/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2018, Google LLC.
*/
#ifndef SELFTEST_KVM_UTIL_H
#define SELFTEST_KVM_UTIL_H
#include "test_util.h"
#include <linux/compiler.h>
#include "linux/hashtable.h"
#include "linux/list.h"
#include <linux/kernel.h>
#include <linux/kvm.h>
#include "linux/rbtree.h"
#include <linux/types.h>
#include <asm/atomic.h>
#include <asm/kvm.h>
#include <sys/ioctl.h>
#include "kvm_util_arch.h"
#include "kvm_util_types.h"
#include "sparsebit.h"
#define KVM_DEV_PATH "/dev/kvm"
#define KVM_MAX_VCPUS 512
#define NSEC_PER_SEC 1000000000L
struct userspace_mem_region {
struct kvm_userspace_memory_region2 region;
struct sparsebit *unused_phy_pages;
struct sparsebit *protected_phy_pages;
int fd;
off_t offset;
enum vm_mem_backing_src_type backing_src_type;
void *host_mem;
void *host_alias;
void *mmap_start;
void *mmap_alias;
size_t mmap_size;
struct rb_node gpa_node;
struct rb_node hva_node;
struct hlist_node slot_node;
};
struct kvm_vcpu {
struct list_head list;
uint32_t id;
int fd;
struct kvm_vm *vm;
struct kvm_run *run;
#ifdef __x86_64__
struct kvm_cpuid2 *cpuid;
#endif
struct kvm_dirty_gfn *dirty_gfns;
uint32_t fetch_index;
uint32_t dirty_gfns_count;
};
struct userspace_mem_regions {
struct rb_root gpa_tree;
struct rb_root hva_tree;
DECLARE_HASHTABLE(slot_hash, 9);
};
enum kvm_mem_region_type {
MEM_REGION_CODE,
MEM_REGION_DATA,
MEM_REGION_PT,
MEM_REGION_TEST_DATA,
NR_MEM_REGIONS,
};
struct kvm_vm {
int mode;
unsigned long type;
int kvm_fd;
int fd;
unsigned int pgtable_levels;
unsigned int page_size;
unsigned int page_shift;
unsigned int pa_bits;
unsigned int va_bits;
uint64_t max_gfn;
struct list_head vcpus;
struct userspace_mem_regions regions;
struct sparsebit *vpages_valid;
struct sparsebit *vpages_mapped;
bool has_irqchip;
bool pgd_created;
vm_paddr_t ucall_mmio_addr;
vm_paddr_t pgd;
vm_vaddr_t handlers;
uint32_t dirty_ring_size;
uint64_t gpa_tag_mask;
struct kvm_vm_arch arch;
/* Cache of information for binary stats interface */
int stats_fd;
struct kvm_stats_header stats_header;
struct kvm_stats_desc *stats_desc;
/*
* KVM region slots. These are the default memslots used by page
* allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE]
* memslot.
*/
uint32_t memslots[NR_MEM_REGIONS];
};
struct vcpu_reg_sublist {
const char *name;
long capability;
int feature;
int feature_type;
bool finalize;
__u64 *regs;
__u64 regs_n;
__u64 *rejects_set;
__u64 rejects_set_n;
__u64 *skips_set;
__u64 skips_set_n;
};
struct vcpu_reg_list {
char *name;
struct vcpu_reg_sublist sublists[];
};
#define for_each_sublist(c, s) \
for ((s) = &(c)->sublists[0]; (s)->regs; ++(s))
#define kvm_for_each_vcpu(vm, i, vcpu) \
for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \
if (!((vcpu) = vm->vcpus[i])) \
continue; \
else
struct userspace_mem_region *
memslot2region(struct kvm_vm *vm, uint32_t memslot);
static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm,
enum kvm_mem_region_type type)
{
assert(type < NR_MEM_REGIONS);
return memslot2region(vm, vm->memslots[type]);
}
/* Minimum allocated guest virtual and physical addresses */
#define KVM_UTIL_MIN_VADDR 0x2000
#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
#define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000
#define DEFAULT_STACK_PGS 5
enum vm_guest_mode {
VM_MODE_P52V48_4K,
VM_MODE_P52V48_16K,
VM_MODE_P52V48_64K,
VM_MODE_P48V48_4K,
VM_MODE_P48V48_16K,
VM_MODE_P48V48_64K,
VM_MODE_P40V48_4K,
VM_MODE_P40V48_16K,
VM_MODE_P40V48_64K,
VM_MODE_PXXV48_4K, /* For 48bits VA but ANY bits PA */
VM_MODE_P47V64_4K,
VM_MODE_P44V64_4K,
VM_MODE_P36V48_4K,
VM_MODE_P36V48_16K,
VM_MODE_P36V48_64K,
VM_MODE_P36V47_16K,
NUM_VM_MODES,
};
struct vm_shape {
uint32_t type;
uint8_t mode;
uint8_t pad0;
uint16_t pad1;
};
kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t));
#define VM_TYPE_DEFAULT 0
#define VM_SHAPE(__mode) \
({ \
struct vm_shape shape = { \
.mode = (__mode), \
.type = VM_TYPE_DEFAULT \
}; \
\
shape; \
})
#if defined(__aarch64__)
extern enum vm_guest_mode vm_mode_default;
#define VM_MODE_DEFAULT vm_mode_default
#define MIN_PAGE_SHIFT 12U
#define ptes_per_page(page_size) ((page_size) / 8)
#elif defined(__x86_64__)
#define VM_MODE_DEFAULT VM_MODE_PXXV48_4K
#define MIN_PAGE_SHIFT 12U
#define ptes_per_page(page_size) ((page_size) / 8)
#elif defined(__s390x__)
#define VM_MODE_DEFAULT VM_MODE_P44V64_4K
#define MIN_PAGE_SHIFT 12U
#define ptes_per_page(page_size) ((page_size) / 16)
#elif defined(__riscv)
#if __riscv_xlen == 32
#error "RISC-V 32-bit kvm selftests not supported"
#endif
#define VM_MODE_DEFAULT VM_MODE_P40V48_4K
#define MIN_PAGE_SHIFT 12U
#define ptes_per_page(page_size) ((page_size) / 8)
#endif
#define VM_SHAPE_DEFAULT VM_SHAPE(VM_MODE_DEFAULT)
#define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT)
#define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE)
struct vm_guest_mode_params {
unsigned int pa_bits;
unsigned int va_bits;
unsigned int page_size;
unsigned int page_shift;
};
extern const struct vm_guest_mode_params vm_guest_mode_params[];
int open_path_or_exit(const char *path, int flags);
int open_kvm_dev_path_or_exit(void);
bool get_kvm_param_bool(const char *param);
bool get_kvm_intel_param_bool(const char *param);
bool get_kvm_amd_param_bool(const char *param);
int get_kvm_param_integer(const char *param);
int get_kvm_intel_param_integer(const char *param);
int get_kvm_amd_param_integer(const char *param);
unsigned int kvm_check_cap(long cap);
static inline bool kvm_has_cap(long cap)
{
return kvm_check_cap(cap);
}
#define __KVM_SYSCALL_ERROR(_name, _ret) \
"%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno)
/*
* Use the "inner", double-underscore macro when reporting errors from within
* other macros so that the name of ioctl() and not its literal numeric value
* is printed on error. The "outer" macro is strongly preferred when reporting
* errors "directly", i.e. without an additional layer of macros, as it reduces
* the probability of passing in the wrong string.
*/
#define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret)
#define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret)
#define kvm_do_ioctl(fd, cmd, arg) \
({ \
kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \
ioctl(fd, cmd, arg); \
})
#define __kvm_ioctl(kvm_fd, cmd, arg) \
kvm_do_ioctl(kvm_fd, cmd, arg)
#define kvm_ioctl(kvm_fd, cmd, arg) \
({ \
int ret = __kvm_ioctl(kvm_fd, cmd, arg); \
\
TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret)); \
})
static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { }
#define __vm_ioctl(vm, cmd, arg) \
({ \
static_assert_is_vm(vm); \
kvm_do_ioctl((vm)->fd, cmd, arg); \
})
/*
* Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if
* the ioctl() failed because KVM killed/bugged the VM. To detect a dead VM,
* probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before
* selftests existed and (b) should never outright fail, i.e. is supposed to
* return 0 or 1. If KVM kills a VM, KVM returns -EIO for all ioctl()s for the
* VM and its vCPUs, including KVM_CHECK_EXTENSION.
*/
#define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm) \
do { \
int __errno = errno; \
\
static_assert_is_vm(vm); \
\
if (cond) \
break; \
\
if (errno == EIO && \
__vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) { \
TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO"); \
TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues"); \
} \
errno = __errno; \
TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret)); \
} while (0)
#define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm) \
__TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm)
#define vm_ioctl(vm, cmd, arg) \
({ \
int ret = __vm_ioctl(vm, cmd, arg); \
\
__TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm); \
})
static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { }
#define __vcpu_ioctl(vcpu, cmd, arg) \
({ \
static_assert_is_vcpu(vcpu); \
kvm_do_ioctl((vcpu)->fd, cmd, arg); \
})
#define vcpu_ioctl(vcpu, cmd, arg) \
({ \
int ret = __vcpu_ioctl(vcpu, cmd, arg); \
\
__TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm); \
})
/*
* Looks up and returns the value corresponding to the capability
* (KVM_CAP_*) given by cap.
*/
static inline int vm_check_cap(struct kvm_vm *vm, long cap)
{
int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap);
TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm);
return ret;
}
static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
{
struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
}
static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
{
struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
}
static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa,
uint64_t size, uint64_t attributes)
{
struct kvm_memory_attributes attr = {
.attributes = attributes,
.address = gpa,
.size = size,
.flags = 0,
};
/*
* KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes. These flows
* need significant enhancements to support multiple attributes.
*/
TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE,
"Update me to support multiple attributes!");
vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr);
}
static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa,
uint64_t size)
{
vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
}
static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa,
uint64_t size)
{
vm_set_memory_attributes(vm, gpa, size, 0);
}
void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size,
bool punch_hole);
static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa,
uint64_t size)
{
vm_guest_mem_fallocate(vm, gpa, size, true);
}
static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa,
uint64_t size)
{
vm_guest_mem_fallocate(vm, gpa, size, false);
}
void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size);
const char *vm_guest_mode_string(uint32_t i);
void kvm_vm_free(struct kvm_vm *vmp);
void kvm_vm_restart(struct kvm_vm *vmp);
void kvm_vm_release(struct kvm_vm *vmp);
void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename);
int kvm_memfd_alloc(size_t size, bool hugepages);
void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
{
struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args);
}
static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
uint64_t first_page, uint32_t num_pages)
{
struct kvm_clear_dirty_log args = {
.dirty_bitmap = log,
.slot = slot,
.first_page = first_page,
.num_pages = num_pages
};
vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args);
}
static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
{
return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
}
static inline void kvm_vm_register_coalesced_io(struct kvm_vm *vm,
uint64_t address,
uint64_t size, bool pio)
{
struct kvm_coalesced_mmio_zone zone = {
.addr = address,
.size = size,
.pio = pio,
};
vm_ioctl(vm, KVM_REGISTER_COALESCED_MMIO, &zone);
}
static inline void kvm_vm_unregister_coalesced_io(struct kvm_vm *vm,
uint64_t address,
uint64_t size, bool pio)
{
struct kvm_coalesced_mmio_zone zone = {
.addr = address,
.size = size,
.pio = pio,
};
vm_ioctl(vm, KVM_UNREGISTER_COALESCED_MMIO, &zone);
}
static inline int vm_get_stats_fd(struct kvm_vm *vm)
{
int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);
TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm);
return fd;
}
static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header)
{
ssize_t ret;
ret = pread(stats_fd, header, sizeof(*header), 0);
TEST_ASSERT(ret == sizeof(*header),
"Failed to read '%lu' header bytes, ret = '%ld'",
sizeof(*header), ret);
}
struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
struct kvm_stats_header *header);
static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header)
{
/*
* The base size of the descriptor is defined by KVM's ABI, but the
* size of the name field is variable, as far as KVM's ABI is
* concerned. For a given instance of KVM, the name field is the same
* size for all stats and is provided in the overall stats header.
*/
return sizeof(struct kvm_stats_desc) + header->name_size;
}
static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats,
int index,
struct kvm_stats_header *header)
{
/*
* Note, size_desc includes the size of the name field, which is
* variable. i.e. this is NOT equivalent to &stats_desc[i].
*/
return (void *)stats + index * get_stats_descriptor_size(header);
}
void read_stat_data(int stats_fd, struct kvm_stats_header *header,
struct kvm_stats_desc *desc, uint64_t *data,
size_t max_elements);
void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
size_t max_elements);
static inline uint64_t vm_get_stat(struct kvm_vm *vm, const char *stat_name)
{
uint64_t data;
__vm_get_stat(vm, stat_name, &data, 1);
return data;
}
void vm_create_irqchip(struct kvm_vm *vm);
static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
uint64_t flags)
{
struct kvm_create_guest_memfd guest_memfd = {
.size = size,
.flags = flags,
};
return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
}
static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
uint64_t flags)
{
int fd = __vm_create_guest_memfd(vm, size, flags);
TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd));
return fd;
}
void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
uint64_t gpa, uint64_t size, void *hva);
int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
uint64_t gpa, uint64_t size, void *hva);
void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
uint64_t gpa, uint64_t size, void *hva,
uint32_t guest_memfd, uint64_t guest_memfd_offset);
int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
uint64_t gpa, uint64_t size, void *hva,
uint32_t guest_memfd, uint64_t guest_memfd_offset);
void vm_userspace_mem_region_add(struct kvm_vm *vm,
enum vm_mem_backing_src_type src_type,
uint64_t guest_paddr, uint32_t slot, uint64_t npages,
uint32_t flags);
void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
uint64_t guest_paddr, uint32_t slot, uint64_t npages,
uint32_t flags, int guest_memfd_fd, uint64_t guest_memfd_offset);
#ifndef vm_arch_has_protected_memory
static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm)
{
return false;
}
#endif
void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags);
void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa);
void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot);
struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
void vm_populate_vaddr_bitmap(struct kvm_vm *vm);
vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
enum kvm_mem_region_type type);
vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
vm_vaddr_t vaddr_min,
enum kvm_mem_region_type type);
vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
enum kvm_mem_region_type type);
vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm);
void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
unsigned int npages);
void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa);
void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva);
vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva);
void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa);
#ifndef vcpu_arch_put_guest
#define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0)
#endif
static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa)
{
return gpa & ~vm->gpa_tag_mask;
}
void vcpu_run(struct kvm_vcpu *vcpu);
int _vcpu_run(struct kvm_vcpu *vcpu);
static inline int __vcpu_run(struct kvm_vcpu *vcpu)
{
return __vcpu_ioctl(vcpu, KVM_RUN, NULL);
}
void vcpu_run_complete_io(struct kvm_vcpu *vcpu);
struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu);
static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap,
uint64_t arg0)
{
struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap);
}
static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *debug)
{
vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug);
}
static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state);
}
static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state);
}
static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
vcpu_ioctl(vcpu, KVM_GET_REGS, regs);
}
static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
vcpu_ioctl(vcpu, KVM_SET_REGS, regs);
}
static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs);
}
static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
}
static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
}
static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
vcpu_ioctl(vcpu, KVM_GET_FPU, fpu);
}
static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
vcpu_ioctl(vcpu, KVM_SET_FPU, fpu);
}
static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
{
struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
}
static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
{
struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
}
static inline void vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
{
struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
}
static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
{
struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
}
#ifdef __KVM_HAVE_VCPU_EVENTS
static inline void vcpu_events_get(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events);
}
static inline void vcpu_events_set(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events);
}
#endif
#ifdef __x86_64__
static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu,
struct kvm_nested_state *state)
{
vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state);
}
static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu,
struct kvm_nested_state *state)
{
return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
}
static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu,
struct kvm_nested_state *state)
{
vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
}
#endif
static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu)
{
int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL);
TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm);
return fd;
}
int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr);
static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
{
int ret = __kvm_has_device_attr(dev_fd, group, attr);
TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
}
int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val);
static inline void kvm_device_attr_get(int dev_fd, uint32_t group,
uint64_t attr, void *val)
{
int ret = __kvm_device_attr_get(dev_fd, group, attr, val);
TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret));
}
int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val);
static inline void kvm_device_attr_set(int dev_fd, uint32_t group,
uint64_t attr, void *val)
{
int ret = __kvm_device_attr_set(dev_fd, group, attr, val);
TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret));
}
static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
uint64_t attr)
{
return __kvm_has_device_attr(vcpu->fd, group, attr);
}
static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
uint64_t attr)
{
kvm_has_device_attr(vcpu->fd, group, attr);
}
static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
uint64_t attr, void *val)
{
return __kvm_device_attr_get(vcpu->fd, group, attr, val);
}
static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
uint64_t attr, void *val)
{
kvm_device_attr_get(vcpu->fd, group, attr, val);
}
static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
uint64_t attr, void *val)
{
return __kvm_device_attr_set(vcpu->fd, group, attr, val);
}
static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
uint64_t attr, void *val)
{
kvm_device_attr_set(vcpu->fd, group, attr, val);
}
int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type);
int __kvm_create_device(struct kvm_vm *vm, uint64_t type);
static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type)
{
int fd = __kvm_create_device(vm, type);
TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd));
return fd;
}
void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu);
/*
* VM VCPU Args Set
*
* Input Args:
* vm - Virtual Machine
* num - number of arguments
* ... - arguments, each of type uint64_t
*
* Output Args: None
*
* Return: None
*
* Sets the first @num input parameters for the function at @vcpu's entry point,
* per the C calling convention of the architecture, to the values given as
* variable args. Each of the variable args is expected to be of type uint64_t.
* The maximum @num can be is specific to the architecture.
*/
void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...);
void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
#define KVM_MAX_IRQ_ROUTES 4096
struct kvm_irq_routing *kvm_gsi_routing_create(void);
void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
uint32_t gsi, uint32_t pin);
int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
const char *exit_reason_str(unsigned int exit_reason);
vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
uint32_t memslot);
vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
vm_paddr_t paddr_min, uint32_t memslot,
bool protected);
vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm);
static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
vm_paddr_t paddr_min, uint32_t memslot)
{
/*
* By default, allocate memory as protected for VMs that support
* protected memory, as the majority of memory for such VMs is
* protected, i.e. using shared memory is effectively opt-in.
*/
return __vm_phy_pages_alloc(vm, num, paddr_min, memslot,
vm_arch_has_protected_memory(vm));
}
/*
* ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also
* loads the test binary into guest memory and creates an IRQ chip (x86 only).
* __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to
* calculate the amount of memory needed for per-vCPU data, e.g. stacks.
*/
struct kvm_vm *____vm_create(struct vm_shape shape);
struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
uint64_t nr_extra_pages);
static inline struct kvm_vm *vm_create_barebones(void)
{
return ____vm_create(VM_SHAPE_DEFAULT);
}
static inline struct kvm_vm *vm_create_barebones_type(unsigned long type)
{
const struct vm_shape shape = {
.mode = VM_MODE_DEFAULT,
.type = type,
};
return ____vm_create(shape);
}
static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus)
{
return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0);
}
struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
uint64_t extra_mem_pages,
void *guest_code, struct kvm_vcpu *vcpus[]);
static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus,
void *guest_code,
struct kvm_vcpu *vcpus[])
{
return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0,
guest_code, vcpus);
}
struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
struct kvm_vcpu **vcpu,
uint64_t extra_mem_pages,
void *guest_code);
/*
* Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages
* additional pages of guest memory. Returns the VM and vCPU (via out param).
*/
static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
uint64_t extra_mem_pages,
void *guest_code)
{
return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu,
extra_mem_pages, guest_code);
}
static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
void *guest_code)
{
return __vm_create_with_one_vcpu(vcpu, 0, guest_code);
}
static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape,
struct kvm_vcpu **vcpu,
void *guest_code)
{
return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code);
}
struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm);
void kvm_pin_this_task_to_pcpu(uint32_t pcpu);
void kvm_print_vcpu_pinning_help(void);
void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
int nr_vcpus);
unsigned long vm_compute_max_gfn(struct kvm_vm *vm);
unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size);
unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages);
unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages);
static inline unsigned int
vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
{
unsigned int n;
n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages));
#ifdef __s390x__
/* s390 requires 1M aligned guest sizes */
n = (n + 255) & ~255;
#endif
return n;
}
#define sync_global_to_guest(vm, g) ({ \
typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
memcpy(_p, &(g), sizeof(g)); \
})
#define sync_global_from_guest(vm, g) ({ \
typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
memcpy(&(g), _p, sizeof(g)); \
})
/*
* Write a global value, but only in the VM's (guest's) domain. Primarily used
* for "globals" that hold per-VM values (VMs always duplicate code and global
* data into their own region of physical memory), but can be used anytime it's
* undesirable to change the host's copy of the global.
*/
#define write_guest_global(vm, g, val) ({ \
typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
typeof(g) _val = val; \
\
memcpy(_p, &(_val), sizeof(g)); \
})
void assert_on_unhandled_exception(struct kvm_vcpu *vcpu);
void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu,
uint8_t indent);
static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu,
uint8_t indent)
{
vcpu_arch_dump(stream, vcpu, indent);
}
/*
* Adds a vCPU with reasonable defaults (e.g. a stack)
*
* Input Args:
* vm - Virtual Machine
* vcpu_id - The id of the VCPU to add to the VM.
*/
struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code);
static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
void *guest_code)
{
struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id);
vcpu_arch_set_entry_point(vcpu, guest_code);
return vcpu;
}
/* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */
struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id);
static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm,
uint32_t vcpu_id)
{
return vm_arch_vcpu_recreate(vm, vcpu_id);
}
void vcpu_arch_free(struct kvm_vcpu *vcpu);
void virt_arch_pgd_alloc(struct kvm_vm *vm);
static inline void virt_pgd_alloc(struct kvm_vm *vm)
{
virt_arch_pgd_alloc(vm);
}
/*
* VM Virtual Page Map
*
* Input Args:
* vm - Virtual Machine
* vaddr - VM Virtual Address
* paddr - VM Physical Address
* memslot - Memory region slot for new virtual translation tables
*
* Output Args: None
*
* Return: None
*
* Within @vm, creates a virtual translation for the page starting
* at @vaddr to the page starting at @paddr.
*/
void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr);
static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
{
virt_arch_pg_map(vm, vaddr, paddr);
}
/*
* Address Guest Virtual to Guest Physical
*
* Input Args:
* vm - Virtual Machine
* gva - VM virtual address
*
* Output Args: None
*
* Return:
* Equivalent VM physical address
*
* Returns the VM physical address of the translated VM virtual
* address given by @gva.
*/
vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva);
static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
{
return addr_arch_gva2gpa(vm, gva);
}
/*
* Virtual Translation Tables Dump
*
* Input Args:
* stream - Output FILE stream
* vm - Virtual Machine
* indent - Left margin indent amount
*
* Output Args: None
*
* Return: None
*
* Dumps to the FILE stream given by @stream, the contents of all the
* virtual translation tables for the VM given by @vm.
*/
void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
{
virt_arch_dump(stream, vm, indent);
}
static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm)
{
return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0);
}
/*
* Arch hook that is invoked via a constructor, i.e. before exeucting main(),
* to allow for arch-specific setup that is common to all tests, e.g. computing
* the default guest "mode".
*/
void kvm_selftest_arch_init(void);
void kvm_arch_vm_post_create(struct kvm_vm *vm);
bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr);
uint32_t guest_get_vcpuid(void);
#endif /* SELFTEST_KVM_UTIL_H */