// SPDX-License-Identifier: GPL-2.0
/* Texas Instruments ICSSG SR1.0 Ethernet Driver
*
* Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
* Copyright (c) Siemens AG, 2024
*
*/
#include <linux/etherdevice.h>
#include <linux/genalloc.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/phy.h>
#include <linux/remoteproc/pruss.h>
#include <linux/pruss_driver.h>
#include "icssg_prueth.h"
#include "icssg_mii_rt.h"
#include "../k3-cppi-desc-pool.h"
#define PRUETH_MODULE_DESCRIPTION "PRUSS ICSSG SR1.0 Ethernet driver"
/* SR1: Set buffer sizes for the pools. There are 8 internal queues
* implemented in firmware, but only 4 tx channels/threads in the Egress
* direction to firmware. Need a high priority queue for management
* messages since they shouldn't be blocked even during high traffic
* situation. So use Q0-Q2 as data queues and Q3 as management queue
* in the max case. However for ease of configuration, use the max
* data queue + 1 for management message if we are not using max
* case.
*
* Allocate 4 MTU buffers per data queue. Firmware requires
* pool sizes to be set for internal queues. Set the upper 5 queue
* pool size to min size of 128 bytes since there are only 3 tx
* data channels and management queue requires only minimum buffer.
* i.e lower queues are used by driver and highest priority queue
* from that is used for management message.
*/
static int emac_egress_buf_pool_size[] = {
PRUETH_EMAC_BUF_POOL_SIZE_SR1, PRUETH_EMAC_BUF_POOL_SIZE_SR1,
PRUETH_EMAC_BUF_POOL_SIZE_SR1, PRUETH_EMAC_BUF_POOL_MIN_SIZE_SR1,
PRUETH_EMAC_BUF_POOL_MIN_SIZE_SR1, PRUETH_EMAC_BUF_POOL_MIN_SIZE_SR1,
PRUETH_EMAC_BUF_POOL_MIN_SIZE_SR1, PRUETH_EMAC_BUF_POOL_MIN_SIZE_SR1
};
static void icssg_config_sr1(struct prueth *prueth, struct prueth_emac *emac,
int slice)
{
struct icssg_sr1_config config;
void __iomem *va;
int i, index;
memset(&config, 0, sizeof(config));
config.addr_lo = cpu_to_le32(lower_32_bits(prueth->msmcram.pa));
config.addr_hi = cpu_to_le32(upper_32_bits(prueth->msmcram.pa));
config.rx_flow_id = cpu_to_le32(emac->rx_flow_id_base); /* flow id for host port */
config.rx_mgr_flow_id = cpu_to_le32(emac->rx_mgm_flow_id_base); /* for mgm ch */
config.rand_seed = cpu_to_le32(get_random_u32());
for (i = PRUETH_EMAC_BUF_POOL_START_SR1; i < PRUETH_NUM_BUF_POOLS_SR1; i++) {
index = i - PRUETH_EMAC_BUF_POOL_START_SR1;
config.tx_buf_sz[i] = cpu_to_le32(emac_egress_buf_pool_size[index]);
}
va = prueth->shram.va + slice * ICSSG_CONFIG_OFFSET_SLICE1;
memcpy_toio(va, &config, sizeof(config));
emac->speed = SPEED_1000;
emac->duplex = DUPLEX_FULL;
}
static int emac_send_command_sr1(struct prueth_emac *emac, u32 cmd)
{
struct cppi5_host_desc_t *first_desc;
u32 pkt_len = sizeof(emac->cmd_data);
__le32 *data = emac->cmd_data;
dma_addr_t desc_dma, buf_dma;
struct prueth_tx_chn *tx_chn;
void **swdata;
int ret = 0;
u32 *epib;
netdev_dbg(emac->ndev, "Sending cmd %x\n", cmd);
/* only one command at a time allowed to firmware */
mutex_lock(&emac->cmd_lock);
data[0] = cpu_to_le32(cmd);
/* highest priority channel for management messages */
tx_chn = &emac->tx_chns[emac->tx_ch_num - 1];
/* Map the linear buffer */
buf_dma = dma_map_single(tx_chn->dma_dev, data, pkt_len, DMA_TO_DEVICE);
if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) {
netdev_err(emac->ndev, "cmd %x: failed to map cmd buffer\n", cmd);
ret = -EINVAL;
goto err_unlock;
}
first_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool);
if (!first_desc) {
netdev_err(emac->ndev, "cmd %x: failed to allocate descriptor\n", cmd);
dma_unmap_single(tx_chn->dma_dev, buf_dma, pkt_len, DMA_TO_DEVICE);
ret = -ENOMEM;
goto err_unlock;
}
cppi5_hdesc_init(first_desc, CPPI5_INFO0_HDESC_EPIB_PRESENT,
PRUETH_NAV_PS_DATA_SIZE);
cppi5_hdesc_set_pkttype(first_desc, PRUETH_PKT_TYPE_CMD);
epib = first_desc->epib;
epib[0] = 0;
epib[1] = 0;
cppi5_hdesc_attach_buf(first_desc, buf_dma, pkt_len, buf_dma, pkt_len);
swdata = cppi5_hdesc_get_swdata(first_desc);
*swdata = data;
cppi5_hdesc_set_pktlen(first_desc, pkt_len);
desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool, first_desc);
/* send command */
reinit_completion(&emac->cmd_complete);
ret = k3_udma_glue_push_tx_chn(tx_chn->tx_chn, first_desc, desc_dma);
if (ret) {
netdev_err(emac->ndev, "cmd %x: push failed: %d\n", cmd, ret);
goto free_desc;
}
ret = wait_for_completion_timeout(&emac->cmd_complete, msecs_to_jiffies(100));
if (!ret)
netdev_err(emac->ndev, "cmd %x: completion timeout\n", cmd);
mutex_unlock(&emac->cmd_lock);
return ret;
free_desc:
prueth_xmit_free(tx_chn, first_desc);
err_unlock:
mutex_unlock(&emac->cmd_lock);
return ret;
}
static void icssg_config_set_speed_sr1(struct prueth_emac *emac)
{
u32 cmd = ICSSG_PSTATE_SPEED_DUPLEX_CMD_SR1, val;
struct prueth *prueth = emac->prueth;
int slice = prueth_emac_slice(emac);
val = icssg_rgmii_get_speed(prueth->miig_rt, slice);
/* firmware expects speed settings in bit 2-1 */
val <<= 1;
cmd |= val;
val = icssg_rgmii_get_fullduplex(prueth->miig_rt, slice);
/* firmware expects full duplex settings in bit 3 */
val <<= 3;
cmd |= val;
emac_send_command_sr1(emac, cmd);
}
/* called back by PHY layer if there is change in link state of hw port*/
static void emac_adjust_link_sr1(struct net_device *ndev)
{
struct prueth_emac *emac = netdev_priv(ndev);
struct phy_device *phydev = ndev->phydev;
struct prueth *prueth = emac->prueth;
bool new_state = false;
unsigned long flags;
if (phydev->link) {
/* check the mode of operation - full/half duplex */
if (phydev->duplex != emac->duplex) {
new_state = true;
emac->duplex = phydev->duplex;
}
if (phydev->speed != emac->speed) {
new_state = true;
emac->speed = phydev->speed;
}
if (!emac->link) {
new_state = true;
emac->link = 1;
}
} else if (emac->link) {
new_state = true;
emac->link = 0;
/* f/w should support 100 & 1000 */
emac->speed = SPEED_1000;
/* half duplex may not be supported by f/w */
emac->duplex = DUPLEX_FULL;
}
if (new_state) {
phy_print_status(phydev);
/* update RGMII and MII configuration based on PHY negotiated
* values
*/
if (emac->link) {
/* Set the RGMII cfg for gig en and full duplex */
icssg_update_rgmii_cfg(prueth->miig_rt, emac);
/* update the Tx IPG based on 100M/1G speed */
spin_lock_irqsave(&emac->lock, flags);
icssg_config_ipg(emac);
spin_unlock_irqrestore(&emac->lock, flags);
icssg_config_set_speed_sr1(emac);
}
}
if (emac->link) {
/* reactivate the transmit queue */
netif_tx_wake_all_queues(ndev);
} else {
netif_tx_stop_all_queues(ndev);
prueth_cleanup_tx_ts(emac);
}
}
static int emac_phy_connect(struct prueth_emac *emac)
{
struct prueth *prueth = emac->prueth;
struct net_device *ndev = emac->ndev;
/* connect PHY */
ndev->phydev = of_phy_connect(emac->ndev, emac->phy_node,
&emac_adjust_link_sr1, 0,
emac->phy_if);
if (!ndev->phydev) {
dev_err(prueth->dev, "couldn't connect to phy %s\n",
emac->phy_node->full_name);
return -ENODEV;
}
if (!emac->half_duplex) {
dev_dbg(prueth->dev, "half duplex mode is not supported\n");
phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
}
/* Remove 100Mbits half-duplex due to RGMII misreporting connection
* as full duplex */
phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
/* remove unsupported modes */
phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Pause_BIT);
phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
if (emac->phy_if == PHY_INTERFACE_MODE_MII)
phy_set_max_speed(ndev->phydev, SPEED_100);
return 0;
}
/* get one packet from requested flow_id
*
* Returns skb pointer if packet found else NULL
* Caller must free the returned skb.
*/
static struct sk_buff *prueth_process_rx_mgm(struct prueth_emac *emac,
u32 flow_id)
{
struct prueth_rx_chn *rx_chn = &emac->rx_mgm_chn;
struct net_device *ndev = emac->ndev;
struct cppi5_host_desc_t *desc_rx;
struct sk_buff *skb, *new_skb;
dma_addr_t desc_dma, buf_dma;
u32 buf_dma_len, pkt_len;
void **swdata;
int ret;
ret = k3_udma_glue_pop_rx_chn(rx_chn->rx_chn, flow_id, &desc_dma);
if (ret) {
if (ret != -ENODATA)
netdev_err(ndev, "rx mgm pop: failed: %d\n", ret);
return NULL;
}
if (cppi5_desc_is_tdcm(desc_dma)) /* Teardown */
return NULL;
desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma);
/* Fix FW bug about incorrect PSDATA size */
if (cppi5_hdesc_get_psdata_size(desc_rx) != PRUETH_NAV_PS_DATA_SIZE) {
cppi5_hdesc_update_psdata_size(desc_rx,
PRUETH_NAV_PS_DATA_SIZE);
}
swdata = cppi5_hdesc_get_swdata(desc_rx);
skb = *swdata;
cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len);
pkt_len = cppi5_hdesc_get_pktlen(desc_rx);
dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len, DMA_FROM_DEVICE);
k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx);
new_skb = netdev_alloc_skb_ip_align(ndev, PRUETH_MAX_PKT_SIZE);
/* if allocation fails we drop the packet but push the
* descriptor back to the ring with old skb to prevent a stall
*/
if (!new_skb) {
netdev_err(ndev,
"skb alloc failed, dropped mgm pkt from flow %d\n",
flow_id);
new_skb = skb;
skb = NULL; /* return NULL */
} else {
/* return the filled skb */
skb_put(skb, pkt_len);
}
/* queue another DMA */
ret = prueth_dma_rx_push(emac, new_skb, &emac->rx_mgm_chn);
if (WARN_ON(ret < 0))
dev_kfree_skb_any(new_skb);
return skb;
}
static void prueth_tx_ts_sr1(struct prueth_emac *emac,
struct emac_tx_ts_response_sr1 *tsr)
{
struct skb_shared_hwtstamps ssh;
u32 hi_ts, lo_ts, cookie;
struct sk_buff *skb;
u64 ns;
hi_ts = le32_to_cpu(tsr->hi_ts);
lo_ts = le32_to_cpu(tsr->lo_ts);
ns = (u64)hi_ts << 32 | lo_ts;
cookie = le32_to_cpu(tsr->cookie);
if (cookie >= PRUETH_MAX_TX_TS_REQUESTS) {
netdev_dbg(emac->ndev, "Invalid TX TS cookie 0x%x\n",
cookie);
return;
}
skb = emac->tx_ts_skb[cookie];
emac->tx_ts_skb[cookie] = NULL; /* free slot */
memset(&ssh, 0, sizeof(ssh));
ssh.hwtstamp = ns_to_ktime(ns);
skb_tstamp_tx(skb, &ssh);
dev_consume_skb_any(skb);
}
static irqreturn_t prueth_rx_mgm_ts_thread_sr1(int irq, void *dev_id)
{
struct prueth_emac *emac = dev_id;
struct sk_buff *skb;
skb = prueth_process_rx_mgm(emac, PRUETH_RX_MGM_FLOW_TIMESTAMP_SR1);
if (!skb)
return IRQ_NONE;
prueth_tx_ts_sr1(emac, (void *)skb->data);
dev_kfree_skb_any(skb);
return IRQ_HANDLED;
}
static irqreturn_t prueth_rx_mgm_rsp_thread(int irq, void *dev_id)
{
struct prueth_emac *emac = dev_id;
struct sk_buff *skb;
u32 rsp;
skb = prueth_process_rx_mgm(emac, PRUETH_RX_MGM_FLOW_RESPONSE_SR1);
if (!skb)
return IRQ_NONE;
/* Process command response */
rsp = le32_to_cpu(*(__le32 *)skb->data) & 0xffff0000;
if (rsp == ICSSG_SHUTDOWN_CMD_SR1) {
netdev_dbg(emac->ndev, "f/w Shutdown cmd resp %x\n", rsp);
complete(&emac->cmd_complete);
} else if (rsp == ICSSG_PSTATE_SPEED_DUPLEX_CMD_SR1) {
netdev_dbg(emac->ndev, "f/w Speed/Duplex cmd rsp %x\n", rsp);
complete(&emac->cmd_complete);
}
dev_kfree_skb_any(skb);
return IRQ_HANDLED;
}
static struct icssg_firmwares icssg_sr1_emac_firmwares[] = {
{
.pru = "ti-pruss/am65x-pru0-prueth-fw.elf",
.rtu = "ti-pruss/am65x-rtu0-prueth-fw.elf",
},
{
.pru = "ti-pruss/am65x-pru1-prueth-fw.elf",
.rtu = "ti-pruss/am65x-rtu1-prueth-fw.elf",
}
};
static int prueth_emac_start(struct prueth *prueth, struct prueth_emac *emac)
{
struct icssg_firmwares *firmwares;
struct device *dev = prueth->dev;
int slice, ret;
firmwares = icssg_sr1_emac_firmwares;
slice = prueth_emac_slice(emac);
if (slice < 0) {
netdev_err(emac->ndev, "invalid port\n");
return -EINVAL;
}
icssg_config_sr1(prueth, emac, slice);
ret = rproc_set_firmware(prueth->pru[slice], firmwares[slice].pru);
ret = rproc_boot(prueth->pru[slice]);
if (ret) {
dev_err(dev, "failed to boot PRU%d: %d\n", slice, ret);
return -EINVAL;
}
ret = rproc_set_firmware(prueth->rtu[slice], firmwares[slice].rtu);
ret = rproc_boot(prueth->rtu[slice]);
if (ret) {
dev_err(dev, "failed to boot RTU%d: %d\n", slice, ret);
goto halt_pru;
}
emac->fw_running = 1;
return 0;
halt_pru:
rproc_shutdown(prueth->pru[slice]);
return ret;
}
/**
* emac_ndo_open - EMAC device open
* @ndev: network adapter device
*
* Called when system wants to start the interface.
*
* Return: 0 for a successful open, or appropriate error code
*/
static int emac_ndo_open(struct net_device *ndev)
{
struct prueth_emac *emac = netdev_priv(ndev);
int num_data_chn = emac->tx_ch_num - 1;
struct prueth *prueth = emac->prueth;
int slice = prueth_emac_slice(emac);
struct device *dev = prueth->dev;
int max_rx_flows, rx_flow;
int ret, i;
/* clear SMEM and MSMC settings for all slices */
if (!prueth->emacs_initialized) {
memset_io(prueth->msmcram.va, 0, prueth->msmcram.size);
memset_io(prueth->shram.va, 0, ICSSG_CONFIG_OFFSET_SLICE1 * PRUETH_NUM_MACS);
}
/* set h/w MAC as user might have re-configured */
ether_addr_copy(emac->mac_addr, ndev->dev_addr);
icssg_class_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr);
icssg_class_default(prueth->miig_rt, slice, 0, true);
/* Notify the stack of the actual queue counts. */
ret = netif_set_real_num_tx_queues(ndev, num_data_chn);
if (ret) {
dev_err(dev, "cannot set real number of tx queues\n");
return ret;
}
init_completion(&emac->cmd_complete);
ret = prueth_init_tx_chns(emac);
if (ret) {
dev_err(dev, "failed to init tx channel: %d\n", ret);
return ret;
}
max_rx_flows = PRUETH_MAX_RX_FLOWS_SR1;
ret = prueth_init_rx_chns(emac, &emac->rx_chns, "rx",
max_rx_flows, PRUETH_MAX_RX_DESC);
if (ret) {
dev_err(dev, "failed to init rx channel: %d\n", ret);
goto cleanup_tx;
}
ret = prueth_init_rx_chns(emac, &emac->rx_mgm_chn, "rxmgm",
PRUETH_MAX_RX_MGM_FLOWS_SR1,
PRUETH_MAX_RX_MGM_DESC_SR1);
if (ret) {
dev_err(dev, "failed to init rx mgmt channel: %d\n",
ret);
goto cleanup_rx;
}
ret = prueth_ndev_add_tx_napi(emac);
if (ret)
goto cleanup_rx_mgm;
/* we use only the highest priority flow for now i.e. @irq[3] */
rx_flow = PRUETH_RX_FLOW_DATA_SR1;
ret = request_irq(emac->rx_chns.irq[rx_flow], prueth_rx_irq,
IRQF_TRIGGER_HIGH, dev_name(dev), emac);
if (ret) {
dev_err(dev, "unable to request RX IRQ\n");
goto cleanup_napi;
}
ret = request_threaded_irq(emac->rx_mgm_chn.irq[PRUETH_RX_MGM_FLOW_RESPONSE_SR1],
NULL, prueth_rx_mgm_rsp_thread,
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
dev_name(dev), emac);
if (ret) {
dev_err(dev, "unable to request RX Management RSP IRQ\n");
goto free_rx_irq;
}
ret = request_threaded_irq(emac->rx_mgm_chn.irq[PRUETH_RX_MGM_FLOW_TIMESTAMP_SR1],
NULL, prueth_rx_mgm_ts_thread_sr1,
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
dev_name(dev), emac);
if (ret) {
dev_err(dev, "unable to request RX Management TS IRQ\n");
goto free_rx_mgm_rsp_irq;
}
/* reset and start PRU firmware */
ret = prueth_emac_start(prueth, emac);
if (ret)
goto free_rx_mgmt_ts_irq;
icssg_mii_update_mtu(prueth->mii_rt, slice, ndev->max_mtu);
/* Prepare RX */
ret = prueth_prepare_rx_chan(emac, &emac->rx_chns, PRUETH_MAX_PKT_SIZE);
if (ret)
goto stop;
ret = prueth_prepare_rx_chan(emac, &emac->rx_mgm_chn, 64);
if (ret)
goto reset_rx_chn;
ret = k3_udma_glue_enable_rx_chn(emac->rx_mgm_chn.rx_chn);
if (ret)
goto reset_rx_chn;
ret = k3_udma_glue_enable_rx_chn(emac->rx_chns.rx_chn);
if (ret)
goto reset_rx_mgm_chn;
for (i = 0; i < emac->tx_ch_num; i++) {
ret = k3_udma_glue_enable_tx_chn(emac->tx_chns[i].tx_chn);
if (ret)
goto reset_tx_chan;
}
/* Enable NAPI in Tx and Rx direction */
for (i = 0; i < emac->tx_ch_num; i++)
napi_enable(&emac->tx_chns[i].napi_tx);
napi_enable(&emac->napi_rx);
/* start PHY */
phy_start(ndev->phydev);
prueth->emacs_initialized++;
queue_work(system_long_wq, &emac->stats_work.work);
return 0;
reset_tx_chan:
/* Since interface is not yet up, there is wouldn't be
* any SKB for completion. So set false to free_skb
*/
prueth_reset_tx_chan(emac, i, false);
reset_rx_mgm_chn:
prueth_reset_rx_chan(&emac->rx_mgm_chn,
PRUETH_MAX_RX_MGM_FLOWS_SR1, true);
reset_rx_chn:
prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, false);
stop:
prueth_emac_stop(emac);
free_rx_mgmt_ts_irq:
free_irq(emac->rx_mgm_chn.irq[PRUETH_RX_MGM_FLOW_TIMESTAMP_SR1],
emac);
free_rx_mgm_rsp_irq:
free_irq(emac->rx_mgm_chn.irq[PRUETH_RX_MGM_FLOW_RESPONSE_SR1],
emac);
free_rx_irq:
free_irq(emac->rx_chns.irq[rx_flow], emac);
cleanup_napi:
prueth_ndev_del_tx_napi(emac, emac->tx_ch_num);
cleanup_rx_mgm:
prueth_cleanup_rx_chns(emac, &emac->rx_mgm_chn,
PRUETH_MAX_RX_MGM_FLOWS_SR1);
cleanup_rx:
prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows);
cleanup_tx:
prueth_cleanup_tx_chns(emac);
return ret;
}
/**
* emac_ndo_stop - EMAC device stop
* @ndev: network adapter device
*
* Called when system wants to stop or down the interface.
*
* Return: Always 0 (Success)
*/
static int emac_ndo_stop(struct net_device *ndev)
{
struct prueth_emac *emac = netdev_priv(ndev);
int rx_flow = PRUETH_RX_FLOW_DATA_SR1;
struct prueth *prueth = emac->prueth;
int max_rx_flows;
int ret, i;
/* inform the upper layers. */
netif_tx_stop_all_queues(ndev);
/* block packets from wire */
if (ndev->phydev)
phy_stop(ndev->phydev);
icssg_class_disable(prueth->miig_rt, prueth_emac_slice(emac));
emac_send_command_sr1(emac, ICSSG_SHUTDOWN_CMD_SR1);
atomic_set(&emac->tdown_cnt, emac->tx_ch_num);
/* ensure new tdown_cnt value is visible */
smp_mb__after_atomic();
/* tear down and disable UDMA channels */
reinit_completion(&emac->tdown_complete);
for (i = 0; i < emac->tx_ch_num; i++)
k3_udma_glue_tdown_tx_chn(emac->tx_chns[i].tx_chn, false);
ret = wait_for_completion_timeout(&emac->tdown_complete,
msecs_to_jiffies(1000));
if (!ret)
netdev_err(ndev, "tx teardown timeout\n");
prueth_reset_tx_chan(emac, emac->tx_ch_num, true);
for (i = 0; i < emac->tx_ch_num; i++)
napi_disable(&emac->tx_chns[i].napi_tx);
max_rx_flows = PRUETH_MAX_RX_FLOWS_SR1;
k3_udma_glue_tdown_rx_chn(emac->rx_chns.rx_chn, true);
prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, true);
/* Teardown RX MGM channel */
k3_udma_glue_tdown_rx_chn(emac->rx_mgm_chn.rx_chn, true);
prueth_reset_rx_chan(&emac->rx_mgm_chn,
PRUETH_MAX_RX_MGM_FLOWS_SR1, true);
napi_disable(&emac->napi_rx);
/* Destroying the queued work in ndo_stop() */
cancel_delayed_work_sync(&emac->stats_work);
/* stop PRUs */
prueth_emac_stop(emac);
free_irq(emac->rx_mgm_chn.irq[PRUETH_RX_MGM_FLOW_TIMESTAMP_SR1], emac);
free_irq(emac->rx_mgm_chn.irq[PRUETH_RX_MGM_FLOW_RESPONSE_SR1], emac);
free_irq(emac->rx_chns.irq[rx_flow], emac);
prueth_ndev_del_tx_napi(emac, emac->tx_ch_num);
prueth_cleanup_tx_chns(emac);
prueth_cleanup_rx_chns(emac, &emac->rx_mgm_chn, PRUETH_MAX_RX_MGM_FLOWS_SR1);
prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows);
prueth->emacs_initialized--;
return 0;
}
static void emac_ndo_set_rx_mode_sr1(struct net_device *ndev)
{
struct prueth_emac *emac = netdev_priv(ndev);
bool allmulti = ndev->flags & IFF_ALLMULTI;
bool promisc = ndev->flags & IFF_PROMISC;
struct prueth *prueth = emac->prueth;
int slice = prueth_emac_slice(emac);
if (promisc) {
icssg_class_promiscuous_sr1(prueth->miig_rt, slice);
return;
}
if (allmulti) {
icssg_class_default(prueth->miig_rt, slice, 1, true);
return;
}
icssg_class_default(prueth->miig_rt, slice, 0, true);
if (!netdev_mc_empty(ndev)) {
/* program multicast address list into Classifier */
icssg_class_add_mcast_sr1(prueth->miig_rt, slice, ndev);
}
}
static const struct net_device_ops emac_netdev_ops = {
.ndo_open = emac_ndo_open,
.ndo_stop = emac_ndo_stop,
.ndo_start_xmit = icssg_ndo_start_xmit,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_tx_timeout = icssg_ndo_tx_timeout,
.ndo_set_rx_mode = emac_ndo_set_rx_mode_sr1,
.ndo_eth_ioctl = icssg_ndo_ioctl,
.ndo_get_stats64 = icssg_ndo_get_stats64,
.ndo_get_phys_port_name = icssg_ndo_get_phys_port_name,
};
static int prueth_netdev_init(struct prueth *prueth,
struct device_node *eth_node)
{
struct prueth_emac *emac;
struct net_device *ndev;
enum prueth_port port;
enum prueth_mac mac;
/* Only enable one TX channel due to timeouts when
* using multiple channels */
int num_tx_chn = 1;
int ret;
port = prueth_node_port(eth_node);
if (port == PRUETH_PORT_INVALID)
return -EINVAL;
mac = prueth_node_mac(eth_node);
if (mac == PRUETH_MAC_INVALID)
return -EINVAL;
ndev = alloc_etherdev_mq(sizeof(*emac), num_tx_chn);
if (!ndev)
return -ENOMEM;
emac = netdev_priv(ndev);
emac->is_sr1 = 1;
emac->prueth = prueth;
emac->ndev = ndev;
emac->port_id = port;
emac->cmd_wq = create_singlethread_workqueue("icssg_cmd_wq");
if (!emac->cmd_wq) {
ret = -ENOMEM;
goto free_ndev;
}
INIT_DELAYED_WORK(&emac->stats_work, icssg_stats_work_handler);
ret = pruss_request_mem_region(prueth->pruss,
port == PRUETH_PORT_MII0 ?
PRUSS_MEM_DRAM0 : PRUSS_MEM_DRAM1,
&emac->dram);
if (ret) {
dev_err(prueth->dev, "unable to get DRAM: %d\n", ret);
ret = -ENOMEM;
goto free_wq;
}
/* SR1.0 uses a dedicated high priority channel
* to send commands to the firmware
*/
emac->tx_ch_num = 2;
SET_NETDEV_DEV(ndev, prueth->dev);
spin_lock_init(&emac->lock);
mutex_init(&emac->cmd_lock);
emac->phy_node = of_parse_phandle(eth_node, "phy-handle", 0);
if (!emac->phy_node && !of_phy_is_fixed_link(eth_node)) {
dev_err(prueth->dev, "couldn't find phy-handle\n");
ret = -ENODEV;
goto free;
} else if (of_phy_is_fixed_link(eth_node)) {
ret = of_phy_register_fixed_link(eth_node);
if (ret) {
ret = dev_err_probe(prueth->dev, ret,
"failed to register fixed-link phy\n");
goto free;
}
emac->phy_node = eth_node;
}
ret = of_get_phy_mode(eth_node, &emac->phy_if);
if (ret) {
dev_err(prueth->dev, "could not get phy-mode property\n");
goto free;
}
if (emac->phy_if != PHY_INTERFACE_MODE_MII &&
!phy_interface_mode_is_rgmii(emac->phy_if)) {
dev_err(prueth->dev, "PHY mode unsupported %s\n", phy_modes(emac->phy_if));
ret = -EINVAL;
goto free;
}
/* AM65 SR2.0 has TX Internal delay always enabled by hardware
* and it is not possible to disable TX Internal delay. The below
* switch case block describes how we handle different phy modes
* based on hardware restriction.
*/
switch (emac->phy_if) {
case PHY_INTERFACE_MODE_RGMII_ID:
emac->phy_if = PHY_INTERFACE_MODE_RGMII_RXID;
break;
case PHY_INTERFACE_MODE_RGMII_TXID:
emac->phy_if = PHY_INTERFACE_MODE_RGMII;
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_RXID:
dev_err(prueth->dev, "RGMII mode without TX delay is not supported");
ret = -EINVAL;
goto free;
default:
break;
}
/* get mac address from DT and set private and netdev addr */
ret = of_get_ethdev_address(eth_node, ndev);
if (!is_valid_ether_addr(ndev->dev_addr)) {
eth_hw_addr_random(ndev);
dev_warn(prueth->dev, "port %d: using random MAC addr: %pM\n",
port, ndev->dev_addr);
}
ether_addr_copy(emac->mac_addr, ndev->dev_addr);
ndev->dev.of_node = eth_node;
ndev->min_mtu = PRUETH_MIN_PKT_SIZE;
ndev->max_mtu = PRUETH_MAX_MTU;
ndev->netdev_ops = &emac_netdev_ops;
ndev->ethtool_ops = &icssg_ethtool_ops;
ndev->hw_features = NETIF_F_SG;
ndev->features = ndev->hw_features;
netif_napi_add(ndev, &emac->napi_rx, icssg_napi_rx_poll);
prueth->emac[mac] = emac;
return 0;
free:
pruss_release_mem_region(prueth->pruss, &emac->dram);
free_wq:
destroy_workqueue(emac->cmd_wq);
free_ndev:
emac->ndev = NULL;
prueth->emac[mac] = NULL;
free_netdev(ndev);
return ret;
}
static int prueth_probe(struct platform_device *pdev)
{
struct device_node *eth_node, *eth_ports_node;
struct device_node *eth0_node = NULL;
struct device_node *eth1_node = NULL;
struct device *dev = &pdev->dev;
struct device_node *np;
struct prueth *prueth;
struct pruss *pruss;
u32 msmc_ram_size;
int i, ret;
np = dev->of_node;
prueth = devm_kzalloc(dev, sizeof(*prueth), GFP_KERNEL);
if (!prueth)
return -ENOMEM;
dev_set_drvdata(dev, prueth);
prueth->pdev = pdev;
prueth->pdata = *(const struct prueth_pdata *)device_get_match_data(dev);
prueth->dev = dev;
eth_ports_node = of_get_child_by_name(np, "ethernet-ports");
if (!eth_ports_node)
return -ENOENT;
for_each_child_of_node(eth_ports_node, eth_node) {
u32 reg;
if (strcmp(eth_node->name, "port"))
continue;
ret = of_property_read_u32(eth_node, "reg", ®);
if (ret < 0) {
dev_err(dev, "%pOF error reading port_id %d\n",
eth_node, ret);
}
of_node_get(eth_node);
if (reg == 0) {
eth0_node = eth_node;
if (!of_device_is_available(eth0_node)) {
of_node_put(eth0_node);
eth0_node = NULL;
}
} else if (reg == 1) {
eth1_node = eth_node;
if (!of_device_is_available(eth1_node)) {
of_node_put(eth1_node);
eth1_node = NULL;
}
} else {
dev_err(dev, "port reg should be 0 or 1\n");
}
}
of_node_put(eth_ports_node);
/* At least one node must be present and available else we fail */
if (!eth0_node && !eth1_node) {
dev_err(dev, "neither port0 nor port1 node available\n");
return -ENODEV;
}
if (eth0_node == eth1_node) {
dev_err(dev, "port0 and port1 can't have same reg\n");
of_node_put(eth0_node);
return -ENODEV;
}
prueth->eth_node[PRUETH_MAC0] = eth0_node;
prueth->eth_node[PRUETH_MAC1] = eth1_node;
prueth->miig_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-g-rt");
if (IS_ERR(prueth->miig_rt)) {
dev_err(dev, "couldn't get ti,mii-g-rt syscon regmap\n");
return -ENODEV;
}
prueth->mii_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-rt");
if (IS_ERR(prueth->mii_rt)) {
dev_err(dev, "couldn't get ti,mii-rt syscon regmap\n");
return -ENODEV;
}
if (eth0_node) {
ret = prueth_get_cores(prueth, ICSS_SLICE0, true);
if (ret)
goto put_cores;
}
if (eth1_node) {
ret = prueth_get_cores(prueth, ICSS_SLICE1, true);
if (ret)
goto put_cores;
}
pruss = pruss_get(eth0_node ?
prueth->pru[ICSS_SLICE0] : prueth->pru[ICSS_SLICE1]);
if (IS_ERR(pruss)) {
ret = PTR_ERR(pruss);
dev_err(dev, "unable to get pruss handle\n");
goto put_cores;
}
prueth->pruss = pruss;
ret = pruss_request_mem_region(pruss, PRUSS_MEM_SHRD_RAM2,
&prueth->shram);
if (ret) {
dev_err(dev, "unable to get PRUSS SHRD RAM2: %d\n", ret);
goto put_pruss;
}
prueth->sram_pool = of_gen_pool_get(np, "sram", 0);
if (!prueth->sram_pool) {
dev_err(dev, "unable to get SRAM pool\n");
ret = -ENODEV;
goto put_mem;
}
msmc_ram_size = MSMC_RAM_SIZE_SR1;
prueth->msmcram.va = (void __iomem *)gen_pool_alloc(prueth->sram_pool,
msmc_ram_size);
if (!prueth->msmcram.va) {
ret = -ENOMEM;
dev_err(dev, "unable to allocate MSMC resource\n");
goto put_mem;
}
prueth->msmcram.pa = gen_pool_virt_to_phys(prueth->sram_pool,
(unsigned long)prueth->msmcram.va);
prueth->msmcram.size = msmc_ram_size;
memset_io(prueth->msmcram.va, 0, msmc_ram_size);
dev_dbg(dev, "sram: pa %llx va %p size %zx\n", prueth->msmcram.pa,
prueth->msmcram.va, prueth->msmcram.size);
prueth->iep0 = icss_iep_get_idx(np, 0);
if (IS_ERR(prueth->iep0)) {
ret = dev_err_probe(dev, PTR_ERR(prueth->iep0),
"iep0 get failed\n");
goto free_pool;
}
prueth->iep1 = icss_iep_get_idx(np, 1);
if (IS_ERR(prueth->iep1)) {
ret = dev_err_probe(dev, PTR_ERR(prueth->iep1),
"iep1 get failed\n");
goto put_iep0;
}
ret = icss_iep_init(prueth->iep0, NULL, NULL, 0);
if (ret) {
dev_err_probe(dev, ret, "failed to init iep0\n");
goto put_iep;
}
ret = icss_iep_init(prueth->iep1, NULL, NULL, 0);
if (ret) {
dev_err_probe(dev, ret, "failed to init iep1\n");
goto exit_iep0;
}
if (eth0_node) {
ret = prueth_netdev_init(prueth, eth0_node);
if (ret) {
dev_err_probe(dev, ret, "netdev init %s failed\n",
eth0_node->name);
goto exit_iep;
}
prueth->emac[PRUETH_MAC0]->half_duplex =
of_property_read_bool(eth0_node, "ti,half-duplex-capable");
prueth->emac[PRUETH_MAC0]->iep = prueth->iep0;
}
if (eth1_node) {
ret = prueth_netdev_init(prueth, eth1_node);
if (ret) {
dev_err_probe(dev, ret, "netdev init %s failed\n",
eth1_node->name);
goto netdev_exit;
}
prueth->emac[PRUETH_MAC1]->half_duplex =
of_property_read_bool(eth1_node, "ti,half-duplex-capable");
prueth->emac[PRUETH_MAC1]->iep = prueth->iep1;
}
/* register the network devices */
if (eth0_node) {
ret = register_netdev(prueth->emac[PRUETH_MAC0]->ndev);
if (ret) {
dev_err(dev, "can't register netdev for port MII0\n");
goto netdev_exit;
}
prueth->registered_netdevs[PRUETH_MAC0] = prueth->emac[PRUETH_MAC0]->ndev;
emac_phy_connect(prueth->emac[PRUETH_MAC0]);
phy_attached_info(prueth->emac[PRUETH_MAC0]->ndev->phydev);
}
if (eth1_node) {
ret = register_netdev(prueth->emac[PRUETH_MAC1]->ndev);
if (ret) {
dev_err(dev, "can't register netdev for port MII1\n");
goto netdev_unregister;
}
prueth->registered_netdevs[PRUETH_MAC1] = prueth->emac[PRUETH_MAC1]->ndev;
emac_phy_connect(prueth->emac[PRUETH_MAC1]);
phy_attached_info(prueth->emac[PRUETH_MAC1]->ndev->phydev);
}
dev_info(dev, "TI PRU SR1.0 ethernet driver initialized: %s EMAC mode\n",
(!eth0_node || !eth1_node) ? "single" : "dual");
if (eth1_node)
of_node_put(eth1_node);
if (eth0_node)
of_node_put(eth0_node);
return 0;
netdev_unregister:
for (i = 0; i < PRUETH_NUM_MACS; i++) {
if (!prueth->registered_netdevs[i])
continue;
if (prueth->emac[i]->ndev->phydev) {
phy_disconnect(prueth->emac[i]->ndev->phydev);
prueth->emac[i]->ndev->phydev = NULL;
}
unregister_netdev(prueth->registered_netdevs[i]);
}
netdev_exit:
for (i = 0; i < PRUETH_NUM_MACS; i++) {
eth_node = prueth->eth_node[i];
if (!eth_node)
continue;
prueth_netdev_exit(prueth, eth_node);
}
exit_iep:
icss_iep_exit(prueth->iep1);
exit_iep0:
icss_iep_exit(prueth->iep0);
put_iep:
icss_iep_put(prueth->iep1);
put_iep0:
icss_iep_put(prueth->iep0);
prueth->iep0 = NULL;
prueth->iep1 = NULL;
free_pool:
gen_pool_free(prueth->sram_pool,
(unsigned long)prueth->msmcram.va, msmc_ram_size);
put_mem:
pruss_release_mem_region(prueth->pruss, &prueth->shram);
put_pruss:
pruss_put(prueth->pruss);
put_cores:
if (eth1_node) {
prueth_put_cores(prueth, ICSS_SLICE1);
of_node_put(eth1_node);
}
if (eth0_node) {
prueth_put_cores(prueth, ICSS_SLICE0);
of_node_put(eth0_node);
}
return ret;
}
static void prueth_remove(struct platform_device *pdev)
{
struct prueth *prueth = platform_get_drvdata(pdev);
struct device_node *eth_node;
int i;
for (i = 0; i < PRUETH_NUM_MACS; i++) {
if (!prueth->registered_netdevs[i])
continue;
phy_stop(prueth->emac[i]->ndev->phydev);
phy_disconnect(prueth->emac[i]->ndev->phydev);
prueth->emac[i]->ndev->phydev = NULL;
unregister_netdev(prueth->registered_netdevs[i]);
}
for (i = 0; i < PRUETH_NUM_MACS; i++) {
eth_node = prueth->eth_node[i];
if (!eth_node)
continue;
prueth_netdev_exit(prueth, eth_node);
}
icss_iep_exit(prueth->iep1);
icss_iep_exit(prueth->iep0);
icss_iep_put(prueth->iep1);
icss_iep_put(prueth->iep0);
gen_pool_free(prueth->sram_pool,
(unsigned long)prueth->msmcram.va,
MSMC_RAM_SIZE_SR1);
pruss_release_mem_region(prueth->pruss, &prueth->shram);
pruss_put(prueth->pruss);
if (prueth->eth_node[PRUETH_MAC1])
prueth_put_cores(prueth, ICSS_SLICE1);
if (prueth->eth_node[PRUETH_MAC0])
prueth_put_cores(prueth, ICSS_SLICE0);
}
static const struct prueth_pdata am654_sr1_icssg_pdata = {
.fdqring_mode = K3_RINGACC_RING_MODE_MESSAGE,
};
static const struct of_device_id prueth_dt_match[] = {
{ .compatible = "ti,am654-sr1-icssg-prueth", .data = &am654_sr1_icssg_pdata },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, prueth_dt_match);
static struct platform_driver prueth_driver = {
.probe = prueth_probe,
.remove_new = prueth_remove,
.driver = {
.name = "icssg-prueth-sr1",
.of_match_table = prueth_dt_match,
.pm = &prueth_dev_pm_ops,
},
};
module_platform_driver(prueth_driver);
MODULE_AUTHOR("Roger Quadros <[email protected]>");
MODULE_AUTHOR("Md Danish Anwar <[email protected]>");
MODULE_AUTHOR("Diogo Ivo <[email protected]>");
MODULE_DESCRIPTION(PRUETH_MODULE_DESCRIPTION);
MODULE_LICENSE("GPL");