// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2011-2017, Red Hat Inc, Arnaldo Carvalho de Melo <[email protected]>
*
* Parts came from evlist.c builtin-{top,stat,record}.c, see those files for further
* copyright notes.
*/
#include <sys/mman.h>
#include <inttypes.h>
#include <asm/bug.h>
#include <linux/zalloc.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h> // sysconf()
#include <perf/mmap.h>
#ifdef HAVE_LIBNUMA_SUPPORT
#include <numaif.h>
#endif
#include "cpumap.h"
#include "debug.h"
#include "event.h"
#include "mmap.h"
#include "../perf.h"
#include <internal/lib.h> /* page_size */
#include <linux/bitmap.h>
#define MASK_SIZE 1023
void mmap_cpu_mask__scnprintf(struct mmap_cpu_mask *mask, const char *tag)
{
char buf[MASK_SIZE + 1];
size_t len;
len = bitmap_scnprintf(mask->bits, mask->nbits, buf, MASK_SIZE);
buf[len] = '\0';
pr_debug("%p: %s mask[%zd]: %s\n", mask, tag, mask->nbits, buf);
}
size_t mmap__mmap_len(struct mmap *map)
{
return perf_mmap__mmap_len(&map->core);
}
int __weak auxtrace_mmap__mmap(struct auxtrace_mmap *mm __maybe_unused,
struct auxtrace_mmap_params *mp __maybe_unused,
void *userpg __maybe_unused,
int fd __maybe_unused)
{
return 0;
}
void __weak auxtrace_mmap__munmap(struct auxtrace_mmap *mm __maybe_unused)
{
}
void __weak auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp __maybe_unused,
off_t auxtrace_offset __maybe_unused,
unsigned int auxtrace_pages __maybe_unused,
bool auxtrace_overwrite __maybe_unused)
{
}
void __weak auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp __maybe_unused,
struct evlist *evlist __maybe_unused,
struct evsel *evsel __maybe_unused,
int idx __maybe_unused)
{
}
#ifdef HAVE_AIO_SUPPORT
static int perf_mmap__aio_enabled(struct mmap *map)
{
return map->aio.nr_cblocks > 0;
}
#ifdef HAVE_LIBNUMA_SUPPORT
static int perf_mmap__aio_alloc(struct mmap *map, int idx)
{
map->aio.data[idx] = mmap(NULL, mmap__mmap_len(map), PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
if (map->aio.data[idx] == MAP_FAILED) {
map->aio.data[idx] = NULL;
return -1;
}
return 0;
}
static void perf_mmap__aio_free(struct mmap *map, int idx)
{
if (map->aio.data[idx]) {
munmap(map->aio.data[idx], mmap__mmap_len(map));
map->aio.data[idx] = NULL;
}
}
static int perf_mmap__aio_bind(struct mmap *map, int idx, struct perf_cpu cpu, int affinity)
{
void *data;
size_t mmap_len;
unsigned long *node_mask;
unsigned long node_index;
int err = 0;
if (affinity != PERF_AFFINITY_SYS && cpu__max_node() > 1) {
data = map->aio.data[idx];
mmap_len = mmap__mmap_len(map);
node_index = cpu__get_node(cpu);
node_mask = bitmap_zalloc(node_index + 1);
if (!node_mask) {
pr_err("Failed to allocate node mask for mbind: error %m\n");
return -1;
}
__set_bit(node_index, node_mask);
if (mbind(data, mmap_len, MPOL_BIND, node_mask, node_index + 1 + 1, 0)) {
pr_err("Failed to bind [%p-%p] AIO buffer to node %lu: error %m\n",
data, data + mmap_len, node_index);
err = -1;
}
bitmap_free(node_mask);
}
return err;
}
#else /* !HAVE_LIBNUMA_SUPPORT */
static int perf_mmap__aio_alloc(struct mmap *map, int idx)
{
map->aio.data[idx] = malloc(mmap__mmap_len(map));
if (map->aio.data[idx] == NULL)
return -1;
return 0;
}
static void perf_mmap__aio_free(struct mmap *map, int idx)
{
zfree(&(map->aio.data[idx]));
}
static int perf_mmap__aio_bind(struct mmap *map __maybe_unused, int idx __maybe_unused,
struct perf_cpu cpu __maybe_unused, int affinity __maybe_unused)
{
return 0;
}
#endif
static int perf_mmap__aio_mmap(struct mmap *map, struct mmap_params *mp)
{
int delta_max, i, prio, ret;
map->aio.nr_cblocks = mp->nr_cblocks;
if (map->aio.nr_cblocks) {
map->aio.aiocb = calloc(map->aio.nr_cblocks, sizeof(struct aiocb *));
if (!map->aio.aiocb) {
pr_debug2("failed to allocate aiocb for data buffer, error %m\n");
return -1;
}
map->aio.cblocks = calloc(map->aio.nr_cblocks, sizeof(struct aiocb));
if (!map->aio.cblocks) {
pr_debug2("failed to allocate cblocks for data buffer, error %m\n");
return -1;
}
map->aio.data = calloc(map->aio.nr_cblocks, sizeof(void *));
if (!map->aio.data) {
pr_debug2("failed to allocate data buffer, error %m\n");
return -1;
}
delta_max = sysconf(_SC_AIO_PRIO_DELTA_MAX);
for (i = 0; i < map->aio.nr_cblocks; ++i) {
ret = perf_mmap__aio_alloc(map, i);
if (ret == -1) {
pr_debug2("failed to allocate data buffer area, error %m");
return -1;
}
ret = perf_mmap__aio_bind(map, i, map->core.cpu, mp->affinity);
if (ret == -1)
return -1;
/*
* Use cblock.aio_fildes value different from -1
* to denote started aio write operation on the
* cblock so it requires explicit record__aio_sync()
* call prior the cblock may be reused again.
*/
map->aio.cblocks[i].aio_fildes = -1;
/*
* Allocate cblocks with priority delta to have
* faster aio write system calls because queued requests
* are kept in separate per-prio queues and adding
* a new request will iterate thru shorter per-prio
* list. Blocks with numbers higher than
* _SC_AIO_PRIO_DELTA_MAX go with priority 0.
*/
prio = delta_max - i;
map->aio.cblocks[i].aio_reqprio = prio >= 0 ? prio : 0;
}
}
return 0;
}
static void perf_mmap__aio_munmap(struct mmap *map)
{
int i;
for (i = 0; i < map->aio.nr_cblocks; ++i)
perf_mmap__aio_free(map, i);
if (map->aio.data)
zfree(&map->aio.data);
zfree(&map->aio.cblocks);
zfree(&map->aio.aiocb);
}
#else /* !HAVE_AIO_SUPPORT */
static int perf_mmap__aio_enabled(struct mmap *map __maybe_unused)
{
return 0;
}
static int perf_mmap__aio_mmap(struct mmap *map __maybe_unused,
struct mmap_params *mp __maybe_unused)
{
return 0;
}
static void perf_mmap__aio_munmap(struct mmap *map __maybe_unused)
{
}
#endif
void mmap__munmap(struct mmap *map)
{
bitmap_free(map->affinity_mask.bits);
zstd_fini(&map->zstd_data);
perf_mmap__aio_munmap(map);
if (map->data != NULL) {
munmap(map->data, mmap__mmap_len(map));
map->data = NULL;
}
auxtrace_mmap__munmap(&map->auxtrace_mmap);
}
static void build_node_mask(int node, struct mmap_cpu_mask *mask)
{
int idx, nr_cpus;
struct perf_cpu cpu;
const struct perf_cpu_map *cpu_map = NULL;
cpu_map = cpu_map__online();
if (!cpu_map)
return;
nr_cpus = perf_cpu_map__nr(cpu_map);
for (idx = 0; idx < nr_cpus; idx++) {
cpu = perf_cpu_map__cpu(cpu_map, idx); /* map c index to online cpu index */
if (cpu__get_node(cpu) == node)
__set_bit(cpu.cpu, mask->bits);
}
}
static int perf_mmap__setup_affinity_mask(struct mmap *map, struct mmap_params *mp)
{
map->affinity_mask.nbits = cpu__max_cpu().cpu;
map->affinity_mask.bits = bitmap_zalloc(map->affinity_mask.nbits);
if (!map->affinity_mask.bits)
return -1;
if (mp->affinity == PERF_AFFINITY_NODE && cpu__max_node() > 1)
build_node_mask(cpu__get_node(map->core.cpu), &map->affinity_mask);
else if (mp->affinity == PERF_AFFINITY_CPU)
__set_bit(map->core.cpu.cpu, map->affinity_mask.bits);
return 0;
}
int mmap__mmap(struct mmap *map, struct mmap_params *mp, int fd, struct perf_cpu cpu)
{
if (perf_mmap__mmap(&map->core, &mp->core, fd, cpu)) {
pr_debug2("failed to mmap perf event ring buffer, error %d\n",
errno);
return -1;
}
if (mp->affinity != PERF_AFFINITY_SYS &&
perf_mmap__setup_affinity_mask(map, mp)) {
pr_debug2("failed to alloc mmap affinity mask, error %d\n",
errno);
return -1;
}
if (verbose == 2)
mmap_cpu_mask__scnprintf(&map->affinity_mask, "mmap");
map->core.flush = mp->flush;
if (zstd_init(&map->zstd_data, mp->comp_level)) {
pr_debug2("failed to init mmap compressor, error %d\n", errno);
return -1;
}
if (mp->comp_level && !perf_mmap__aio_enabled(map)) {
map->data = mmap(NULL, mmap__mmap_len(map), PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
if (map->data == MAP_FAILED) {
pr_debug2("failed to mmap data buffer, error %d\n",
errno);
map->data = NULL;
return -1;
}
}
if (auxtrace_mmap__mmap(&map->auxtrace_mmap,
&mp->auxtrace_mp, map->core.base, fd))
return -1;
return perf_mmap__aio_mmap(map, mp);
}
int perf_mmap__push(struct mmap *md, void *to,
int push(struct mmap *map, void *to, void *buf, size_t size))
{
u64 head = perf_mmap__read_head(&md->core);
unsigned char *data = md->core.base + page_size;
unsigned long size;
void *buf;
int rc = 0;
rc = perf_mmap__read_init(&md->core);
if (rc < 0)
return (rc == -EAGAIN) ? 1 : -1;
size = md->core.end - md->core.start;
if ((md->core.start & md->core.mask) + size != (md->core.end & md->core.mask)) {
buf = &data[md->core.start & md->core.mask];
size = md->core.mask + 1 - (md->core.start & md->core.mask);
md->core.start += size;
if (push(md, to, buf, size) < 0) {
rc = -1;
goto out;
}
}
buf = &data[md->core.start & md->core.mask];
size = md->core.end - md->core.start;
md->core.start += size;
if (push(md, to, buf, size) < 0) {
rc = -1;
goto out;
}
md->core.prev = head;
perf_mmap__consume(&md->core);
out:
return rc;
}
int mmap_cpu_mask__duplicate(struct mmap_cpu_mask *original, struct mmap_cpu_mask *clone)
{
clone->nbits = original->nbits;
clone->bits = bitmap_zalloc(original->nbits);
if (!clone->bits)
return -ENOMEM;
memcpy(clone->bits, original->bits, MMAP_CPU_MASK_BYTES(original));
return 0;
}