// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2021 Facebook */
#include <linux/bpf.h>
#include <time.h>
#include <stdbool.h>
#include <errno.h>
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
char _license[] SEC("license") = "GPL";
struct hmap_elem {
int counter;
struct bpf_timer timer;
struct bpf_spin_lock lock; /* unused */
};
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(max_entries, 1000);
__type(key, int);
__type(value, struct hmap_elem);
} hmap SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(map_flags, BPF_F_NO_PREALLOC);
__uint(max_entries, 1000);
__type(key, int);
__type(value, struct hmap_elem);
} hmap_malloc SEC(".maps");
struct elem {
struct bpf_timer t;
};
struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, 2);
__type(key, int);
__type(value, struct elem);
} array SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_LRU_HASH);
__uint(max_entries, 4);
__type(key, int);
__type(value, struct elem);
} lru SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, 1);
__type(key, int);
__type(value, struct elem);
} abs_timer SEC(".maps"), soft_timer_pinned SEC(".maps"), abs_timer_pinned SEC(".maps"),
race_array SEC(".maps");
__u64 bss_data;
__u64 abs_data;
__u64 err;
__u64 ok;
__u64 callback_check = 52;
__u64 callback2_check = 52;
__u64 pinned_callback_check;
__s32 pinned_cpu;
#define ARRAY 1
#define HTAB 2
#define HTAB_MALLOC 3
#define LRU 4
/* callback for array and lru timers */
static int timer_cb1(void *map, int *key, struct bpf_timer *timer)
{
/* increment bss variable twice.
* Once via array timer callback and once via lru timer callback
*/
bss_data += 5;
/* *key == 0 - the callback was called for array timer.
* *key == 4 - the callback was called from lru timer.
*/
if (*key == ARRAY) {
struct bpf_timer *lru_timer;
int lru_key = LRU;
/* rearm array timer to be called again in ~35 seconds */
if (bpf_timer_start(timer, 1ull << 35, 0) != 0)
err |= 1;
lru_timer = bpf_map_lookup_elem(&lru, &lru_key);
if (!lru_timer)
return 0;
bpf_timer_set_callback(lru_timer, timer_cb1);
if (bpf_timer_start(lru_timer, 0, 0) != 0)
err |= 2;
} else if (*key == LRU) {
int lru_key, i;
for (i = LRU + 1;
i <= 100 /* for current LRU eviction algorithm this number
* should be larger than ~ lru->max_entries * 2
*/;
i++) {
struct elem init = {};
/* lru_key cannot be used as loop induction variable
* otherwise the loop will be unbounded.
*/
lru_key = i;
/* add more elements into lru map to push out current
* element and force deletion of this timer
*/
bpf_map_update_elem(map, &lru_key, &init, 0);
/* look it up to bump it into active list */
bpf_map_lookup_elem(map, &lru_key);
/* keep adding until *key changes underneath,
* which means that key/timer memory was reused
*/
if (*key != LRU)
break;
}
/* check that the timer was removed */
if (bpf_timer_cancel(timer) != -EINVAL)
err |= 4;
ok |= 1;
}
return 0;
}
SEC("fentry/bpf_fentry_test1")
int BPF_PROG2(test1, int, a)
{
struct bpf_timer *arr_timer, *lru_timer;
struct elem init = {};
int lru_key = LRU;
int array_key = ARRAY;
arr_timer = bpf_map_lookup_elem(&array, &array_key);
if (!arr_timer)
return 0;
bpf_timer_init(arr_timer, &array, CLOCK_MONOTONIC);
bpf_map_update_elem(&lru, &lru_key, &init, 0);
lru_timer = bpf_map_lookup_elem(&lru, &lru_key);
if (!lru_timer)
return 0;
bpf_timer_init(lru_timer, &lru, CLOCK_MONOTONIC);
bpf_timer_set_callback(arr_timer, timer_cb1);
bpf_timer_start(arr_timer, 0 /* call timer_cb1 asap */, 0);
/* init more timers to check that array destruction
* doesn't leak timer memory.
*/
array_key = 0;
arr_timer = bpf_map_lookup_elem(&array, &array_key);
if (!arr_timer)
return 0;
bpf_timer_init(arr_timer, &array, CLOCK_MONOTONIC);
return 0;
}
/* callback for prealloc and non-prealloca hashtab timers */
static int timer_cb2(void *map, int *key, struct hmap_elem *val)
{
if (*key == HTAB)
callback_check--;
else
callback2_check--;
if (val->counter > 0 && --val->counter) {
/* re-arm the timer again to execute after 1 usec */
bpf_timer_start(&val->timer, 1000, 0);
} else if (*key == HTAB) {
struct bpf_timer *arr_timer;
int array_key = ARRAY;
/* cancel arr_timer otherwise bpf_fentry_test1 prog
* will stay alive forever.
*/
arr_timer = bpf_map_lookup_elem(&array, &array_key);
if (!arr_timer)
return 0;
if (bpf_timer_cancel(arr_timer) != 1)
/* bpf_timer_cancel should return 1 to indicate
* that arr_timer was active at this time
*/
err |= 8;
/* try to cancel ourself. It shouldn't deadlock. */
if (bpf_timer_cancel(&val->timer) != -EDEADLK)
err |= 16;
/* delete this key and this timer anyway.
* It shouldn't deadlock either.
*/
bpf_map_delete_elem(map, key);
/* in preallocated hashmap both 'key' and 'val' could have been
* reused to store another map element (like in LRU above),
* but in controlled test environment the below test works.
* It's not a use-after-free. The memory is owned by the map.
*/
if (bpf_timer_start(&val->timer, 1000, 0) != -EINVAL)
err |= 32;
ok |= 2;
} else {
if (*key != HTAB_MALLOC)
err |= 64;
/* try to cancel ourself. It shouldn't deadlock. */
if (bpf_timer_cancel(&val->timer) != -EDEADLK)
err |= 128;
/* delete this key and this timer anyway.
* It shouldn't deadlock either.
*/
bpf_map_delete_elem(map, key);
ok |= 4;
}
return 0;
}
int bpf_timer_test(void)
{
struct hmap_elem *val;
int key = HTAB, key_malloc = HTAB_MALLOC;
val = bpf_map_lookup_elem(&hmap, &key);
if (val) {
if (bpf_timer_init(&val->timer, &hmap, CLOCK_BOOTTIME) != 0)
err |= 512;
bpf_timer_set_callback(&val->timer, timer_cb2);
bpf_timer_start(&val->timer, 1000, 0);
}
val = bpf_map_lookup_elem(&hmap_malloc, &key_malloc);
if (val) {
if (bpf_timer_init(&val->timer, &hmap_malloc, CLOCK_BOOTTIME) != 0)
err |= 1024;
bpf_timer_set_callback(&val->timer, timer_cb2);
bpf_timer_start(&val->timer, 1000, 0);
}
return 0;
}
SEC("fentry/bpf_fentry_test2")
int BPF_PROG2(test2, int, a, int, b)
{
struct hmap_elem init = {}, *val;
int key = HTAB, key_malloc = HTAB_MALLOC;
init.counter = 10; /* number of times to trigger timer_cb2 */
bpf_map_update_elem(&hmap, &key, &init, 0);
val = bpf_map_lookup_elem(&hmap, &key);
if (val)
bpf_timer_init(&val->timer, &hmap, CLOCK_BOOTTIME);
/* update the same key to free the timer */
bpf_map_update_elem(&hmap, &key, &init, 0);
bpf_map_update_elem(&hmap_malloc, &key_malloc, &init, 0);
val = bpf_map_lookup_elem(&hmap_malloc, &key_malloc);
if (val)
bpf_timer_init(&val->timer, &hmap_malloc, CLOCK_BOOTTIME);
/* update the same key to free the timer */
bpf_map_update_elem(&hmap_malloc, &key_malloc, &init, 0);
/* init more timers to check that htab operations
* don't leak timer memory.
*/
key = 0;
bpf_map_update_elem(&hmap, &key, &init, 0);
val = bpf_map_lookup_elem(&hmap, &key);
if (val)
bpf_timer_init(&val->timer, &hmap, CLOCK_BOOTTIME);
bpf_map_delete_elem(&hmap, &key);
bpf_map_update_elem(&hmap, &key, &init, 0);
val = bpf_map_lookup_elem(&hmap, &key);
if (val)
bpf_timer_init(&val->timer, &hmap, CLOCK_BOOTTIME);
/* and with non-prealloc htab */
key_malloc = 0;
bpf_map_update_elem(&hmap_malloc, &key_malloc, &init, 0);
val = bpf_map_lookup_elem(&hmap_malloc, &key_malloc);
if (val)
bpf_timer_init(&val->timer, &hmap_malloc, CLOCK_BOOTTIME);
bpf_map_delete_elem(&hmap_malloc, &key_malloc);
bpf_map_update_elem(&hmap_malloc, &key_malloc, &init, 0);
val = bpf_map_lookup_elem(&hmap_malloc, &key_malloc);
if (val)
bpf_timer_init(&val->timer, &hmap_malloc, CLOCK_BOOTTIME);
return bpf_timer_test();
}
/* callback for absolute timer */
static int timer_cb3(void *map, int *key, struct bpf_timer *timer)
{
abs_data += 6;
if (abs_data < 12) {
bpf_timer_start(timer, bpf_ktime_get_boot_ns() + 1000,
BPF_F_TIMER_ABS);
} else {
/* Re-arm timer ~35 seconds in future */
bpf_timer_start(timer, bpf_ktime_get_boot_ns() + (1ull << 35),
BPF_F_TIMER_ABS);
}
return 0;
}
SEC("fentry/bpf_fentry_test3")
int BPF_PROG2(test3, int, a)
{
int key = 0;
struct bpf_timer *timer;
bpf_printk("test3");
timer = bpf_map_lookup_elem(&abs_timer, &key);
if (timer) {
if (bpf_timer_init(timer, &abs_timer, CLOCK_BOOTTIME) != 0)
err |= 2048;
bpf_timer_set_callback(timer, timer_cb3);
bpf_timer_start(timer, bpf_ktime_get_boot_ns() + 1000,
BPF_F_TIMER_ABS);
}
return 0;
}
/* callback for pinned timer */
static int timer_cb_pinned(void *map, int *key, struct bpf_timer *timer)
{
__s32 cpu = bpf_get_smp_processor_id();
if (cpu != pinned_cpu)
err |= 16384;
pinned_callback_check++;
return 0;
}
static void test_pinned_timer(bool soft)
{
int key = 0;
void *map;
struct bpf_timer *timer;
__u64 flags = BPF_F_TIMER_CPU_PIN;
__u64 start_time;
if (soft) {
map = &soft_timer_pinned;
start_time = 0;
} else {
map = &abs_timer_pinned;
start_time = bpf_ktime_get_boot_ns();
flags |= BPF_F_TIMER_ABS;
}
timer = bpf_map_lookup_elem(map, &key);
if (timer) {
if (bpf_timer_init(timer, map, CLOCK_BOOTTIME) != 0)
err |= 4096;
bpf_timer_set_callback(timer, timer_cb_pinned);
pinned_cpu = bpf_get_smp_processor_id();
bpf_timer_start(timer, start_time + 1000, flags);
} else {
err |= 8192;
}
}
SEC("fentry/bpf_fentry_test4")
int BPF_PROG2(test4, int, a)
{
bpf_printk("test4");
test_pinned_timer(true);
return 0;
}
SEC("fentry/bpf_fentry_test5")
int BPF_PROG2(test5, int, a)
{
bpf_printk("test5");
test_pinned_timer(false);
return 0;
}
static int race_timer_callback(void *race_array, int *race_key, struct bpf_timer *timer)
{
bpf_timer_start(timer, 1000000, 0);
return 0;
}
SEC("syscall")
int race(void *ctx)
{
struct bpf_timer *timer;
int err, race_key = 0;
struct elem init;
__builtin_memset(&init, 0, sizeof(struct elem));
bpf_map_update_elem(&race_array, &race_key, &init, BPF_ANY);
timer = bpf_map_lookup_elem(&race_array, &race_key);
if (!timer)
return 1;
err = bpf_timer_init(timer, &race_array, CLOCK_MONOTONIC);
if (err && err != -EBUSY)
return 1;
bpf_timer_set_callback(timer, race_timer_callback);
bpf_timer_start(timer, 0, 0);
bpf_timer_cancel(timer);
return 0;
}