// SPDX-License-Identifier: GPL-2.0-only
/* chmc.c: Driver for UltraSPARC-III memory controller.
*
* Copyright (C) 2001, 2007, 2008 David S. Miller ([email protected])
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <asm/spitfire.h>
#include <asm/chmctrl.h>
#include <asm/cpudata.h>
#include <asm/oplib.h>
#include <asm/prom.h>
#include <asm/head.h>
#include <asm/io.h>
#include <asm/memctrl.h>
#define DRV_MODULE_NAME "chmc"
#define PFX DRV_MODULE_NAME ": "
#define DRV_MODULE_VERSION "0.2"
MODULE_AUTHOR("David S. Miller <[email protected]>");
MODULE_DESCRIPTION("UltraSPARC-III memory controller driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
static int mc_type;
#define MC_TYPE_SAFARI 1
#define MC_TYPE_JBUS 2
static dimm_printer_t us3mc_dimm_printer;
#define CHMCTRL_NDGRPS 2
#define CHMCTRL_NDIMMS 4
#define CHMC_DIMMS_PER_MC (CHMCTRL_NDGRPS * CHMCTRL_NDIMMS)
/* OBP memory-layout property format. */
struct chmc_obp_map {
unsigned char dimm_map[144];
unsigned char pin_map[576];
};
#define DIMM_LABEL_SZ 8
struct chmc_obp_mem_layout {
/* One max 8-byte string label per DIMM. Usually
* this matches the label on the motherboard where
* that DIMM resides.
*/
char dimm_labels[CHMC_DIMMS_PER_MC][DIMM_LABEL_SZ];
/* If symmetric use map[0], else it is
* asymmetric and map[1] should be used.
*/
char symmetric;
struct chmc_obp_map map[2];
};
#define CHMCTRL_NBANKS 4
struct chmc_bank_info {
struct chmc *p;
int bank_id;
u64 raw_reg;
int valid;
int uk;
int um;
int lk;
int lm;
int interleave;
unsigned long base;
unsigned long size;
};
struct chmc {
struct list_head list;
int portid;
struct chmc_obp_mem_layout layout_prop;
int layout_size;
void __iomem *regs;
u64 timing_control1;
u64 timing_control2;
u64 timing_control3;
u64 timing_control4;
u64 memaddr_control;
struct chmc_bank_info logical_banks[CHMCTRL_NBANKS];
};
#define JBUSMC_REGS_SIZE 8
#define JB_MC_REG1_DIMM2_BANK3 0x8000000000000000UL
#define JB_MC_REG1_DIMM1_BANK1 0x4000000000000000UL
#define JB_MC_REG1_DIMM2_BANK2 0x2000000000000000UL
#define JB_MC_REG1_DIMM1_BANK0 0x1000000000000000UL
#define JB_MC_REG1_XOR 0x0000010000000000UL
#define JB_MC_REG1_ADDR_GEN_2 0x000000e000000000UL
#define JB_MC_REG1_ADDR_GEN_2_SHIFT 37
#define JB_MC_REG1_ADDR_GEN_1 0x0000001c00000000UL
#define JB_MC_REG1_ADDR_GEN_1_SHIFT 34
#define JB_MC_REG1_INTERLEAVE 0x0000000001800000UL
#define JB_MC_REG1_INTERLEAVE_SHIFT 23
#define JB_MC_REG1_DIMM2_PTYPE 0x0000000000200000UL
#define JB_MC_REG1_DIMM2_PTYPE_SHIFT 21
#define JB_MC_REG1_DIMM1_PTYPE 0x0000000000100000UL
#define JB_MC_REG1_DIMM1_PTYPE_SHIFT 20
#define PART_TYPE_X8 0
#define PART_TYPE_X4 1
#define INTERLEAVE_NONE 0
#define INTERLEAVE_SAME 1
#define INTERLEAVE_INTERNAL 2
#define INTERLEAVE_BOTH 3
#define ADDR_GEN_128MB 0
#define ADDR_GEN_256MB 1
#define ADDR_GEN_512MB 2
#define ADDR_GEN_1GB 3
#define JB_NUM_DIMM_GROUPS 2
#define JB_NUM_DIMMS_PER_GROUP 2
#define JB_NUM_DIMMS (JB_NUM_DIMM_GROUPS * JB_NUM_DIMMS_PER_GROUP)
struct jbusmc_obp_map {
unsigned char dimm_map[18];
unsigned char pin_map[144];
};
struct jbusmc_obp_mem_layout {
/* One max 8-byte string label per DIMM. Usually
* this matches the label on the motherboard where
* that DIMM resides.
*/
char dimm_labels[JB_NUM_DIMMS][DIMM_LABEL_SZ];
/* If symmetric use map[0], else it is
* asymmetric and map[1] should be used.
*/
char symmetric;
struct jbusmc_obp_map map;
char _pad;
};
struct jbusmc_dimm_group {
struct jbusmc *controller;
int index;
u64 base_addr;
u64 size;
};
struct jbusmc {
void __iomem *regs;
u64 mc_reg_1;
u32 portid;
struct jbusmc_obp_mem_layout layout;
int layout_len;
int num_dimm_groups;
struct jbusmc_dimm_group dimm_groups[JB_NUM_DIMM_GROUPS];
struct list_head list;
};
static DEFINE_SPINLOCK(mctrl_list_lock);
static LIST_HEAD(mctrl_list);
static void mc_list_add(struct list_head *list)
{
spin_lock(&mctrl_list_lock);
list_add(list, &mctrl_list);
spin_unlock(&mctrl_list_lock);
}
static void mc_list_del(struct list_head *list)
{
spin_lock(&mctrl_list_lock);
list_del_init(list);
spin_unlock(&mctrl_list_lock);
}
#define SYNDROME_MIN -1
#define SYNDROME_MAX 144
/* Covert syndrome code into the way the bits are positioned
* on the bus.
*/
static int syndrome_to_qword_code(int syndrome_code)
{
if (syndrome_code < 128)
syndrome_code += 16;
else if (syndrome_code < 128 + 9)
syndrome_code -= (128 - 7);
else if (syndrome_code < (128 + 9 + 3))
syndrome_code -= (128 + 9 - 4);
else
syndrome_code -= (128 + 9 + 3);
return syndrome_code;
}
/* All this magic has to do with how a cache line comes over the wire
* on Safari and JBUS. A 64-bit line comes over in 1 or more quadword
* cycles, each of which transmit ECC/MTAG info as well as the actual
* data.
*/
#define L2_LINE_SIZE 64
#define L2_LINE_ADDR_MSK (L2_LINE_SIZE - 1)
#define QW_PER_LINE 4
#define QW_BYTES (L2_LINE_SIZE / QW_PER_LINE)
#define QW_BITS 144
#define SAFARI_LAST_BIT (576 - 1)
#define JBUS_LAST_BIT (144 - 1)
static void get_pin_and_dimm_str(int syndrome_code, unsigned long paddr,
int *pin_p, char **dimm_str_p, void *_prop,
int base_dimm_offset)
{
int qword_code = syndrome_to_qword_code(syndrome_code);
int cache_line_offset;
int offset_inverse;
int dimm_map_index;
int map_val;
if (mc_type == MC_TYPE_JBUS) {
struct jbusmc_obp_mem_layout *p = _prop;
/* JBUS */
cache_line_offset = qword_code;
offset_inverse = (JBUS_LAST_BIT - cache_line_offset);
dimm_map_index = offset_inverse / 8;
map_val = p->map.dimm_map[dimm_map_index];
map_val = ((map_val >> ((7 - (offset_inverse & 7)))) & 1);
*dimm_str_p = p->dimm_labels[base_dimm_offset + map_val];
*pin_p = p->map.pin_map[cache_line_offset];
} else {
struct chmc_obp_mem_layout *p = _prop;
struct chmc_obp_map *mp;
int qword;
/* Safari */
if (p->symmetric)
mp = &p->map[0];
else
mp = &p->map[1];
qword = (paddr & L2_LINE_ADDR_MSK) / QW_BYTES;
cache_line_offset = ((3 - qword) * QW_BITS) + qword_code;
offset_inverse = (SAFARI_LAST_BIT - cache_line_offset);
dimm_map_index = offset_inverse >> 2;
map_val = mp->dimm_map[dimm_map_index];
map_val = ((map_val >> ((3 - (offset_inverse & 3)) << 1)) & 0x3);
*dimm_str_p = p->dimm_labels[base_dimm_offset + map_val];
*pin_p = mp->pin_map[cache_line_offset];
}
}
static struct jbusmc_dimm_group *jbusmc_find_dimm_group(unsigned long phys_addr)
{
struct jbusmc *p;
list_for_each_entry(p, &mctrl_list, list) {
int i;
for (i = 0; i < p->num_dimm_groups; i++) {
struct jbusmc_dimm_group *dp = &p->dimm_groups[i];
if (phys_addr < dp->base_addr ||
(dp->base_addr + dp->size) <= phys_addr)
continue;
return dp;
}
}
return NULL;
}
static int jbusmc_print_dimm(int syndrome_code,
unsigned long phys_addr,
char *buf, int buflen)
{
struct jbusmc_obp_mem_layout *prop;
struct jbusmc_dimm_group *dp;
struct jbusmc *p;
int first_dimm;
dp = jbusmc_find_dimm_group(phys_addr);
if (dp == NULL ||
syndrome_code < SYNDROME_MIN ||
syndrome_code > SYNDROME_MAX) {
buf[0] = '?';
buf[1] = '?';
buf[2] = '?';
buf[3] = '\0';
return 0;
}
p = dp->controller;
prop = &p->layout;
first_dimm = dp->index * JB_NUM_DIMMS_PER_GROUP;
if (syndrome_code != SYNDROME_MIN) {
char *dimm_str;
int pin;
get_pin_and_dimm_str(syndrome_code, phys_addr, &pin,
&dimm_str, prop, first_dimm);
sprintf(buf, "%s, pin %3d", dimm_str, pin);
} else {
int dimm;
/* Multi-bit error, we just dump out all the
* dimm labels associated with this dimm group.
*/
for (dimm = 0; dimm < JB_NUM_DIMMS_PER_GROUP; dimm++) {
sprintf(buf, "%s ",
prop->dimm_labels[first_dimm + dimm]);
buf += strlen(buf);
}
}
return 0;
}
static u64 jbusmc_dimm_group_size(u64 base,
const struct linux_prom64_registers *mem_regs,
int num_mem_regs)
{
u64 max = base + (8UL * 1024 * 1024 * 1024);
u64 max_seen = base;
int i;
for (i = 0; i < num_mem_regs; i++) {
const struct linux_prom64_registers *ent;
u64 this_base;
u64 this_end;
ent = &mem_regs[i];
this_base = ent->phys_addr;
this_end = this_base + ent->reg_size;
if (base < this_base || base >= this_end)
continue;
if (this_end > max)
this_end = max;
if (this_end > max_seen)
max_seen = this_end;
}
return max_seen - base;
}
static void jbusmc_construct_one_dimm_group(struct jbusmc *p,
unsigned long index,
const struct linux_prom64_registers *mem_regs,
int num_mem_regs)
{
struct jbusmc_dimm_group *dp = &p->dimm_groups[index];
dp->controller = p;
dp->index = index;
dp->base_addr = (p->portid * (64UL * 1024 * 1024 * 1024));
dp->base_addr += (index * (8UL * 1024 * 1024 * 1024));
dp->size = jbusmc_dimm_group_size(dp->base_addr, mem_regs, num_mem_regs);
}
static void jbusmc_construct_dimm_groups(struct jbusmc *p,
const struct linux_prom64_registers *mem_regs,
int num_mem_regs)
{
if (p->mc_reg_1 & JB_MC_REG1_DIMM1_BANK0) {
jbusmc_construct_one_dimm_group(p, 0, mem_regs, num_mem_regs);
p->num_dimm_groups++;
}
if (p->mc_reg_1 & JB_MC_REG1_DIMM2_BANK2) {
jbusmc_construct_one_dimm_group(p, 1, mem_regs, num_mem_regs);
p->num_dimm_groups++;
}
}
static int jbusmc_probe(struct platform_device *op)
{
const struct linux_prom64_registers *mem_regs;
struct device_node *mem_node;
int err, len, num_mem_regs;
struct jbusmc *p;
const u32 *prop;
const void *ml;
err = -ENODEV;
mem_node = of_find_node_by_path("/memory");
if (!mem_node) {
printk(KERN_ERR PFX "Cannot find /memory node.\n");
goto out;
}
mem_regs = of_get_property(mem_node, "reg", &len);
if (!mem_regs) {
printk(KERN_ERR PFX "Cannot get reg property of /memory node.\n");
goto out;
}
num_mem_regs = len / sizeof(*mem_regs);
err = -ENOMEM;
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p) {
printk(KERN_ERR PFX "Cannot allocate struct jbusmc.\n");
goto out;
}
INIT_LIST_HEAD(&p->list);
err = -ENODEV;
prop = of_get_property(op->dev.of_node, "portid", &len);
if (!prop || len != 4) {
printk(KERN_ERR PFX "Cannot find portid.\n");
goto out_free;
}
p->portid = *prop;
prop = of_get_property(op->dev.of_node, "memory-control-register-1", &len);
if (!prop || len != 8) {
printk(KERN_ERR PFX "Cannot get memory control register 1.\n");
goto out_free;
}
p->mc_reg_1 = ((u64)prop[0] << 32) | (u64) prop[1];
err = -ENOMEM;
p->regs = of_ioremap(&op->resource[0], 0, JBUSMC_REGS_SIZE, "jbusmc");
if (!p->regs) {
printk(KERN_ERR PFX "Cannot map jbusmc regs.\n");
goto out_free;
}
err = -ENODEV;
ml = of_get_property(op->dev.of_node, "memory-layout", &p->layout_len);
if (!ml) {
printk(KERN_ERR PFX "Cannot get memory layout property.\n");
goto out_iounmap;
}
if (p->layout_len > sizeof(p->layout)) {
printk(KERN_ERR PFX "Unexpected memory-layout size %d\n",
p->layout_len);
goto out_iounmap;
}
memcpy(&p->layout, ml, p->layout_len);
jbusmc_construct_dimm_groups(p, mem_regs, num_mem_regs);
mc_list_add(&p->list);
printk(KERN_INFO PFX "UltraSPARC-IIIi memory controller at %pOF\n",
op->dev.of_node);
dev_set_drvdata(&op->dev, p);
err = 0;
out:
return err;
out_iounmap:
of_iounmap(&op->resource[0], p->regs, JBUSMC_REGS_SIZE);
out_free:
kfree(p);
goto out;
}
/* Does BANK decode PHYS_ADDR? */
static int chmc_bank_match(struct chmc_bank_info *bp, unsigned long phys_addr)
{
unsigned long upper_bits = (phys_addr & PA_UPPER_BITS) >> PA_UPPER_BITS_SHIFT;
unsigned long lower_bits = (phys_addr & PA_LOWER_BITS) >> PA_LOWER_BITS_SHIFT;
/* Bank must be enabled to match. */
if (bp->valid == 0)
return 0;
/* Would BANK match upper bits? */
upper_bits ^= bp->um; /* What bits are different? */
upper_bits = ~upper_bits; /* Invert. */
upper_bits |= bp->uk; /* What bits don't matter for matching? */
upper_bits = ~upper_bits; /* Invert. */
if (upper_bits)
return 0;
/* Would BANK match lower bits? */
lower_bits ^= bp->lm; /* What bits are different? */
lower_bits = ~lower_bits; /* Invert. */
lower_bits |= bp->lk; /* What bits don't matter for matching? */
lower_bits = ~lower_bits; /* Invert. */
if (lower_bits)
return 0;
/* I always knew you'd be the one. */
return 1;
}
/* Given PHYS_ADDR, search memory controller banks for a match. */
static struct chmc_bank_info *chmc_find_bank(unsigned long phys_addr)
{
struct chmc *p;
list_for_each_entry(p, &mctrl_list, list) {
int bank_no;
for (bank_no = 0; bank_no < CHMCTRL_NBANKS; bank_no++) {
struct chmc_bank_info *bp;
bp = &p->logical_banks[bank_no];
if (chmc_bank_match(bp, phys_addr))
return bp;
}
}
return NULL;
}
/* This is the main purpose of this driver. */
static int chmc_print_dimm(int syndrome_code,
unsigned long phys_addr,
char *buf, int buflen)
{
struct chmc_bank_info *bp;
struct chmc_obp_mem_layout *prop;
int bank_in_controller, first_dimm;
bp = chmc_find_bank(phys_addr);
if (bp == NULL ||
syndrome_code < SYNDROME_MIN ||
syndrome_code > SYNDROME_MAX) {
buf[0] = '?';
buf[1] = '?';
buf[2] = '?';
buf[3] = '\0';
return 0;
}
prop = &bp->p->layout_prop;
bank_in_controller = bp->bank_id & (CHMCTRL_NBANKS - 1);
first_dimm = (bank_in_controller & (CHMCTRL_NDGRPS - 1));
first_dimm *= CHMCTRL_NDIMMS;
if (syndrome_code != SYNDROME_MIN) {
char *dimm_str;
int pin;
get_pin_and_dimm_str(syndrome_code, phys_addr, &pin,
&dimm_str, prop, first_dimm);
sprintf(buf, "%s, pin %3d", dimm_str, pin);
} else {
int dimm;
/* Multi-bit error, we just dump out all the
* dimm labels associated with this bank.
*/
for (dimm = 0; dimm < CHMCTRL_NDIMMS; dimm++) {
sprintf(buf, "%s ",
prop->dimm_labels[first_dimm + dimm]);
buf += strlen(buf);
}
}
return 0;
}
/* Accessing the registers is slightly complicated. If you want
* to get at the memory controller which is on the same processor
* the code is executing, you must use special ASI load/store else
* you go through the global mapping.
*/
static u64 chmc_read_mcreg(struct chmc *p, unsigned long offset)
{
unsigned long ret, this_cpu;
preempt_disable();
this_cpu = real_hard_smp_processor_id();
if (p->portid == this_cpu) {
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=r" (ret)
: "r" (offset), "i" (ASI_MCU_CTRL_REG));
} else {
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=r" (ret)
: "r" (p->regs + offset),
"i" (ASI_PHYS_BYPASS_EC_E));
}
preempt_enable();
return ret;
}
#if 0 /* currently unused */
static void chmc_write_mcreg(struct chmc *p, unsigned long offset, u64 val)
{
if (p->portid == smp_processor_id()) {
__asm__ __volatile__("stxa %0, [%1] %2"
: : "r" (val),
"r" (offset), "i" (ASI_MCU_CTRL_REG));
} else {
__asm__ __volatile__("ldxa %0, [%1] %2"
: : "r" (val),
"r" (p->regs + offset),
"i" (ASI_PHYS_BYPASS_EC_E));
}
}
#endif
static void chmc_interpret_one_decode_reg(struct chmc *p, int which_bank, u64 val)
{
struct chmc_bank_info *bp = &p->logical_banks[which_bank];
bp->p = p;
bp->bank_id = (CHMCTRL_NBANKS * p->portid) + which_bank;
bp->raw_reg = val;
bp->valid = (val & MEM_DECODE_VALID) >> MEM_DECODE_VALID_SHIFT;
bp->uk = (val & MEM_DECODE_UK) >> MEM_DECODE_UK_SHIFT;
bp->um = (val & MEM_DECODE_UM) >> MEM_DECODE_UM_SHIFT;
bp->lk = (val & MEM_DECODE_LK) >> MEM_DECODE_LK_SHIFT;
bp->lm = (val & MEM_DECODE_LM) >> MEM_DECODE_LM_SHIFT;
bp->base = (bp->um);
bp->base &= ~(bp->uk);
bp->base <<= PA_UPPER_BITS_SHIFT;
switch(bp->lk) {
case 0xf:
default:
bp->interleave = 1;
break;
case 0xe:
bp->interleave = 2;
break;
case 0xc:
bp->interleave = 4;
break;
case 0x8:
bp->interleave = 8;
break;
case 0x0:
bp->interleave = 16;
break;
}
/* UK[10] is reserved, and UK[11] is not set for the SDRAM
* bank size definition.
*/
bp->size = (((unsigned long)bp->uk &
((1UL << 10UL) - 1UL)) + 1UL) << PA_UPPER_BITS_SHIFT;
bp->size /= bp->interleave;
}
static void chmc_fetch_decode_regs(struct chmc *p)
{
if (p->layout_size == 0)
return;
chmc_interpret_one_decode_reg(p, 0,
chmc_read_mcreg(p, CHMCTRL_DECODE1));
chmc_interpret_one_decode_reg(p, 1,
chmc_read_mcreg(p, CHMCTRL_DECODE2));
chmc_interpret_one_decode_reg(p, 2,
chmc_read_mcreg(p, CHMCTRL_DECODE3));
chmc_interpret_one_decode_reg(p, 3,
chmc_read_mcreg(p, CHMCTRL_DECODE4));
}
static int chmc_probe(struct platform_device *op)
{
struct device_node *dp = op->dev.of_node;
unsigned long ver;
const void *pval;
int len, portid;
struct chmc *p;
int err;
err = -ENODEV;
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
if ((ver >> 32UL) == __JALAPENO_ID ||
(ver >> 32UL) == __SERRANO_ID)
goto out;
portid = of_getintprop_default(dp, "portid", -1);
if (portid == -1)
goto out;
pval = of_get_property(dp, "memory-layout", &len);
if (pval && len > sizeof(p->layout_prop)) {
printk(KERN_ERR PFX "Unexpected memory-layout property "
"size %d.\n", len);
goto out;
}
err = -ENOMEM;
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p) {
printk(KERN_ERR PFX "Could not allocate struct chmc.\n");
goto out;
}
p->portid = portid;
p->layout_size = len;
if (!pval)
p->layout_size = 0;
else
memcpy(&p->layout_prop, pval, len);
p->regs = of_ioremap(&op->resource[0], 0, 0x48, "chmc");
if (!p->regs) {
printk(KERN_ERR PFX "Could not map registers.\n");
goto out_free;
}
if (p->layout_size != 0UL) {
p->timing_control1 = chmc_read_mcreg(p, CHMCTRL_TCTRL1);
p->timing_control2 = chmc_read_mcreg(p, CHMCTRL_TCTRL2);
p->timing_control3 = chmc_read_mcreg(p, CHMCTRL_TCTRL3);
p->timing_control4 = chmc_read_mcreg(p, CHMCTRL_TCTRL4);
p->memaddr_control = chmc_read_mcreg(p, CHMCTRL_MACTRL);
}
chmc_fetch_decode_regs(p);
mc_list_add(&p->list);
printk(KERN_INFO PFX "UltraSPARC-III memory controller at %pOF [%s]\n",
dp,
(p->layout_size ? "ACTIVE" : "INACTIVE"));
dev_set_drvdata(&op->dev, p);
err = 0;
out:
return err;
out_free:
kfree(p);
goto out;
}
static int us3mc_probe(struct platform_device *op)
{
if (mc_type == MC_TYPE_SAFARI)
return chmc_probe(op);
else if (mc_type == MC_TYPE_JBUS)
return jbusmc_probe(op);
return -ENODEV;
}
static void chmc_destroy(struct platform_device *op, struct chmc *p)
{
list_del(&p->list);
of_iounmap(&op->resource[0], p->regs, 0x48);
kfree(p);
}
static void jbusmc_destroy(struct platform_device *op, struct jbusmc *p)
{
mc_list_del(&p->list);
of_iounmap(&op->resource[0], p->regs, JBUSMC_REGS_SIZE);
kfree(p);
}
static void us3mc_remove(struct platform_device *op)
{
void *p = dev_get_drvdata(&op->dev);
if (p) {
if (mc_type == MC_TYPE_SAFARI)
chmc_destroy(op, p);
else if (mc_type == MC_TYPE_JBUS)
jbusmc_destroy(op, p);
}
}
static const struct of_device_id us3mc_match[] = {
{
.name = "memory-controller",
},
{},
};
MODULE_DEVICE_TABLE(of, us3mc_match);
static struct platform_driver us3mc_driver = {
.driver = {
.name = "us3mc",
.of_match_table = us3mc_match,
},
.probe = us3mc_probe,
.remove_new = us3mc_remove,
};
static inline bool us3mc_platform(void)
{
if (tlb_type == cheetah || tlb_type == cheetah_plus)
return true;
return false;
}
static int __init us3mc_init(void)
{
unsigned long ver;
int ret;
if (!us3mc_platform())
return -ENODEV;
__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
if ((ver >> 32UL) == __JALAPENO_ID ||
(ver >> 32UL) == __SERRANO_ID) {
mc_type = MC_TYPE_JBUS;
us3mc_dimm_printer = jbusmc_print_dimm;
} else {
mc_type = MC_TYPE_SAFARI;
us3mc_dimm_printer = chmc_print_dimm;
}
ret = register_dimm_printer(us3mc_dimm_printer);
if (!ret) {
ret = platform_driver_register(&us3mc_driver);
if (ret)
unregister_dimm_printer(us3mc_dimm_printer);
}
return ret;
}
static void __exit us3mc_cleanup(void)
{
if (us3mc_platform()) {
unregister_dimm_printer(us3mc_dimm_printer);
platform_driver_unregister(&us3mc_driver);
}
}
module_init(us3mc_init);
module_exit(us3mc_cleanup);