// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2023, Tencent, Inc.
*/
#include <x86intrin.h>
#include "pmu.h"
#include "processor.h"
/* Number of iterations of the loop for the guest measurement payload. */
#define NUM_LOOPS 10
/* Each iteration of the loop retires one branch instruction. */
#define NUM_BRANCH_INSNS_RETIRED (NUM_LOOPS)
/*
* Number of instructions in each loop. 1 CLFLUSH/CLFLUSHOPT/NOP, 1 MFENCE,
* 1 LOOP.
*/
#define NUM_INSNS_PER_LOOP 3
/*
* Number of "extra" instructions that will be counted, i.e. the number of
* instructions that are needed to set up the loop and then disable the
* counter. 2 MOV, 2 XOR, 1 WRMSR.
*/
#define NUM_EXTRA_INSNS 5
/* Total number of instructions retired within the measured section. */
#define NUM_INSNS_RETIRED (NUM_LOOPS * NUM_INSNS_PER_LOOP + NUM_EXTRA_INSNS)
static uint8_t kvm_pmu_version;
static bool kvm_has_perf_caps;
static struct kvm_vm *pmu_vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
void *guest_code,
uint8_t pmu_version,
uint64_t perf_capabilities)
{
struct kvm_vm *vm;
vm = vm_create_with_one_vcpu(vcpu, guest_code);
sync_global_to_guest(vm, kvm_pmu_version);
/*
* Set PERF_CAPABILITIES before PMU version as KVM disallows enabling
* features via PERF_CAPABILITIES if the guest doesn't have a vPMU.
*/
if (kvm_has_perf_caps)
vcpu_set_msr(*vcpu, MSR_IA32_PERF_CAPABILITIES, perf_capabilities);
vcpu_set_cpuid_property(*vcpu, X86_PROPERTY_PMU_VERSION, pmu_version);
return vm;
}
static void run_vcpu(struct kvm_vcpu *vcpu)
{
struct ucall uc;
do {
vcpu_run(vcpu);
switch (get_ucall(vcpu, &uc)) {
case UCALL_SYNC:
break;
case UCALL_ABORT:
REPORT_GUEST_ASSERT(uc);
break;
case UCALL_PRINTF:
pr_info("%s", uc.buffer);
break;
case UCALL_DONE:
break;
default:
TEST_FAIL("Unexpected ucall: %lu", uc.cmd);
}
} while (uc.cmd != UCALL_DONE);
}
static uint8_t guest_get_pmu_version(void)
{
/*
* Return the effective PMU version, i.e. the minimum between what KVM
* supports and what is enumerated to the guest. The host deliberately
* advertises a PMU version to the guest beyond what is actually
* supported by KVM to verify KVM doesn't freak out and do something
* bizarre with an architecturally valid, but unsupported, version.
*/
return min_t(uint8_t, kvm_pmu_version, this_cpu_property(X86_PROPERTY_PMU_VERSION));
}
/*
* If an architectural event is supported and guaranteed to generate at least
* one "hit, assert that its count is non-zero. If an event isn't supported or
* the test can't guarantee the associated action will occur, then all bets are
* off regarding the count, i.e. no checks can be done.
*
* Sanity check that in all cases, the event doesn't count when it's disabled,
* and that KVM correctly emulates the write of an arbitrary value.
*/
static void guest_assert_event_count(uint8_t idx,
struct kvm_x86_pmu_feature event,
uint32_t pmc, uint32_t pmc_msr)
{
uint64_t count;
count = _rdpmc(pmc);
if (!this_pmu_has(event))
goto sanity_checks;
switch (idx) {
case INTEL_ARCH_INSTRUCTIONS_RETIRED_INDEX:
GUEST_ASSERT_EQ(count, NUM_INSNS_RETIRED);
break;
case INTEL_ARCH_BRANCHES_RETIRED_INDEX:
GUEST_ASSERT_EQ(count, NUM_BRANCH_INSNS_RETIRED);
break;
case INTEL_ARCH_LLC_REFERENCES_INDEX:
case INTEL_ARCH_LLC_MISSES_INDEX:
if (!this_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
!this_cpu_has(X86_FEATURE_CLFLUSH))
break;
fallthrough;
case INTEL_ARCH_CPU_CYCLES_INDEX:
case INTEL_ARCH_REFERENCE_CYCLES_INDEX:
GUEST_ASSERT_NE(count, 0);
break;
case INTEL_ARCH_TOPDOWN_SLOTS_INDEX:
GUEST_ASSERT(count >= NUM_INSNS_RETIRED);
break;
default:
break;
}
sanity_checks:
__asm__ __volatile__("loop ." : "+c"((int){NUM_LOOPS}));
GUEST_ASSERT_EQ(_rdpmc(pmc), count);
wrmsr(pmc_msr, 0xdead);
GUEST_ASSERT_EQ(_rdpmc(pmc), 0xdead);
}
/*
* Enable and disable the PMC in a monolithic asm blob to ensure that the
* compiler can't insert _any_ code into the measured sequence. Note, ECX
* doesn't need to be clobbered as the input value, @pmc_msr, is restored
* before the end of the sequence.
*
* If CLFUSH{,OPT} is supported, flush the cacheline containing (at least) the
* CLFUSH{,OPT} instruction on each loop iteration to force LLC references and
* misses, i.e. to allow testing that those events actually count.
*
* If forced emulation is enabled (and specified), force emulation on a subset
* of the measured code to verify that KVM correctly emulates instructions and
* branches retired events in conjunction with hardware also counting said
* events.
*/
#define GUEST_MEASURE_EVENT(_msr, _value, clflush, FEP) \
do { \
__asm__ __volatile__("wrmsr\n\t" \
" mov $" __stringify(NUM_LOOPS) ", %%ecx\n\t" \
"1:\n\t" \
clflush "\n\t" \
"mfence\n\t" \
FEP "loop 1b\n\t" \
FEP "mov %%edi, %%ecx\n\t" \
FEP "xor %%eax, %%eax\n\t" \
FEP "xor %%edx, %%edx\n\t" \
"wrmsr\n\t" \
:: "a"((uint32_t)_value), "d"(_value >> 32), \
"c"(_msr), "D"(_msr) \
); \
} while (0)
#define GUEST_TEST_EVENT(_idx, _event, _pmc, _pmc_msr, _ctrl_msr, _value, FEP) \
do { \
wrmsr(pmc_msr, 0); \
\
if (this_cpu_has(X86_FEATURE_CLFLUSHOPT)) \
GUEST_MEASURE_EVENT(_ctrl_msr, _value, "clflushopt .", FEP); \
else if (this_cpu_has(X86_FEATURE_CLFLUSH)) \
GUEST_MEASURE_EVENT(_ctrl_msr, _value, "clflush .", FEP); \
else \
GUEST_MEASURE_EVENT(_ctrl_msr, _value, "nop", FEP); \
\
guest_assert_event_count(_idx, _event, _pmc, _pmc_msr); \
} while (0)
static void __guest_test_arch_event(uint8_t idx, struct kvm_x86_pmu_feature event,
uint32_t pmc, uint32_t pmc_msr,
uint32_t ctrl_msr, uint64_t ctrl_msr_value)
{
GUEST_TEST_EVENT(idx, event, pmc, pmc_msr, ctrl_msr, ctrl_msr_value, "");
if (is_forced_emulation_enabled)
GUEST_TEST_EVENT(idx, event, pmc, pmc_msr, ctrl_msr, ctrl_msr_value, KVM_FEP);
}
#define X86_PMU_FEATURE_NULL \
({ \
struct kvm_x86_pmu_feature feature = {}; \
\
feature; \
})
static bool pmu_is_null_feature(struct kvm_x86_pmu_feature event)
{
return !(*(u64 *)&event);
}
static void guest_test_arch_event(uint8_t idx)
{
const struct {
struct kvm_x86_pmu_feature gp_event;
struct kvm_x86_pmu_feature fixed_event;
} intel_event_to_feature[] = {
[INTEL_ARCH_CPU_CYCLES_INDEX] = { X86_PMU_FEATURE_CPU_CYCLES, X86_PMU_FEATURE_CPU_CYCLES_FIXED },
[INTEL_ARCH_INSTRUCTIONS_RETIRED_INDEX] = { X86_PMU_FEATURE_INSNS_RETIRED, X86_PMU_FEATURE_INSNS_RETIRED_FIXED },
/*
* Note, the fixed counter for reference cycles is NOT the same
* as the general purpose architectural event. The fixed counter
* explicitly counts at the same frequency as the TSC, whereas
* the GP event counts at a fixed, but uarch specific, frequency.
* Bundle them here for simplicity.
*/
[INTEL_ARCH_REFERENCE_CYCLES_INDEX] = { X86_PMU_FEATURE_REFERENCE_CYCLES, X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED },
[INTEL_ARCH_LLC_REFERENCES_INDEX] = { X86_PMU_FEATURE_LLC_REFERENCES, X86_PMU_FEATURE_NULL },
[INTEL_ARCH_LLC_MISSES_INDEX] = { X86_PMU_FEATURE_LLC_MISSES, X86_PMU_FEATURE_NULL },
[INTEL_ARCH_BRANCHES_RETIRED_INDEX] = { X86_PMU_FEATURE_BRANCH_INSNS_RETIRED, X86_PMU_FEATURE_NULL },
[INTEL_ARCH_BRANCHES_MISPREDICTED_INDEX] = { X86_PMU_FEATURE_BRANCHES_MISPREDICTED, X86_PMU_FEATURE_NULL },
[INTEL_ARCH_TOPDOWN_SLOTS_INDEX] = { X86_PMU_FEATURE_TOPDOWN_SLOTS, X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED },
};
uint32_t nr_gp_counters = this_cpu_property(X86_PROPERTY_PMU_NR_GP_COUNTERS);
uint32_t pmu_version = guest_get_pmu_version();
/* PERF_GLOBAL_CTRL exists only for Architectural PMU Version 2+. */
bool guest_has_perf_global_ctrl = pmu_version >= 2;
struct kvm_x86_pmu_feature gp_event, fixed_event;
uint32_t base_pmc_msr;
unsigned int i;
/* The host side shouldn't invoke this without a guest PMU. */
GUEST_ASSERT(pmu_version);
if (this_cpu_has(X86_FEATURE_PDCM) &&
rdmsr(MSR_IA32_PERF_CAPABILITIES) & PMU_CAP_FW_WRITES)
base_pmc_msr = MSR_IA32_PMC0;
else
base_pmc_msr = MSR_IA32_PERFCTR0;
gp_event = intel_event_to_feature[idx].gp_event;
GUEST_ASSERT_EQ(idx, gp_event.f.bit);
GUEST_ASSERT(nr_gp_counters);
for (i = 0; i < nr_gp_counters; i++) {
uint64_t eventsel = ARCH_PERFMON_EVENTSEL_OS |
ARCH_PERFMON_EVENTSEL_ENABLE |
intel_pmu_arch_events[idx];
wrmsr(MSR_P6_EVNTSEL0 + i, 0);
if (guest_has_perf_global_ctrl)
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, BIT_ULL(i));
__guest_test_arch_event(idx, gp_event, i, base_pmc_msr + i,
MSR_P6_EVNTSEL0 + i, eventsel);
}
if (!guest_has_perf_global_ctrl)
return;
fixed_event = intel_event_to_feature[idx].fixed_event;
if (pmu_is_null_feature(fixed_event) || !this_pmu_has(fixed_event))
return;
i = fixed_event.f.bit;
wrmsr(MSR_CORE_PERF_FIXED_CTR_CTRL, FIXED_PMC_CTRL(i, FIXED_PMC_KERNEL));
__guest_test_arch_event(idx, fixed_event, i | INTEL_RDPMC_FIXED,
MSR_CORE_PERF_FIXED_CTR0 + i,
MSR_CORE_PERF_GLOBAL_CTRL,
FIXED_PMC_GLOBAL_CTRL_ENABLE(i));
}
static void guest_test_arch_events(void)
{
uint8_t i;
for (i = 0; i < NR_INTEL_ARCH_EVENTS; i++)
guest_test_arch_event(i);
GUEST_DONE();
}
static void test_arch_events(uint8_t pmu_version, uint64_t perf_capabilities,
uint8_t length, uint8_t unavailable_mask)
{
struct kvm_vcpu *vcpu;
struct kvm_vm *vm;
/* Testing arch events requires a vPMU (there are no negative tests). */
if (!pmu_version)
return;
vm = pmu_vm_create_with_one_vcpu(&vcpu, guest_test_arch_events,
pmu_version, perf_capabilities);
vcpu_set_cpuid_property(vcpu, X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH,
length);
vcpu_set_cpuid_property(vcpu, X86_PROPERTY_PMU_EVENTS_MASK,
unavailable_mask);
run_vcpu(vcpu);
kvm_vm_free(vm);
}
/*
* Limit testing to MSRs that are actually defined by Intel (in the SDM). MSRs
* that aren't defined counter MSRs *probably* don't exist, but there's no
* guarantee that currently undefined MSR indices won't be used for something
* other than PMCs in the future.
*/
#define MAX_NR_GP_COUNTERS 8
#define MAX_NR_FIXED_COUNTERS 3
#define GUEST_ASSERT_PMC_MSR_ACCESS(insn, msr, expect_gp, vector) \
__GUEST_ASSERT(expect_gp ? vector == GP_VECTOR : !vector, \
"Expected %s on " #insn "(0x%x), got vector %u", \
expect_gp ? "#GP" : "no fault", msr, vector) \
#define GUEST_ASSERT_PMC_VALUE(insn, msr, val, expected) \
__GUEST_ASSERT(val == expected_val, \
"Expected " #insn "(0x%x) to yield 0x%lx, got 0x%lx", \
msr, expected_val, val);
static void guest_test_rdpmc(uint32_t rdpmc_idx, bool expect_success,
uint64_t expected_val)
{
uint8_t vector;
uint64_t val;
vector = rdpmc_safe(rdpmc_idx, &val);
GUEST_ASSERT_PMC_MSR_ACCESS(RDPMC, rdpmc_idx, !expect_success, vector);
if (expect_success)
GUEST_ASSERT_PMC_VALUE(RDPMC, rdpmc_idx, val, expected_val);
if (!is_forced_emulation_enabled)
return;
vector = rdpmc_safe_fep(rdpmc_idx, &val);
GUEST_ASSERT_PMC_MSR_ACCESS(RDPMC, rdpmc_idx, !expect_success, vector);
if (expect_success)
GUEST_ASSERT_PMC_VALUE(RDPMC, rdpmc_idx, val, expected_val);
}
static void guest_rd_wr_counters(uint32_t base_msr, uint8_t nr_possible_counters,
uint8_t nr_counters, uint32_t or_mask)
{
const bool pmu_has_fast_mode = !guest_get_pmu_version();
uint8_t i;
for (i = 0; i < nr_possible_counters; i++) {
/*
* TODO: Test a value that validates full-width writes and the
* width of the counters.
*/
const uint64_t test_val = 0xffff;
const uint32_t msr = base_msr + i;
/*
* Fixed counters are supported if the counter is less than the
* number of enumerated contiguous counters *or* the counter is
* explicitly enumerated in the supported counters mask.
*/
const bool expect_success = i < nr_counters || (or_mask & BIT(i));
/*
* KVM drops writes to MSR_P6_PERFCTR[0|1] if the counters are
* unsupported, i.e. doesn't #GP and reads back '0'.
*/
const uint64_t expected_val = expect_success ? test_val : 0;
const bool expect_gp = !expect_success && msr != MSR_P6_PERFCTR0 &&
msr != MSR_P6_PERFCTR1;
uint32_t rdpmc_idx;
uint8_t vector;
uint64_t val;
vector = wrmsr_safe(msr, test_val);
GUEST_ASSERT_PMC_MSR_ACCESS(WRMSR, msr, expect_gp, vector);
vector = rdmsr_safe(msr, &val);
GUEST_ASSERT_PMC_MSR_ACCESS(RDMSR, msr, expect_gp, vector);
/* On #GP, the result of RDMSR is undefined. */
if (!expect_gp)
GUEST_ASSERT_PMC_VALUE(RDMSR, msr, val, expected_val);
/*
* Redo the read tests with RDPMC, which has different indexing
* semantics and additional capabilities.
*/
rdpmc_idx = i;
if (base_msr == MSR_CORE_PERF_FIXED_CTR0)
rdpmc_idx |= INTEL_RDPMC_FIXED;
guest_test_rdpmc(rdpmc_idx, expect_success, expected_val);
/*
* KVM doesn't support non-architectural PMUs, i.e. it should
* impossible to have fast mode RDPMC. Verify that attempting
* to use fast RDPMC always #GPs.
*/
GUEST_ASSERT(!expect_success || !pmu_has_fast_mode);
rdpmc_idx |= INTEL_RDPMC_FAST;
guest_test_rdpmc(rdpmc_idx, false, -1ull);
vector = wrmsr_safe(msr, 0);
GUEST_ASSERT_PMC_MSR_ACCESS(WRMSR, msr, expect_gp, vector);
}
}
static void guest_test_gp_counters(void)
{
uint8_t pmu_version = guest_get_pmu_version();
uint8_t nr_gp_counters = 0;
uint32_t base_msr;
if (pmu_version)
nr_gp_counters = this_cpu_property(X86_PROPERTY_PMU_NR_GP_COUNTERS);
/*
* For v2+ PMUs, PERF_GLOBAL_CTRL's architectural post-RESET value is
* "Sets bits n-1:0 and clears the upper bits", where 'n' is the number
* of GP counters. If there are no GP counters, require KVM to leave
* PERF_GLOBAL_CTRL '0'. This edge case isn't covered by the SDM, but
* follow the spirit of the architecture and only globally enable GP
* counters, of which there are none.
*/
if (pmu_version > 1) {
uint64_t global_ctrl = rdmsr(MSR_CORE_PERF_GLOBAL_CTRL);
if (nr_gp_counters)
GUEST_ASSERT_EQ(global_ctrl, GENMASK_ULL(nr_gp_counters - 1, 0));
else
GUEST_ASSERT_EQ(global_ctrl, 0);
}
if (this_cpu_has(X86_FEATURE_PDCM) &&
rdmsr(MSR_IA32_PERF_CAPABILITIES) & PMU_CAP_FW_WRITES)
base_msr = MSR_IA32_PMC0;
else
base_msr = MSR_IA32_PERFCTR0;
guest_rd_wr_counters(base_msr, MAX_NR_GP_COUNTERS, nr_gp_counters, 0);
GUEST_DONE();
}
static void test_gp_counters(uint8_t pmu_version, uint64_t perf_capabilities,
uint8_t nr_gp_counters)
{
struct kvm_vcpu *vcpu;
struct kvm_vm *vm;
vm = pmu_vm_create_with_one_vcpu(&vcpu, guest_test_gp_counters,
pmu_version, perf_capabilities);
vcpu_set_cpuid_property(vcpu, X86_PROPERTY_PMU_NR_GP_COUNTERS,
nr_gp_counters);
run_vcpu(vcpu);
kvm_vm_free(vm);
}
static void guest_test_fixed_counters(void)
{
uint64_t supported_bitmask = 0;
uint8_t nr_fixed_counters = 0;
uint8_t i;
/* Fixed counters require Architectural vPMU Version 2+. */
if (guest_get_pmu_version() >= 2)
nr_fixed_counters = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
/*
* The supported bitmask for fixed counters was introduced in PMU
* version 5.
*/
if (guest_get_pmu_version() >= 5)
supported_bitmask = this_cpu_property(X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK);
guest_rd_wr_counters(MSR_CORE_PERF_FIXED_CTR0, MAX_NR_FIXED_COUNTERS,
nr_fixed_counters, supported_bitmask);
for (i = 0; i < MAX_NR_FIXED_COUNTERS; i++) {
uint8_t vector;
uint64_t val;
if (i >= nr_fixed_counters && !(supported_bitmask & BIT_ULL(i))) {
vector = wrmsr_safe(MSR_CORE_PERF_FIXED_CTR_CTRL,
FIXED_PMC_CTRL(i, FIXED_PMC_KERNEL));
__GUEST_ASSERT(vector == GP_VECTOR,
"Expected #GP for counter %u in FIXED_CTR_CTRL", i);
vector = wrmsr_safe(MSR_CORE_PERF_GLOBAL_CTRL,
FIXED_PMC_GLOBAL_CTRL_ENABLE(i));
__GUEST_ASSERT(vector == GP_VECTOR,
"Expected #GP for counter %u in PERF_GLOBAL_CTRL", i);
continue;
}
wrmsr(MSR_CORE_PERF_FIXED_CTR0 + i, 0);
wrmsr(MSR_CORE_PERF_FIXED_CTR_CTRL, FIXED_PMC_CTRL(i, FIXED_PMC_KERNEL));
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, FIXED_PMC_GLOBAL_CTRL_ENABLE(i));
__asm__ __volatile__("loop ." : "+c"((int){NUM_LOOPS}));
wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0);
val = rdmsr(MSR_CORE_PERF_FIXED_CTR0 + i);
GUEST_ASSERT_NE(val, 0);
}
GUEST_DONE();
}
static void test_fixed_counters(uint8_t pmu_version, uint64_t perf_capabilities,
uint8_t nr_fixed_counters,
uint32_t supported_bitmask)
{
struct kvm_vcpu *vcpu;
struct kvm_vm *vm;
vm = pmu_vm_create_with_one_vcpu(&vcpu, guest_test_fixed_counters,
pmu_version, perf_capabilities);
vcpu_set_cpuid_property(vcpu, X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK,
supported_bitmask);
vcpu_set_cpuid_property(vcpu, X86_PROPERTY_PMU_NR_FIXED_COUNTERS,
nr_fixed_counters);
run_vcpu(vcpu);
kvm_vm_free(vm);
}
static void test_intel_counters(void)
{
uint8_t nr_arch_events = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
uint8_t nr_fixed_counters = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
uint8_t nr_gp_counters = kvm_cpu_property(X86_PROPERTY_PMU_NR_GP_COUNTERS);
uint8_t pmu_version = kvm_cpu_property(X86_PROPERTY_PMU_VERSION);
unsigned int i;
uint8_t v, j;
uint32_t k;
const uint64_t perf_caps[] = {
0,
PMU_CAP_FW_WRITES,
};
/*
* Test up to PMU v5, which is the current maximum version defined by
* Intel, i.e. is the last version that is guaranteed to be backwards
* compatible with KVM's existing behavior.
*/
uint8_t max_pmu_version = max_t(typeof(pmu_version), pmu_version, 5);
/*
* Detect the existence of events that aren't supported by selftests.
* This will (obviously) fail any time the kernel adds support for a
* new event, but it's worth paying that price to keep the test fresh.
*/
TEST_ASSERT(nr_arch_events <= NR_INTEL_ARCH_EVENTS,
"New architectural event(s) detected; please update this test (length = %u, mask = %x)",
nr_arch_events, kvm_cpu_property(X86_PROPERTY_PMU_EVENTS_MASK));
/*
* Force iterating over known arch events regardless of whether or not
* KVM/hardware supports a given event.
*/
nr_arch_events = max_t(typeof(nr_arch_events), nr_arch_events, NR_INTEL_ARCH_EVENTS);
for (v = 0; v <= max_pmu_version; v++) {
for (i = 0; i < ARRAY_SIZE(perf_caps); i++) {
if (!kvm_has_perf_caps && perf_caps[i])
continue;
pr_info("Testing arch events, PMU version %u, perf_caps = %lx\n",
v, perf_caps[i]);
/*
* To keep the total runtime reasonable, test every
* possible non-zero, non-reserved bitmap combination
* only with the native PMU version and the full bit
* vector length.
*/
if (v == pmu_version) {
for (k = 1; k < (BIT(nr_arch_events) - 1); k++)
test_arch_events(v, perf_caps[i], nr_arch_events, k);
}
/*
* Test single bits for all PMU version and lengths up
* the number of events +1 (to verify KVM doesn't do
* weird things if the guest length is greater than the
* host length). Explicitly test a mask of '0' and all
* ones i.e. all events being available and unavailable.
*/
for (j = 0; j <= nr_arch_events + 1; j++) {
test_arch_events(v, perf_caps[i], j, 0);
test_arch_events(v, perf_caps[i], j, 0xff);
for (k = 0; k < nr_arch_events; k++)
test_arch_events(v, perf_caps[i], j, BIT(k));
}
pr_info("Testing GP counters, PMU version %u, perf_caps = %lx\n",
v, perf_caps[i]);
for (j = 0; j <= nr_gp_counters; j++)
test_gp_counters(v, perf_caps[i], j);
pr_info("Testing fixed counters, PMU version %u, perf_caps = %lx\n",
v, perf_caps[i]);
for (j = 0; j <= nr_fixed_counters; j++) {
for (k = 0; k <= (BIT(nr_fixed_counters) - 1); k++)
test_fixed_counters(v, perf_caps[i], j, k);
}
}
}
}
int main(int argc, char *argv[])
{
TEST_REQUIRE(kvm_is_pmu_enabled());
TEST_REQUIRE(host_cpu_is_intel);
TEST_REQUIRE(kvm_cpu_has_p(X86_PROPERTY_PMU_VERSION));
TEST_REQUIRE(kvm_cpu_property(X86_PROPERTY_PMU_VERSION) > 0);
kvm_pmu_version = kvm_cpu_property(X86_PROPERTY_PMU_VERSION);
kvm_has_perf_caps = kvm_cpu_has(X86_FEATURE_PDCM);
test_intel_counters();
return 0;
}