// SPDX-License-Identifier: GPL-2.0
/*
* Common time service routines for parisc machines.
* based on arch/loongarch/kernel/time.c
*
* Copyright (C) 2024 Helge Deller <[email protected]>
*/
#include <linux/clockchips.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/sched_clock.h>
#include <linux/spinlock.h>
#include <linux/rtc.h>
#include <linux/platform_device.h>
#include <asm/processor.h>
static u64 cr16_clock_freq;
static unsigned long clocktick;
int time_keeper_id; /* CPU used for timekeeping */
static DEFINE_PER_CPU(struct clock_event_device, parisc_clockevent_device);
static void parisc_event_handler(struct clock_event_device *dev)
{
}
static int parisc_timer_next_event(unsigned long delta, struct clock_event_device *evt)
{
unsigned long new_cr16;
new_cr16 = mfctl(16) + delta;
mtctl(new_cr16, 16);
return 0;
}
irqreturn_t timer_interrupt(int irq, void *data)
{
struct clock_event_device *cd;
int cpu = smp_processor_id();
cd = &per_cpu(parisc_clockevent_device, cpu);
if (clockevent_state_periodic(cd))
parisc_timer_next_event(clocktick, cd);
if (clockevent_state_periodic(cd) || clockevent_state_oneshot(cd))
cd->event_handler(cd);
return IRQ_HANDLED;
}
static int parisc_set_state_oneshot(struct clock_event_device *evt)
{
parisc_timer_next_event(clocktick, evt);
return 0;
}
static int parisc_set_state_periodic(struct clock_event_device *evt)
{
parisc_timer_next_event(clocktick, evt);
return 0;
}
static int parisc_set_state_shutdown(struct clock_event_device *evt)
{
return 0;
}
void parisc_clockevent_init(void)
{
unsigned int cpu = smp_processor_id();
unsigned long min_delta = 0x600; /* XXX */
unsigned long max_delta = (1UL << (BITS_PER_LONG - 1));
struct clock_event_device *cd;
cd = &per_cpu(parisc_clockevent_device, cpu);
cd->name = "cr16_clockevent";
cd->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_PERCPU;
cd->irq = TIMER_IRQ;
cd->rating = 320;
cd->cpumask = cpumask_of(cpu);
cd->set_state_oneshot = parisc_set_state_oneshot;
cd->set_state_oneshot_stopped = parisc_set_state_shutdown;
cd->set_state_periodic = parisc_set_state_periodic;
cd->set_state_shutdown = parisc_set_state_shutdown;
cd->set_next_event = parisc_timer_next_event;
cd->event_handler = parisc_event_handler;
clockevents_config_and_register(cd, cr16_clock_freq, min_delta, max_delta);
}
unsigned long notrace profile_pc(struct pt_regs *regs)
{
unsigned long pc = instruction_pointer(regs);
if (regs->gr[0] & PSW_N)
pc -= 4;
#ifdef CONFIG_SMP
if (in_lock_functions(pc))
pc = regs->gr[2];
#endif
return pc;
}
EXPORT_SYMBOL(profile_pc);
#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
{
struct pdc_tod tod_data;
memset(tm, 0, sizeof(*tm));
if (pdc_tod_read(&tod_data) < 0)
return -EOPNOTSUPP;
/* we treat tod_sec as unsigned, so this can work until year 2106 */
rtc_time64_to_tm(tod_data.tod_sec, tm);
return 0;
}
static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
{
time64_t secs = rtc_tm_to_time64(tm);
int ret;
/* hppa has Y2K38 problem: pdc_tod_set() takes an u32 value! */
ret = pdc_tod_set(secs, 0);
if (ret != 0) {
pr_warn("pdc_tod_set(%lld) returned error %d\n", secs, ret);
if (ret == PDC_INVALID_ARG)
return -EINVAL;
return -EOPNOTSUPP;
}
return 0;
}
static const struct rtc_class_ops rtc_generic_ops = {
.read_time = rtc_generic_get_time,
.set_time = rtc_generic_set_time,
};
static int __init rtc_init(void)
{
struct platform_device *pdev;
pdev = platform_device_register_data(NULL, "rtc-generic", -1,
&rtc_generic_ops,
sizeof(rtc_generic_ops));
return PTR_ERR_OR_ZERO(pdev);
}
device_initcall(rtc_init);
#endif
void read_persistent_clock64(struct timespec64 *ts)
{
static struct pdc_tod tod_data;
if (pdc_tod_read(&tod_data) == 0) {
ts->tv_sec = tod_data.tod_sec;
ts->tv_nsec = tod_data.tod_usec * 1000;
} else {
printk(KERN_ERR "Error reading tod clock\n");
ts->tv_sec = 0;
ts->tv_nsec = 0;
}
}
static u64 notrace read_cr16_sched_clock(void)
{
return get_cycles();
}
static u64 notrace read_cr16(struct clocksource *cs)
{
return get_cycles();
}
static struct clocksource clocksource_cr16 = {
.name = "cr16",
.rating = 300,
.read = read_cr16,
.mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
.flags = CLOCK_SOURCE_IS_CONTINUOUS |
CLOCK_SOURCE_VALID_FOR_HRES |
CLOCK_SOURCE_MUST_VERIFY |
CLOCK_SOURCE_VERIFY_PERCPU,
};
/*
* timer interrupt and sched_clock() initialization
*/
void __init time_init(void)
{
cr16_clock_freq = 100 * PAGE0->mem_10msec; /* Hz */
clocktick = cr16_clock_freq / HZ;
/* register as sched_clock source */
sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_clock_freq);
parisc_clockevent_init();
/* register at clocksource framework */
clocksource_register_hz(&clocksource_cr16, cr16_clock_freq);
}