// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Test for s390x KVM_S390_MEM_OP
*
* Copyright (C) 2019, Red Hat, Inc.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <pthread.h>
#include <linux/bits.h>
#include "test_util.h"
#include "kvm_util.h"
#include "kselftest.h"
#include "ucall_common.h"
#include "processor.h"
enum mop_target {
LOGICAL,
SIDA,
ABSOLUTE,
INVALID,
};
enum mop_access_mode {
READ,
WRITE,
CMPXCHG,
};
struct mop_desc {
uintptr_t gaddr;
uintptr_t gaddr_v;
uint64_t set_flags;
unsigned int f_check : 1;
unsigned int f_inject : 1;
unsigned int f_key : 1;
unsigned int _gaddr_v : 1;
unsigned int _set_flags : 1;
unsigned int _sida_offset : 1;
unsigned int _ar : 1;
uint32_t size;
enum mop_target target;
enum mop_access_mode mode;
void *buf;
uint32_t sida_offset;
void *old;
uint8_t old_value[16];
bool *cmpxchg_success;
uint8_t ar;
uint8_t key;
};
const uint8_t NO_KEY = 0xff;
static struct kvm_s390_mem_op ksmo_from_desc(struct mop_desc *desc)
{
struct kvm_s390_mem_op ksmo = {
.gaddr = (uintptr_t)desc->gaddr,
.size = desc->size,
.buf = ((uintptr_t)desc->buf),
.reserved = "ignored_ignored_ignored_ignored"
};
switch (desc->target) {
case LOGICAL:
if (desc->mode == READ)
ksmo.op = KVM_S390_MEMOP_LOGICAL_READ;
if (desc->mode == WRITE)
ksmo.op = KVM_S390_MEMOP_LOGICAL_WRITE;
break;
case SIDA:
if (desc->mode == READ)
ksmo.op = KVM_S390_MEMOP_SIDA_READ;
if (desc->mode == WRITE)
ksmo.op = KVM_S390_MEMOP_SIDA_WRITE;
break;
case ABSOLUTE:
if (desc->mode == READ)
ksmo.op = KVM_S390_MEMOP_ABSOLUTE_READ;
if (desc->mode == WRITE)
ksmo.op = KVM_S390_MEMOP_ABSOLUTE_WRITE;
if (desc->mode == CMPXCHG) {
ksmo.op = KVM_S390_MEMOP_ABSOLUTE_CMPXCHG;
ksmo.old_addr = (uint64_t)desc->old;
memcpy(desc->old_value, desc->old, desc->size);
}
break;
case INVALID:
ksmo.op = -1;
}
if (desc->f_check)
ksmo.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
if (desc->f_inject)
ksmo.flags |= KVM_S390_MEMOP_F_INJECT_EXCEPTION;
if (desc->_set_flags)
ksmo.flags = desc->set_flags;
if (desc->f_key && desc->key != NO_KEY) {
ksmo.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION;
ksmo.key = desc->key;
}
if (desc->_ar)
ksmo.ar = desc->ar;
else
ksmo.ar = 0;
if (desc->_sida_offset)
ksmo.sida_offset = desc->sida_offset;
return ksmo;
}
struct test_info {
struct kvm_vm *vm;
struct kvm_vcpu *vcpu;
};
#define PRINT_MEMOP false
static void print_memop(struct kvm_vcpu *vcpu, const struct kvm_s390_mem_op *ksmo)
{
if (!PRINT_MEMOP)
return;
if (!vcpu)
printf("vm memop(");
else
printf("vcpu memop(");
switch (ksmo->op) {
case KVM_S390_MEMOP_LOGICAL_READ:
printf("LOGICAL, READ, ");
break;
case KVM_S390_MEMOP_LOGICAL_WRITE:
printf("LOGICAL, WRITE, ");
break;
case KVM_S390_MEMOP_SIDA_READ:
printf("SIDA, READ, ");
break;
case KVM_S390_MEMOP_SIDA_WRITE:
printf("SIDA, WRITE, ");
break;
case KVM_S390_MEMOP_ABSOLUTE_READ:
printf("ABSOLUTE, READ, ");
break;
case KVM_S390_MEMOP_ABSOLUTE_WRITE:
printf("ABSOLUTE, WRITE, ");
break;
case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG:
printf("ABSOLUTE, CMPXCHG, ");
break;
}
printf("gaddr=%llu, size=%u, buf=%llu, ar=%u, key=%u, old_addr=%llx",
ksmo->gaddr, ksmo->size, ksmo->buf, ksmo->ar, ksmo->key,
ksmo->old_addr);
if (ksmo->flags & KVM_S390_MEMOP_F_CHECK_ONLY)
printf(", CHECK_ONLY");
if (ksmo->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION)
printf(", INJECT_EXCEPTION");
if (ksmo->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION)
printf(", SKEY_PROTECTION");
puts(")");
}
static int err_memop_ioctl(struct test_info info, struct kvm_s390_mem_op *ksmo,
struct mop_desc *desc)
{
struct kvm_vcpu *vcpu = info.vcpu;
if (!vcpu)
return __vm_ioctl(info.vm, KVM_S390_MEM_OP, ksmo);
else
return __vcpu_ioctl(vcpu, KVM_S390_MEM_OP, ksmo);
}
static void memop_ioctl(struct test_info info, struct kvm_s390_mem_op *ksmo,
struct mop_desc *desc)
{
int r;
r = err_memop_ioctl(info, ksmo, desc);
if (ksmo->op == KVM_S390_MEMOP_ABSOLUTE_CMPXCHG) {
if (desc->cmpxchg_success) {
int diff = memcmp(desc->old_value, desc->old, desc->size);
*desc->cmpxchg_success = !diff;
}
}
TEST_ASSERT(!r, __KVM_IOCTL_ERROR("KVM_S390_MEM_OP", r));
}
#define MEMOP(err, info_p, mop_target_p, access_mode_p, buf_p, size_p, ...) \
({ \
struct test_info __info = (info_p); \
struct mop_desc __desc = { \
.target = (mop_target_p), \
.mode = (access_mode_p), \
.buf = (buf_p), \
.size = (size_p), \
__VA_ARGS__ \
}; \
struct kvm_s390_mem_op __ksmo; \
\
if (__desc._gaddr_v) { \
if (__desc.target == ABSOLUTE) \
__desc.gaddr = addr_gva2gpa(__info.vm, __desc.gaddr_v); \
else \
__desc.gaddr = __desc.gaddr_v; \
} \
__ksmo = ksmo_from_desc(&__desc); \
print_memop(__info.vcpu, &__ksmo); \
err##memop_ioctl(__info, &__ksmo, &__desc); \
})
#define MOP(...) MEMOP(, __VA_ARGS__)
#define ERR_MOP(...) MEMOP(err_, __VA_ARGS__)
#define GADDR(a) .gaddr = ((uintptr_t)a)
#define GADDR_V(v) ._gaddr_v = 1, .gaddr_v = ((uintptr_t)v)
#define CHECK_ONLY .f_check = 1
#define SET_FLAGS(f) ._set_flags = 1, .set_flags = (f)
#define SIDA_OFFSET(o) ._sida_offset = 1, .sida_offset = (o)
#define AR(a) ._ar = 1, .ar = (a)
#define KEY(a) .f_key = 1, .key = (a)
#define INJECT .f_inject = 1
#define CMPXCHG_OLD(o) .old = (o)
#define CMPXCHG_SUCCESS(s) .cmpxchg_success = (s)
#define CHECK_N_DO(f, ...) ({ f(__VA_ARGS__, CHECK_ONLY); f(__VA_ARGS__); })
#define CR0_FETCH_PROTECTION_OVERRIDE (1UL << (63 - 38))
#define CR0_STORAGE_PROTECTION_OVERRIDE (1UL << (63 - 39))
static uint8_t __aligned(PAGE_SIZE) mem1[65536];
static uint8_t __aligned(PAGE_SIZE) mem2[65536];
struct test_default {
struct kvm_vm *kvm_vm;
struct test_info vm;
struct test_info vcpu;
struct kvm_run *run;
int size;
};
static struct test_default test_default_init(void *guest_code)
{
struct kvm_vcpu *vcpu;
struct test_default t;
t.size = min((size_t)kvm_check_cap(KVM_CAP_S390_MEM_OP), sizeof(mem1));
t.kvm_vm = vm_create_with_one_vcpu(&vcpu, guest_code);
t.vm = (struct test_info) { t.kvm_vm, NULL };
t.vcpu = (struct test_info) { t.kvm_vm, vcpu };
t.run = vcpu->run;
return t;
}
enum stage {
/* Synced state set by host, e.g. DAT */
STAGE_INITED,
/* Guest did nothing */
STAGE_IDLED,
/* Guest set storage keys (specifics up to test case) */
STAGE_SKEYS_SET,
/* Guest copied memory (locations up to test case) */
STAGE_COPIED,
/* End of guest code reached */
STAGE_DONE,
};
#define HOST_SYNC(info_p, stage) \
({ \
struct test_info __info = (info_p); \
struct kvm_vcpu *__vcpu = __info.vcpu; \
struct ucall uc; \
int __stage = (stage); \
\
vcpu_run(__vcpu); \
get_ucall(__vcpu, &uc); \
if (uc.cmd == UCALL_ABORT) { \
REPORT_GUEST_ASSERT(uc); \
} \
TEST_ASSERT_EQ(uc.cmd, UCALL_SYNC); \
TEST_ASSERT_EQ(uc.args[1], __stage); \
}) \
static void prepare_mem12(void)
{
int i;
for (i = 0; i < sizeof(mem1); i++)
mem1[i] = rand();
memset(mem2, 0xaa, sizeof(mem2));
}
#define ASSERT_MEM_EQ(p1, p2, size) \
TEST_ASSERT(!memcmp(p1, p2, size), "Memory contents do not match!")
static void default_write_read(struct test_info copy_cpu, struct test_info mop_cpu,
enum mop_target mop_target, uint32_t size, uint8_t key)
{
prepare_mem12();
CHECK_N_DO(MOP, mop_cpu, mop_target, WRITE, mem1, size,
GADDR_V(mem1), KEY(key));
HOST_SYNC(copy_cpu, STAGE_COPIED);
CHECK_N_DO(MOP, mop_cpu, mop_target, READ, mem2, size,
GADDR_V(mem2), KEY(key));
ASSERT_MEM_EQ(mem1, mem2, size);
}
static void default_read(struct test_info copy_cpu, struct test_info mop_cpu,
enum mop_target mop_target, uint32_t size, uint8_t key)
{
prepare_mem12();
CHECK_N_DO(MOP, mop_cpu, mop_target, WRITE, mem1, size, GADDR_V(mem1));
HOST_SYNC(copy_cpu, STAGE_COPIED);
CHECK_N_DO(MOP, mop_cpu, mop_target, READ, mem2, size,
GADDR_V(mem2), KEY(key));
ASSERT_MEM_EQ(mem1, mem2, size);
}
static void default_cmpxchg(struct test_default *test, uint8_t key)
{
for (int size = 1; size <= 16; size *= 2) {
for (int offset = 0; offset < 16; offset += size) {
uint8_t __aligned(16) new[16] = {};
uint8_t __aligned(16) old[16];
bool succ;
prepare_mem12();
default_write_read(test->vcpu, test->vcpu, LOGICAL, 16, NO_KEY);
memcpy(&old, mem1, 16);
MOP(test->vm, ABSOLUTE, CMPXCHG, new + offset,
size, GADDR_V(mem1 + offset),
CMPXCHG_OLD(old + offset),
CMPXCHG_SUCCESS(&succ), KEY(key));
HOST_SYNC(test->vcpu, STAGE_COPIED);
MOP(test->vm, ABSOLUTE, READ, mem2, 16, GADDR_V(mem2));
TEST_ASSERT(succ, "exchange of values should succeed");
memcpy(mem1 + offset, new + offset, size);
ASSERT_MEM_EQ(mem1, mem2, 16);
memcpy(&old, mem1, 16);
new[offset]++;
old[offset]++;
MOP(test->vm, ABSOLUTE, CMPXCHG, new + offset,
size, GADDR_V(mem1 + offset),
CMPXCHG_OLD(old + offset),
CMPXCHG_SUCCESS(&succ), KEY(key));
HOST_SYNC(test->vcpu, STAGE_COPIED);
MOP(test->vm, ABSOLUTE, READ, mem2, 16, GADDR_V(mem2));
TEST_ASSERT(!succ, "exchange of values should not succeed");
ASSERT_MEM_EQ(mem1, mem2, 16);
ASSERT_MEM_EQ(&old, mem1, 16);
}
}
}
static void guest_copy(void)
{
GUEST_SYNC(STAGE_INITED);
memcpy(&mem2, &mem1, sizeof(mem2));
GUEST_SYNC(STAGE_COPIED);
}
static void test_copy(void)
{
struct test_default t = test_default_init(guest_copy);
HOST_SYNC(t.vcpu, STAGE_INITED);
default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, NO_KEY);
kvm_vm_free(t.kvm_vm);
}
static void test_copy_access_register(void)
{
struct test_default t = test_default_init(guest_copy);
HOST_SYNC(t.vcpu, STAGE_INITED);
prepare_mem12();
t.run->psw_mask &= ~(3UL << (63 - 17));
t.run->psw_mask |= 1UL << (63 - 17); /* Enable AR mode */
/*
* Primary address space gets used if an access register
* contains zero. The host makes use of AR[1] so is a good
* candidate to ensure the guest AR (of zero) is used.
*/
CHECK_N_DO(MOP, t.vcpu, LOGICAL, WRITE, mem1, t.size,
GADDR_V(mem1), AR(1));
HOST_SYNC(t.vcpu, STAGE_COPIED);
CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, t.size,
GADDR_V(mem2), AR(1));
ASSERT_MEM_EQ(mem1, mem2, t.size);
kvm_vm_free(t.kvm_vm);
}
static void set_storage_key_range(void *addr, size_t len, uint8_t key)
{
uintptr_t _addr, abs, i;
int not_mapped = 0;
_addr = (uintptr_t)addr;
for (i = _addr & PAGE_MASK; i < _addr + len; i += PAGE_SIZE) {
abs = i;
asm volatile (
"lra %[abs], 0(0,%[abs])\n"
" jz 0f\n"
" llill %[not_mapped],1\n"
" j 1f\n"
"0: sske %[key], %[abs]\n"
"1:"
: [abs] "+&a" (abs), [not_mapped] "+r" (not_mapped)
: [key] "r" (key)
: "cc"
);
GUEST_ASSERT_EQ(not_mapped, 0);
}
}
static void guest_copy_key(void)
{
set_storage_key_range(mem1, sizeof(mem1), 0x90);
set_storage_key_range(mem2, sizeof(mem2), 0x90);
GUEST_SYNC(STAGE_SKEYS_SET);
for (;;) {
memcpy(&mem2, &mem1, sizeof(mem2));
GUEST_SYNC(STAGE_COPIED);
}
}
static void test_copy_key(void)
{
struct test_default t = test_default_init(guest_copy_key);
HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
/* vm, no key */
default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, NO_KEY);
/* vm/vcpu, machting key or key 0 */
default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 0);
default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 9);
default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, 0);
default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, 9);
/*
* There used to be different code paths for key handling depending on
* if the region crossed a page boundary.
* There currently are not, but the more tests the merrier.
*/
default_write_read(t.vcpu, t.vcpu, LOGICAL, 1, 0);
default_write_read(t.vcpu, t.vcpu, LOGICAL, 1, 9);
default_write_read(t.vcpu, t.vm, ABSOLUTE, 1, 0);
default_write_read(t.vcpu, t.vm, ABSOLUTE, 1, 9);
/* vm/vcpu, mismatching keys on read, but no fetch protection */
default_read(t.vcpu, t.vcpu, LOGICAL, t.size, 2);
default_read(t.vcpu, t.vm, ABSOLUTE, t.size, 2);
kvm_vm_free(t.kvm_vm);
}
static void test_cmpxchg_key(void)
{
struct test_default t = test_default_init(guest_copy_key);
HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
default_cmpxchg(&t, NO_KEY);
default_cmpxchg(&t, 0);
default_cmpxchg(&t, 9);
kvm_vm_free(t.kvm_vm);
}
static __uint128_t cut_to_size(int size, __uint128_t val)
{
switch (size) {
case 1:
return (uint8_t)val;
case 2:
return (uint16_t)val;
case 4:
return (uint32_t)val;
case 8:
return (uint64_t)val;
case 16:
return val;
}
GUEST_FAIL("Invalid size = %u", size);
return 0;
}
static bool popcount_eq(__uint128_t a, __uint128_t b)
{
unsigned int count_a, count_b;
count_a = __builtin_popcountl((uint64_t)(a >> 64)) +
__builtin_popcountl((uint64_t)a);
count_b = __builtin_popcountl((uint64_t)(b >> 64)) +
__builtin_popcountl((uint64_t)b);
return count_a == count_b;
}
static __uint128_t rotate(int size, __uint128_t val, int amount)
{
unsigned int bits = size * 8;
amount = (amount + bits) % bits;
val = cut_to_size(size, val);
if (!amount)
return val;
return (val << (bits - amount)) | (val >> amount);
}
const unsigned int max_block = 16;
static void choose_block(bool guest, int i, int *size, int *offset)
{
unsigned int rand;
rand = i;
if (guest) {
rand = rand * 19 + 11;
*size = 1 << ((rand % 3) + 2);
rand = rand * 19 + 11;
*offset = (rand % max_block) & ~(*size - 1);
} else {
rand = rand * 17 + 5;
*size = 1 << (rand % 5);
rand = rand * 17 + 5;
*offset = (rand % max_block) & ~(*size - 1);
}
}
static __uint128_t permutate_bits(bool guest, int i, int size, __uint128_t old)
{
unsigned int rand;
int amount;
bool swap;
rand = i;
rand = rand * 3 + 1;
if (guest)
rand = rand * 3 + 1;
swap = rand % 2 == 0;
if (swap) {
int i, j;
__uint128_t new;
uint8_t byte0, byte1;
rand = rand * 3 + 1;
i = rand % size;
rand = rand * 3 + 1;
j = rand % size;
if (i == j)
return old;
new = rotate(16, old, i * 8);
byte0 = new & 0xff;
new &= ~0xff;
new = rotate(16, new, -i * 8);
new = rotate(16, new, j * 8);
byte1 = new & 0xff;
new = (new & ~0xff) | byte0;
new = rotate(16, new, -j * 8);
new = rotate(16, new, i * 8);
new = new | byte1;
new = rotate(16, new, -i * 8);
return new;
}
rand = rand * 3 + 1;
amount = rand % (size * 8);
return rotate(size, old, amount);
}
static bool _cmpxchg(int size, void *target, __uint128_t *old_addr, __uint128_t new)
{
bool ret;
switch (size) {
case 4: {
uint32_t old = *old_addr;
asm volatile ("cs %[old],%[new],%[address]"
: [old] "+d" (old),
[address] "+Q" (*(uint32_t *)(target))
: [new] "d" ((uint32_t)new)
: "cc"
);
ret = old == (uint32_t)*old_addr;
*old_addr = old;
return ret;
}
case 8: {
uint64_t old = *old_addr;
asm volatile ("csg %[old],%[new],%[address]"
: [old] "+d" (old),
[address] "+Q" (*(uint64_t *)(target))
: [new] "d" ((uint64_t)new)
: "cc"
);
ret = old == (uint64_t)*old_addr;
*old_addr = old;
return ret;
}
case 16: {
__uint128_t old = *old_addr;
asm volatile ("cdsg %[old],%[new],%[address]"
: [old] "+d" (old),
[address] "+Q" (*(__uint128_t *)(target))
: [new] "d" (new)
: "cc"
);
ret = old == *old_addr;
*old_addr = old;
return ret;
}
}
GUEST_FAIL("Invalid size = %u", size);
return 0;
}
const unsigned int cmpxchg_iter_outer = 100, cmpxchg_iter_inner = 10000;
static void guest_cmpxchg_key(void)
{
int size, offset;
__uint128_t old, new;
set_storage_key_range(mem1, max_block, 0x10);
set_storage_key_range(mem2, max_block, 0x10);
GUEST_SYNC(STAGE_SKEYS_SET);
for (int i = 0; i < cmpxchg_iter_outer; i++) {
do {
old = 1;
} while (!_cmpxchg(16, mem1, &old, 0));
for (int j = 0; j < cmpxchg_iter_inner; j++) {
choose_block(true, i + j, &size, &offset);
do {
new = permutate_bits(true, i + j, size, old);
} while (!_cmpxchg(size, mem2 + offset, &old, new));
}
}
GUEST_SYNC(STAGE_DONE);
}
static void *run_guest(void *data)
{
struct test_info *info = data;
HOST_SYNC(*info, STAGE_DONE);
return NULL;
}
static char *quad_to_char(__uint128_t *quad, int size)
{
return ((char *)quad) + (sizeof(*quad) - size);
}
static void test_cmpxchg_key_concurrent(void)
{
struct test_default t = test_default_init(guest_cmpxchg_key);
int size, offset;
__uint128_t old, new;
bool success;
pthread_t thread;
HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
prepare_mem12();
MOP(t.vcpu, LOGICAL, WRITE, mem1, max_block, GADDR_V(mem2));
pthread_create(&thread, NULL, run_guest, &t.vcpu);
for (int i = 0; i < cmpxchg_iter_outer; i++) {
do {
old = 0;
new = 1;
MOP(t.vm, ABSOLUTE, CMPXCHG, &new,
sizeof(new), GADDR_V(mem1),
CMPXCHG_OLD(&old),
CMPXCHG_SUCCESS(&success), KEY(1));
} while (!success);
for (int j = 0; j < cmpxchg_iter_inner; j++) {
choose_block(false, i + j, &size, &offset);
do {
new = permutate_bits(false, i + j, size, old);
MOP(t.vm, ABSOLUTE, CMPXCHG, quad_to_char(&new, size),
size, GADDR_V(mem2 + offset),
CMPXCHG_OLD(quad_to_char(&old, size)),
CMPXCHG_SUCCESS(&success), KEY(1));
} while (!success);
}
}
pthread_join(thread, NULL);
MOP(t.vcpu, LOGICAL, READ, mem2, max_block, GADDR_V(mem2));
TEST_ASSERT(popcount_eq(*(__uint128_t *)mem1, *(__uint128_t *)mem2),
"Must retain number of set bits");
kvm_vm_free(t.kvm_vm);
}
static void guest_copy_key_fetch_prot(void)
{
/*
* For some reason combining the first sync with override enablement
* results in an exception when calling HOST_SYNC.
*/
GUEST_SYNC(STAGE_INITED);
/* Storage protection override applies to both store and fetch. */
set_storage_key_range(mem1, sizeof(mem1), 0x98);
set_storage_key_range(mem2, sizeof(mem2), 0x98);
GUEST_SYNC(STAGE_SKEYS_SET);
for (;;) {
memcpy(&mem2, &mem1, sizeof(mem2));
GUEST_SYNC(STAGE_COPIED);
}
}
static void test_copy_key_storage_prot_override(void)
{
struct test_default t = test_default_init(guest_copy_key_fetch_prot);
HOST_SYNC(t.vcpu, STAGE_INITED);
t.run->s.regs.crs[0] |= CR0_STORAGE_PROTECTION_OVERRIDE;
t.run->kvm_dirty_regs = KVM_SYNC_CRS;
HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
/* vcpu, mismatching keys, storage protection override in effect */
default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 2);
kvm_vm_free(t.kvm_vm);
}
static void test_copy_key_fetch_prot(void)
{
struct test_default t = test_default_init(guest_copy_key_fetch_prot);
HOST_SYNC(t.vcpu, STAGE_INITED);
HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
/* vm/vcpu, matching key, fetch protection in effect */
default_read(t.vcpu, t.vcpu, LOGICAL, t.size, 9);
default_read(t.vcpu, t.vm, ABSOLUTE, t.size, 9);
kvm_vm_free(t.kvm_vm);
}
#define ERR_PROT_MOP(...) \
({ \
int rv; \
\
rv = ERR_MOP(__VA_ARGS__); \
TEST_ASSERT(rv == 4, "Should result in protection exception"); \
})
static void guest_error_key(void)
{
GUEST_SYNC(STAGE_INITED);
set_storage_key_range(mem1, PAGE_SIZE, 0x18);
set_storage_key_range(mem1 + PAGE_SIZE, sizeof(mem1) - PAGE_SIZE, 0x98);
GUEST_SYNC(STAGE_SKEYS_SET);
GUEST_SYNC(STAGE_IDLED);
}
static void test_errors_key(void)
{
struct test_default t = test_default_init(guest_error_key);
HOST_SYNC(t.vcpu, STAGE_INITED);
HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
/* vm/vcpu, mismatching keys, fetch protection in effect */
CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2));
CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, t.size, GADDR_V(mem1), KEY(2));
CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2));
CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, t.size, GADDR_V(mem1), KEY(2));
kvm_vm_free(t.kvm_vm);
}
static void test_errors_cmpxchg_key(void)
{
struct test_default t = test_default_init(guest_copy_key_fetch_prot);
int i;
HOST_SYNC(t.vcpu, STAGE_INITED);
HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
for (i = 1; i <= 16; i *= 2) {
__uint128_t old = 0;
ERR_PROT_MOP(t.vm, ABSOLUTE, CMPXCHG, mem2, i, GADDR_V(mem2),
CMPXCHG_OLD(&old), KEY(2));
}
kvm_vm_free(t.kvm_vm);
}
static void test_termination(void)
{
struct test_default t = test_default_init(guest_error_key);
uint64_t prefix;
uint64_t teid;
uint64_t teid_mask = BIT(63 - 56) | BIT(63 - 60) | BIT(63 - 61);
uint64_t psw[2];
HOST_SYNC(t.vcpu, STAGE_INITED);
HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
/* vcpu, mismatching keys after first page */
ERR_PROT_MOP(t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), KEY(1), INJECT);
/*
* The memop injected a program exception and the test needs to check the
* Translation-Exception Identification (TEID). It is necessary to run
* the guest in order to be able to read the TEID from guest memory.
* Set the guest program new PSW, so the guest state is not clobbered.
*/
prefix = t.run->s.regs.prefix;
psw[0] = t.run->psw_mask;
psw[1] = t.run->psw_addr;
MOP(t.vm, ABSOLUTE, WRITE, psw, sizeof(psw), GADDR(prefix + 464));
HOST_SYNC(t.vcpu, STAGE_IDLED);
MOP(t.vm, ABSOLUTE, READ, &teid, sizeof(teid), GADDR(prefix + 168));
/* Bits 56, 60, 61 form a code, 0 being the only one allowing for termination */
TEST_ASSERT_EQ(teid & teid_mask, 0);
kvm_vm_free(t.kvm_vm);
}
static void test_errors_key_storage_prot_override(void)
{
struct test_default t = test_default_init(guest_copy_key_fetch_prot);
HOST_SYNC(t.vcpu, STAGE_INITED);
t.run->s.regs.crs[0] |= CR0_STORAGE_PROTECTION_OVERRIDE;
t.run->kvm_dirty_regs = KVM_SYNC_CRS;
HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
/* vm, mismatching keys, storage protection override not applicable to vm */
CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2));
CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, t.size, GADDR_V(mem2), KEY(2));
kvm_vm_free(t.kvm_vm);
}
const uint64_t last_page_addr = -PAGE_SIZE;
static void guest_copy_key_fetch_prot_override(void)
{
int i;
char *page_0 = 0;
GUEST_SYNC(STAGE_INITED);
set_storage_key_range(0, PAGE_SIZE, 0x18);
set_storage_key_range((void *)last_page_addr, PAGE_SIZE, 0x0);
asm volatile ("sske %[key],%[addr]\n" :: [addr] "r"(0L), [key] "r"(0x18) : "cc");
GUEST_SYNC(STAGE_SKEYS_SET);
for (;;) {
for (i = 0; i < PAGE_SIZE; i++)
page_0[i] = mem1[i];
GUEST_SYNC(STAGE_COPIED);
}
}
static void test_copy_key_fetch_prot_override(void)
{
struct test_default t = test_default_init(guest_copy_key_fetch_prot_override);
vm_vaddr_t guest_0_page, guest_last_page;
guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0);
guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr);
if (guest_0_page != 0 || guest_last_page != last_page_addr) {
print_skip("did not allocate guest pages at required positions");
goto out;
}
HOST_SYNC(t.vcpu, STAGE_INITED);
t.run->s.regs.crs[0] |= CR0_FETCH_PROTECTION_OVERRIDE;
t.run->kvm_dirty_regs = KVM_SYNC_CRS;
HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
/* vcpu, mismatching keys on fetch, fetch protection override applies */
prepare_mem12();
MOP(t.vcpu, LOGICAL, WRITE, mem1, PAGE_SIZE, GADDR_V(mem1));
HOST_SYNC(t.vcpu, STAGE_COPIED);
CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, 2048, GADDR_V(guest_0_page), KEY(2));
ASSERT_MEM_EQ(mem1, mem2, 2048);
/*
* vcpu, mismatching keys on fetch, fetch protection override applies,
* wraparound
*/
prepare_mem12();
MOP(t.vcpu, LOGICAL, WRITE, mem1, 2 * PAGE_SIZE, GADDR_V(guest_last_page));
HOST_SYNC(t.vcpu, STAGE_COPIED);
CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, PAGE_SIZE + 2048,
GADDR_V(guest_last_page), KEY(2));
ASSERT_MEM_EQ(mem1, mem2, 2048);
out:
kvm_vm_free(t.kvm_vm);
}
static void test_errors_key_fetch_prot_override_not_enabled(void)
{
struct test_default t = test_default_init(guest_copy_key_fetch_prot_override);
vm_vaddr_t guest_0_page, guest_last_page;
guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0);
guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr);
if (guest_0_page != 0 || guest_last_page != last_page_addr) {
print_skip("did not allocate guest pages at required positions");
goto out;
}
HOST_SYNC(t.vcpu, STAGE_INITED);
HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
/* vcpu, mismatching keys on fetch, fetch protection override not enabled */
CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, 2048, GADDR_V(0), KEY(2));
out:
kvm_vm_free(t.kvm_vm);
}
static void test_errors_key_fetch_prot_override_enabled(void)
{
struct test_default t = test_default_init(guest_copy_key_fetch_prot_override);
vm_vaddr_t guest_0_page, guest_last_page;
guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0);
guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr);
if (guest_0_page != 0 || guest_last_page != last_page_addr) {
print_skip("did not allocate guest pages at required positions");
goto out;
}
HOST_SYNC(t.vcpu, STAGE_INITED);
t.run->s.regs.crs[0] |= CR0_FETCH_PROTECTION_OVERRIDE;
t.run->kvm_dirty_regs = KVM_SYNC_CRS;
HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
/*
* vcpu, mismatching keys on fetch,
* fetch protection override does not apply because memory range exceeded
*/
CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, 2048 + 1, GADDR_V(0), KEY(2));
CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, PAGE_SIZE + 2048 + 1,
GADDR_V(guest_last_page), KEY(2));
/* vm, fetch protected override does not apply */
CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, 2048, GADDR(0), KEY(2));
CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, 2048, GADDR_V(guest_0_page), KEY(2));
out:
kvm_vm_free(t.kvm_vm);
}
static void guest_idle(void)
{
GUEST_SYNC(STAGE_INITED); /* for consistency's sake */
for (;;)
GUEST_SYNC(STAGE_IDLED);
}
static void _test_errors_common(struct test_info info, enum mop_target target, int size)
{
int rv;
/* Bad size: */
rv = ERR_MOP(info, target, WRITE, mem1, -1, GADDR_V(mem1));
TEST_ASSERT(rv == -1 && errno == E2BIG, "ioctl allows insane sizes");
/* Zero size: */
rv = ERR_MOP(info, target, WRITE, mem1, 0, GADDR_V(mem1));
TEST_ASSERT(rv == -1 && (errno == EINVAL || errno == ENOMEM),
"ioctl allows 0 as size");
/* Bad flags: */
rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR_V(mem1), SET_FLAGS(-1));
TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows all flags");
/* Bad guest address: */
rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR((void *)~0xfffUL), CHECK_ONLY);
TEST_ASSERT(rv > 0, "ioctl does not report bad guest memory address with CHECK_ONLY");
rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR((void *)~0xfffUL));
TEST_ASSERT(rv > 0, "ioctl does not report bad guest memory address on write");
/* Bad host address: */
rv = ERR_MOP(info, target, WRITE, 0, size, GADDR_V(mem1));
TEST_ASSERT(rv == -1 && errno == EFAULT,
"ioctl does not report bad host memory address");
/* Bad key: */
rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR_V(mem1), KEY(17));
TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows invalid key");
}
static void test_errors(void)
{
struct test_default t = test_default_init(guest_idle);
int rv;
HOST_SYNC(t.vcpu, STAGE_INITED);
_test_errors_common(t.vcpu, LOGICAL, t.size);
_test_errors_common(t.vm, ABSOLUTE, t.size);
/* Bad operation: */
rv = ERR_MOP(t.vcpu, INVALID, WRITE, mem1, t.size, GADDR_V(mem1));
TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows bad operations");
/* virtual addresses are not translated when passing INVALID */
rv = ERR_MOP(t.vm, INVALID, WRITE, mem1, PAGE_SIZE, GADDR(0));
TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows bad operations");
/* Bad access register: */
t.run->psw_mask &= ~(3UL << (63 - 17));
t.run->psw_mask |= 1UL << (63 - 17); /* Enable AR mode */
HOST_SYNC(t.vcpu, STAGE_IDLED); /* To sync new state to SIE block */
rv = ERR_MOP(t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), AR(17));
TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows ARs > 15");
t.run->psw_mask &= ~(3UL << (63 - 17)); /* Disable AR mode */
HOST_SYNC(t.vcpu, STAGE_IDLED); /* Run to sync new state */
/* Check that the SIDA calls are rejected for non-protected guests */
rv = ERR_MOP(t.vcpu, SIDA, READ, mem1, 8, GADDR(0), SIDA_OFFSET(0x1c0));
TEST_ASSERT(rv == -1 && errno == EINVAL,
"ioctl does not reject SIDA_READ in non-protected mode");
rv = ERR_MOP(t.vcpu, SIDA, WRITE, mem1, 8, GADDR(0), SIDA_OFFSET(0x1c0));
TEST_ASSERT(rv == -1 && errno == EINVAL,
"ioctl does not reject SIDA_WRITE in non-protected mode");
kvm_vm_free(t.kvm_vm);
}
static void test_errors_cmpxchg(void)
{
struct test_default t = test_default_init(guest_idle);
__uint128_t old;
int rv, i, power = 1;
HOST_SYNC(t.vcpu, STAGE_INITED);
for (i = 0; i < 32; i++) {
if (i == power) {
power *= 2;
continue;
}
rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR_V(mem1),
CMPXCHG_OLD(&old));
TEST_ASSERT(rv == -1 && errno == EINVAL,
"ioctl allows bad size for cmpxchg");
}
for (i = 1; i <= 16; i *= 2) {
rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR((void *)~0xfffUL),
CMPXCHG_OLD(&old));
TEST_ASSERT(rv > 0, "ioctl allows bad guest address for cmpxchg");
}
for (i = 2; i <= 16; i *= 2) {
rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR_V(mem1 + 1),
CMPXCHG_OLD(&old));
TEST_ASSERT(rv == -1 && errno == EINVAL,
"ioctl allows bad alignment for cmpxchg");
}
kvm_vm_free(t.kvm_vm);
}
int main(int argc, char *argv[])
{
int extension_cap, idx;
TEST_REQUIRE(kvm_has_cap(KVM_CAP_S390_MEM_OP));
extension_cap = kvm_check_cap(KVM_CAP_S390_MEM_OP_EXTENSION);
struct testdef {
const char *name;
void (*test)(void);
bool requirements_met;
} testlist[] = {
{
.name = "simple copy",
.test = test_copy,
.requirements_met = true,
},
{
.name = "generic error checks",
.test = test_errors,
.requirements_met = true,
},
{
.name = "copy with storage keys",
.test = test_copy_key,
.requirements_met = extension_cap > 0,
},
{
.name = "cmpxchg with storage keys",
.test = test_cmpxchg_key,
.requirements_met = extension_cap & 0x2,
},
{
.name = "concurrently cmpxchg with storage keys",
.test = test_cmpxchg_key_concurrent,
.requirements_met = extension_cap & 0x2,
},
{
.name = "copy with key storage protection override",
.test = test_copy_key_storage_prot_override,
.requirements_met = extension_cap > 0,
},
{
.name = "copy with key fetch protection",
.test = test_copy_key_fetch_prot,
.requirements_met = extension_cap > 0,
},
{
.name = "copy with key fetch protection override",
.test = test_copy_key_fetch_prot_override,
.requirements_met = extension_cap > 0,
},
{
.name = "copy with access register mode",
.test = test_copy_access_register,
.requirements_met = true,
},
{
.name = "error checks with key",
.test = test_errors_key,
.requirements_met = extension_cap > 0,
},
{
.name = "error checks for cmpxchg with key",
.test = test_errors_cmpxchg_key,
.requirements_met = extension_cap & 0x2,
},
{
.name = "error checks for cmpxchg",
.test = test_errors_cmpxchg,
.requirements_met = extension_cap & 0x2,
},
{
.name = "termination",
.test = test_termination,
.requirements_met = extension_cap > 0,
},
{
.name = "error checks with key storage protection override",
.test = test_errors_key_storage_prot_override,
.requirements_met = extension_cap > 0,
},
{
.name = "error checks without key fetch prot override",
.test = test_errors_key_fetch_prot_override_not_enabled,
.requirements_met = extension_cap > 0,
},
{
.name = "error checks with key fetch prot override",
.test = test_errors_key_fetch_prot_override_enabled,
.requirements_met = extension_cap > 0,
},
};
ksft_print_header();
ksft_set_plan(ARRAY_SIZE(testlist));
for (idx = 0; idx < ARRAY_SIZE(testlist); idx++) {
if (testlist[idx].requirements_met) {
testlist[idx].test();
ksft_test_result_pass("%s\n", testlist[idx].name);
} else {
ksft_test_result_skip("%s - requirements not met (kernel has extension cap %#x)\n",
testlist[idx].name, extension_cap);
}
}
ksft_finished(); /* Print results and exit() accordingly */
}