec, (pct+2*i+1)->nsec);
printf("system time: %lld.%09u\n",
(pct+2*i+2)->sec, (pct+2*i+2)->nsec);
printf("system/phc clock time offset is %" PRId64 " ns\n"
"system clock time delay is %" PRId64 " ns\n",
offset, interval);
}
free(sysoff);
}
if (getextended) {
soe = calloc(1, sizeof(*soe));
if (!soe) {
perror("calloc");
return -1;
}
soe->n_samples = getextended;
if (ioctl(fd, PTP_SYS_OFFSET_EXTENDED, soe)) {
perror("PTP_SYS_OFFSET_EXTENDED");
} else {
printf("extended timestamp request returned %d samples\n",
getextended);
for (i = 0; i < getextended; i++) {
printf("sample #%2d: system time before: %lld.%09u\n",
i, soe->ts[i][0].sec, soe->ts[i][0].nsec);
printf(" phc time: %lld.%09u\n",
soe->ts[i][1].sec, soe->ts[i][1].nsec);
printf(" system time after: %lld.%09u\n",
soe->ts[i][2].sec, soe->ts[i][2].nsec);
}
}
free(soe);
}
if (getcross) {
xts = calloc(1, sizeof(*xts));
if (!xts) {
perror("calloc");
return -1;
}
if (ioctl(fd, PTP_SYS_OFFSET_PRECISE, xts)) {
perror("PTP_SYS_OFFSET_PRECISE");
} else {
puts("system and phc crosstimestamping request okay");
printf("device time: %lld.%09u\n",
xts->device.sec, xts->device.nsec);
printf("system time: %lld.%09u\n",
xts->sys_realtime.sec, xts->sys_realtime.nsec);
printf("monoraw time: %lld.%09u\n",
xts->sys_monoraw.sec, xts->sys_monoraw.nsec);
}
free(xts);
}
if (channel >= 0) {
if (ioctl(fd, PTP_MASK_CLEAR_ALL)) {
perror("PTP_MASK_CLEAR_ALL");
} else if (ioctl(fd, PTP_MASK_EN_SINGLE, (unsigned int *)&channel)) {
perror("PTP_MASK_EN_SINGLE");
} else {
printf("Channel %d exclusively enabled. Check on debugfs.\n", channel);
printf("Press any key to continue\n.");
getchar();
}
}
close(fd);
return 0;
}