// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
* Copyright (c) 2020, Linaro Limited
*/
#include <dt-bindings/dma/qcom-gpi.h>
#include <linux/bitfield.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/dma/qcom-gpi-dma.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include "../dmaengine.h"
#include "../virt-dma.h"
#define TRE_TYPE_DMA 0x10
#define TRE_TYPE_GO 0x20
#define TRE_TYPE_CONFIG0 0x22
/* TRE flags */
#define TRE_FLAGS_CHAIN BIT(0)
#define TRE_FLAGS_IEOB BIT(8)
#define TRE_FLAGS_IEOT BIT(9)
#define TRE_FLAGS_BEI BIT(10)
#define TRE_FLAGS_LINK BIT(11)
#define TRE_FLAGS_TYPE GENMASK(23, 16)
/* SPI CONFIG0 WD0 */
#define TRE_SPI_C0_WORD_SZ GENMASK(4, 0)
#define TRE_SPI_C0_LOOPBACK BIT(8)
#define TRE_SPI_C0_CS BIT(11)
#define TRE_SPI_C0_CPHA BIT(12)
#define TRE_SPI_C0_CPOL BIT(13)
#define TRE_SPI_C0_TX_PACK BIT(24)
#define TRE_SPI_C0_RX_PACK BIT(25)
/* CONFIG0 WD2 */
#define TRE_C0_CLK_DIV GENMASK(11, 0)
#define TRE_C0_CLK_SRC GENMASK(19, 16)
/* SPI GO WD0 */
#define TRE_SPI_GO_CMD GENMASK(4, 0)
#define TRE_SPI_GO_CS GENMASK(10, 8)
#define TRE_SPI_GO_FRAG BIT(26)
/* GO WD2 */
#define TRE_RX_LEN GENMASK(23, 0)
/* I2C Config0 WD0 */
#define TRE_I2C_C0_TLOW GENMASK(7, 0)
#define TRE_I2C_C0_THIGH GENMASK(15, 8)
#define TRE_I2C_C0_TCYL GENMASK(23, 16)
#define TRE_I2C_C0_TX_PACK BIT(24)
#define TRE_I2C_C0_RX_PACK BIT(25)
/* I2C GO WD0 */
#define TRE_I2C_GO_CMD GENMASK(4, 0)
#define TRE_I2C_GO_ADDR GENMASK(14, 8)
#define TRE_I2C_GO_STRETCH BIT(26)
/* DMA TRE */
#define TRE_DMA_LEN GENMASK(23, 0)
/* Register offsets from gpi-top */
#define GPII_n_CH_k_CNTXT_0_OFFS(n, k) (0x20000 + (0x4000 * (n)) + (0x80 * (k)))
#define GPII_n_CH_k_CNTXT_0_EL_SIZE GENMASK(31, 24)
#define GPII_n_CH_k_CNTXT_0_CHSTATE GENMASK(23, 20)
#define GPII_n_CH_k_CNTXT_0_ERIDX GENMASK(18, 14)
#define GPII_n_CH_k_CNTXT_0_DIR BIT(3)
#define GPII_n_CH_k_CNTXT_0_PROTO GENMASK(2, 0)
#define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto) \
(FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size) | \
FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex) | \
FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir) | \
FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto))
#define GPI_CHTYPE_DIR_IN (0)
#define GPI_CHTYPE_DIR_OUT (1)
#define GPI_CHTYPE_PROTO_GPI (0x2)
#define GPII_n_CH_k_DOORBELL_0_OFFS(n, k) (0x22000 + (0x4000 * (n)) + (0x8 * (k)))
#define GPII_n_CH_CMD_OFFS(n) (0x23008 + (0x4000 * (n)))
#define GPII_n_CH_CMD_OPCODE GENMASK(31, 24)
#define GPII_n_CH_CMD_CHID GENMASK(7, 0)
#define GPII_n_CH_CMD(opcode, chid) \
(FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \
FIELD_PREP(GPII_n_CH_CMD_CHID, chid))
#define GPII_n_CH_CMD_ALLOCATE (0)
#define GPII_n_CH_CMD_START (1)
#define GPII_n_CH_CMD_STOP (2)
#define GPII_n_CH_CMD_RESET (9)
#define GPII_n_CH_CMD_DE_ALLOC (10)
#define GPII_n_CH_CMD_UART_SW_STALE (32)
#define GPII_n_CH_CMD_UART_RFR_READY (33)
#define GPII_n_CH_CMD_UART_RFR_NOT_READY (34)
/* EV Context Array */
#define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k)))
#define GPII_n_EV_k_CNTXT_0_EL_SIZE GENMASK(31, 24)
#define GPII_n_EV_k_CNTXT_0_CHSTATE GENMASK(23, 20)
#define GPII_n_EV_k_CNTXT_0_INTYPE BIT(16)
#define GPII_n_EV_k_CNTXT_0_CHTYPE GENMASK(3, 0)
#define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype) \
(FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) | \
FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype) | \
FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype))
#define GPI_INTTYPE_IRQ (1)
#define GPI_CHTYPE_GPI_EV (0x2)
enum CNTXT_OFFS {
CNTXT_0_CONFIG = 0x0,
CNTXT_1_R_LENGTH = 0x4,
CNTXT_2_RING_BASE_LSB = 0x8,
CNTXT_3_RING_BASE_MSB = 0xC,
CNTXT_4_RING_RP_LSB = 0x10,
CNTXT_5_RING_RP_MSB = 0x14,
CNTXT_6_RING_WP_LSB = 0x18,
CNTXT_7_RING_WP_MSB = 0x1C,
CNTXT_8_RING_INT_MOD = 0x20,
CNTXT_9_RING_INTVEC = 0x24,
CNTXT_10_RING_MSI_LSB = 0x28,
CNTXT_11_RING_MSI_MSB = 0x2C,
CNTXT_12_RING_RP_UPDATE_LSB = 0x30,
CNTXT_13_RING_RP_UPDATE_MSB = 0x34,
};
#define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k) (0x22100 + (0x4000 * (n)) + (0x8 * (k)))
#define GPII_n_EV_CH_CMD_OFFS(n) (0x23010 + (0x4000 * (n)))
#define GPII_n_EV_CMD_OPCODE GENMASK(31, 24)
#define GPII_n_EV_CMD_CHID GENMASK(7, 0)
#define GPII_n_EV_CMD(opcode, chid) \
(FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \
FIELD_PREP(GPII_n_EV_CMD_CHID, chid))
#define GPII_n_EV_CH_CMD_ALLOCATE (0x00)
#define GPII_n_EV_CH_CMD_RESET (0x09)
#define GPII_n_EV_CH_CMD_DE_ALLOC (0x0A)
#define GPII_n_CNTXT_TYPE_IRQ_OFFS(n) (0x23080 + (0x4000 * (n)))
/* mask type register */
#define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n) (0x23088 + (0x4000 * (n)))
#define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK GENMASK(6, 0)
#define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL BIT(6)
#define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB BIT(3)
#define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB BIT(2)
#define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL BIT(1)
#define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL BIT(0)
#define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n) (0x23090 + (0x4000 * (n)))
#define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n) (0x23094 + (0x4000 * (n)))
/* Mask channel control interrupt register */
#define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n) (0x23098 + (0x4000 * (n)))
#define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK GENMASK(1, 0)
/* Mask event control interrupt register */
#define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n) (0x2309C + (0x4000 * (n)))
#define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK BIT(0)
#define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n) (0x230A0 + (0x4000 * (n)))
#define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n) (0x230A4 + (0x4000 * (n)))
/* Mask event interrupt register */
#define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n) (0x230B8 + (0x4000 * (n)))
#define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK BIT(0)
#define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n) (0x230C0 + (0x4000 * (n)))
#define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n) (0x23100 + (0x4000 * (n)))
#define GPI_GLOB_IRQ_ERROR_INT_MSK BIT(0)
/* GPII specific Global - Enable bit register */
#define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n) (0x23108 + (0x4000 * (n)))
#define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n) (0x23110 + (0x4000 * (n)))
#define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n) (0x23118 + (0x4000 * (n)))
/* GPII general interrupt - Enable bit register */
#define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n) (0x23120 + (0x4000 * (n)))
#define GPII_n_CNTXT_GPII_IRQ_EN_BMSK GENMASK(3, 0)
#define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n) (0x23128 + (0x4000 * (n)))
/* GPII Interrupt Type register */
#define GPII_n_CNTXT_INTSET_OFFS(n) (0x23180 + (0x4000 * (n)))
#define GPII_n_CNTXT_INTSET_BMSK BIT(0)
#define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n) (0x23188 + (0x4000 * (n)))
#define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n) (0x2318C + (0x4000 * (n)))
#define GPII_n_CNTXT_SCRATCH_0_OFFS(n) (0x23400 + (0x4000 * (n)))
#define GPII_n_CNTXT_SCRATCH_1_OFFS(n) (0x23404 + (0x4000 * (n)))
#define GPII_n_ERROR_LOG_OFFS(n) (0x23200 + (0x4000 * (n)))
/* QOS Registers */
#define GPII_n_CH_k_QOS_OFFS(n, k) (0x2005C + (0x4000 * (n)) + (0x80 * (k)))
/* Scratch registers */
#define GPII_n_CH_k_SCRATCH_0_OFFS(n, k) (0x20060 + (0x4000 * (n)) + (0x80 * (k)))
#define GPII_n_CH_k_SCRATCH_0_SEID GENMASK(2, 0)
#define GPII_n_CH_k_SCRATCH_0_PROTO GENMASK(7, 4)
#define GPII_n_CH_k_SCRATCH_0_PAIR GENMASK(20, 16)
#define GPII_n_CH_k_SCRATCH_0(pair, proto, seid) \
(FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair) | \
FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto) | \
FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid))
#define GPII_n_CH_k_SCRATCH_1_OFFS(n, k) (0x20064 + (0x4000 * (n)) + (0x80 * (k)))
#define GPII_n_CH_k_SCRATCH_2_OFFS(n, k) (0x20068 + (0x4000 * (n)) + (0x80 * (k)))
#define GPII_n_CH_k_SCRATCH_3_OFFS(n, k) (0x2006C + (0x4000 * (n)) + (0x80 * (k)))
struct __packed gpi_tre {
u32 dword[4];
};
enum msm_gpi_tce_code {
MSM_GPI_TCE_SUCCESS = 1,
MSM_GPI_TCE_EOT = 2,
MSM_GPI_TCE_EOB = 4,
MSM_GPI_TCE_UNEXP_ERR = 16,
};
#define CMD_TIMEOUT_MS (250)
#define MAX_CHANNELS_PER_GPII (2)
#define GPI_TX_CHAN (0)
#define GPI_RX_CHAN (1)
#define STATE_IGNORE (U32_MAX)
#define EV_FACTOR (2)
#define REQ_OF_DMA_ARGS (5) /* # of arguments required from client */
#define CHAN_TRES 64
struct __packed xfer_compl_event {
u64 ptr;
u32 length:24;
u8 code;
u16 status;
u8 type;
u8 chid;
};
struct __packed immediate_data_event {
u8 data_bytes[8];
u8 length:4;
u8 resvd:4;
u16 tre_index;
u8 code;
u16 status;
u8 type;
u8 chid;
};
struct __packed qup_notif_event {
u32 status;
u32 time;
u32 count:24;
u8 resvd;
u16 resvd1;
u8 type;
u8 chid;
};
struct __packed gpi_ere {
u32 dword[4];
};
enum GPI_EV_TYPE {
XFER_COMPLETE_EV_TYPE = 0x22,
IMMEDIATE_DATA_EV_TYPE = 0x30,
QUP_NOTIF_EV_TYPE = 0x31,
STALE_EV_TYPE = 0xFF,
};
union __packed gpi_event {
struct __packed xfer_compl_event xfer_compl_event;
struct __packed immediate_data_event immediate_data_event;
struct __packed qup_notif_event qup_notif_event;
struct __packed gpi_ere gpi_ere;
};
enum gpii_irq_settings {
DEFAULT_IRQ_SETTINGS,
MASK_IEOB_SETTINGS,
};
enum gpi_ev_state {
DEFAULT_EV_CH_STATE = 0,
EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE,
EV_STATE_ALLOCATED,
MAX_EV_STATES
};
static const char *const gpi_ev_state_str[MAX_EV_STATES] = {
[EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED",
[EV_STATE_ALLOCATED] = "ALLOCATED",
};
#define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \
"INVALID" : gpi_ev_state_str[(_state)])
enum gpi_ch_state {
DEFAULT_CH_STATE = 0x0,
CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE,
CH_STATE_ALLOCATED = 0x1,
CH_STATE_STARTED = 0x2,
CH_STATE_STOPPED = 0x3,
CH_STATE_STOP_IN_PROC = 0x4,
CH_STATE_ERROR = 0xf,
MAX_CH_STATES
};
enum gpi_cmd {
GPI_CH_CMD_BEGIN,
GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN,
GPI_CH_CMD_START,
GPI_CH_CMD_STOP,
GPI_CH_CMD_RESET,
GPI_CH_CMD_DE_ALLOC,
GPI_CH_CMD_UART_SW_STALE,
GPI_CH_CMD_UART_RFR_READY,
GPI_CH_CMD_UART_RFR_NOT_READY,
GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY,
GPI_EV_CMD_BEGIN,
GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN,
GPI_EV_CMD_RESET,
GPI_EV_CMD_DEALLOC,
GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC,
GPI_MAX_CMD,
};
#define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END)
static const char *const gpi_cmd_str[GPI_MAX_CMD] = {
[GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE",
[GPI_CH_CMD_START] = "CH START",
[GPI_CH_CMD_STOP] = "CH STOP",
[GPI_CH_CMD_RESET] = "CH_RESET",
[GPI_CH_CMD_DE_ALLOC] = "DE ALLOC",
[GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE",
[GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY",
[GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY",
[GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE",
[GPI_EV_CMD_RESET] = "EV RESET",
[GPI_EV_CMD_DEALLOC] = "EV DEALLOC",
};
#define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \
gpi_cmd_str[(_cmd)])
/*
* @DISABLE_STATE: no register access allowed
* @CONFIG_STATE: client has configured the channel
* @PREP_HARDWARE: register access is allowed
* however, no processing EVENTS
* @ACTIVE_STATE: channels are fully operational
* @PREPARE_TERMINATE: graceful termination of channels
* register access is allowed
* @PAUSE_STATE: channels are active, but not processing any events
*/
enum gpi_pm_state {
DISABLE_STATE,
CONFIG_STATE,
PREPARE_HARDWARE,
ACTIVE_STATE,
PREPARE_TERMINATE,
PAUSE_STATE,
MAX_PM_STATE
};
#define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE)
static const char *const gpi_pm_state_str[MAX_PM_STATE] = {
[DISABLE_STATE] = "DISABLE",
[CONFIG_STATE] = "CONFIG",
[PREPARE_HARDWARE] = "PREPARE HARDWARE",
[ACTIVE_STATE] = "ACTIVE",
[PREPARE_TERMINATE] = "PREPARE TERMINATE",
[PAUSE_STATE] = "PAUSE",
};
#define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \
"INVALID" : gpi_pm_state_str[(_state)])
static const struct {
enum gpi_cmd gpi_cmd;
u32 opcode;
u32 state;
} gpi_cmd_info[GPI_MAX_CMD] = {
{
GPI_CH_CMD_ALLOCATE,
GPII_n_CH_CMD_ALLOCATE,
CH_STATE_ALLOCATED,
},
{
GPI_CH_CMD_START,
GPII_n_CH_CMD_START,
CH_STATE_STARTED,
},
{
GPI_CH_CMD_STOP,
GPII_n_CH_CMD_STOP,
CH_STATE_STOPPED,
},
{
GPI_CH_CMD_RESET,
GPII_n_CH_CMD_RESET,
CH_STATE_ALLOCATED,
},
{
GPI_CH_CMD_DE_ALLOC,
GPII_n_CH_CMD_DE_ALLOC,
CH_STATE_NOT_ALLOCATED,
},
{
GPI_CH_CMD_UART_SW_STALE,
GPII_n_CH_CMD_UART_SW_STALE,
STATE_IGNORE,
},
{
GPI_CH_CMD_UART_RFR_READY,
GPII_n_CH_CMD_UART_RFR_READY,
STATE_IGNORE,
},
{
GPI_CH_CMD_UART_RFR_NOT_READY,
GPII_n_CH_CMD_UART_RFR_NOT_READY,
STATE_IGNORE,
},
{
GPI_EV_CMD_ALLOCATE,
GPII_n_EV_CH_CMD_ALLOCATE,
EV_STATE_ALLOCATED,
},
{
GPI_EV_CMD_RESET,
GPII_n_EV_CH_CMD_RESET,
EV_STATE_ALLOCATED,
},
{
GPI_EV_CMD_DEALLOC,
GPII_n_EV_CH_CMD_DE_ALLOC,
EV_STATE_NOT_ALLOCATED,
},
};
struct gpi_ring {
void *pre_aligned;
size_t alloc_size;
phys_addr_t phys_addr;
dma_addr_t dma_handle;
void *base;
void *wp;
void *rp;
u32 len;
u32 el_size;
u32 elements;
bool configured;
};
struct gpi_dev {
struct dma_device dma_device;
struct device *dev;
struct resource *res;
void __iomem *regs;
void __iomem *ee_base; /*ee register base address*/
u32 max_gpii; /* maximum # of gpii instances available per gpi block */
u32 gpii_mask; /* gpii instances available for apps */
u32 ev_factor; /* ev ring length factor */
struct gpii *gpiis;
};
struct gchan {
struct virt_dma_chan vc;
u32 chid;
u32 seid;
u32 protocol;
struct gpii *gpii;
enum gpi_ch_state ch_state;
enum gpi_pm_state pm_state;
void __iomem *ch_cntxt_base_reg;
void __iomem *ch_cntxt_db_reg;
void __iomem *ch_cmd_reg;
u32 dir;
struct gpi_ring ch_ring;
void *config;
};
struct gpii {
u32 gpii_id;
struct gchan gchan[MAX_CHANNELS_PER_GPII];
struct gpi_dev *gpi_dev;
int irq;
void __iomem *regs; /* points to gpi top */
void __iomem *ev_cntxt_base_reg;
void __iomem *ev_cntxt_db_reg;
void __iomem *ev_ring_rp_lsb_reg;
void __iomem *ev_cmd_reg;
void __iomem *ieob_clr_reg;
struct mutex ctrl_lock;
enum gpi_ev_state ev_state;
bool configured_irq;
enum gpi_pm_state pm_state;
rwlock_t pm_lock;
struct gpi_ring ev_ring;
struct tasklet_struct ev_task; /* event processing tasklet */
struct completion cmd_completion;
enum gpi_cmd gpi_cmd;
u32 cntxt_type_irq_msk;
bool ieob_set;
};
#define MAX_TRE 3
struct gpi_desc {
struct virt_dma_desc vd;
size_t len;
void *db; /* DB register to program */
struct gchan *gchan;
struct gpi_tre tre[MAX_TRE];
u32 num_tre;
};
static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = {
GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN
};
static irqreturn_t gpi_handle_irq(int irq, void *data);
static void gpi_ring_recycle_ev_element(struct gpi_ring *ring);
static int gpi_ring_add_element(struct gpi_ring *ring, void **wp);
static void gpi_process_events(struct gpii *gpii);
static inline struct gchan *to_gchan(struct dma_chan *dma_chan)
{
return container_of(dma_chan, struct gchan, vc.chan);
}
static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd)
{
return container_of(vd, struct gpi_desc, vd);
}
static inline phys_addr_t to_physical(const struct gpi_ring *const ring,
void *addr)
{
return ring->phys_addr + (addr - ring->base);
}
static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr)
{
return ring->base + (addr - ring->phys_addr);
}
static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr)
{
return readl_relaxed(addr);
}
static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val)
{
writel_relaxed(val, addr);
}
/* gpi_write_reg_field - write to specific bit field */
static inline void gpi_write_reg_field(struct gpii *gpii, void __iomem *addr,
u32 mask, u32 shift, u32 val)
{
u32 tmp = gpi_read_reg(gpii, addr);
tmp &= ~mask;
val = tmp | ((val << shift) & mask);
gpi_write_reg(gpii, addr, val);
}
static __always_inline void
gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val)
{
void __iomem *addr = gpii->regs + offset;
u32 tmp = gpi_read_reg(gpii, addr);
tmp &= ~mask;
tmp |= u32_encode_bits(val, mask);
gpi_write_reg(gpii, addr, tmp);
}
static void gpi_disable_interrupts(struct gpii *gpii)
{
gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0);
gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0);
gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0);
gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0);
gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
GPII_n_CNTXT_INTSET_BMSK, 0);
gpii->cntxt_type_irq_msk = 0;
devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii);
gpii->configured_irq = false;
}
/* configure and enable interrupts */
static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask)
{
const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL |
GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB |
GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB |
GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL |
GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
int ret;
if (!gpii->configured_irq) {
ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq,
gpi_handle_irq, IRQF_TRIGGER_HIGH,
"gpi-dma", gpii);
if (ret < 0) {
dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n",
gpii->irq, ret);
return ret;
}
}
if (settings == MASK_IEOB_SETTINGS) {
/*
* GPII only uses one EV ring per gpii so we can globally
* enable/disable IEOB interrupt
*/
if (mask)
gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
else
gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB);
gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk);
} else {
gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable);
gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK,
GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK);
gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK,
GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK);
gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK,
GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK);
gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
GPII_n_CNTXT_GPII_IRQ_EN_BMSK,
GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0);
gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0);
gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0);
gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0);
gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
GPII_n_CNTXT_INTSET_BMSK, 1);
gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0);
gpii->cntxt_type_irq_msk = enable;
}
gpii->configured_irq = true;
return 0;
}
/* Sends gpii event or channel command */
static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan,
enum gpi_cmd gpi_cmd)
{
u32 chid = MAX_CHANNELS_PER_GPII;
unsigned long timeout;
void __iomem *cmd_reg;
u32 cmd;
if (gpi_cmd >= GPI_MAX_CMD)
return -EINVAL;
if (IS_CHAN_CMD(gpi_cmd))
chid = gchan->chid;
dev_dbg(gpii->gpi_dev->dev,
"sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid);
/* send opcode and wait for completion */
reinit_completion(&gpii->cmd_completion);
gpii->gpi_cmd = gpi_cmd;
cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg;
cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) :
GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0);
gpi_write_reg(gpii, cmd_reg, cmd);
timeout = wait_for_completion_timeout(&gpii->cmd_completion,
msecs_to_jiffies(CMD_TIMEOUT_MS));
if (!timeout) {
dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n",
TO_GPI_CMD_STR(gpi_cmd), chid);
return -EIO;
}
/* confirm new ch state is correct , if the cmd is a state change cmd */
if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE)
return 0;
if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state)
return 0;
if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state)
return 0;
return -EIO;
}
/* program transfer ring DB register */
static inline void gpi_write_ch_db(struct gchan *gchan,
struct gpi_ring *ring, void *wp)
{
struct gpii *gpii = gchan->gpii;
phys_addr_t p_wp;
p_wp = to_physical(ring, wp);
gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp);
}
/* program event ring DB register */
static inline void gpi_write_ev_db(struct gpii *gpii,
struct gpi_ring *ring, void *wp)
{
phys_addr_t p_wp;
p_wp = ring->phys_addr + (wp - ring->base);
gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp);
}
/* process transfer completion interrupt */
static void gpi_process_ieob(struct gpii *gpii)
{
gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0);
tasklet_hi_schedule(&gpii->ev_task);
}
/* process channel control interrupt */
static void gpi_process_ch_ctrl_irq(struct gpii *gpii)
{
u32 gpii_id = gpii->gpii_id;
u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id);
u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
struct gchan *gchan;
u32 chid, state;
/* clear the status */
offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id);
gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq);
for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) {
if (!(BIT(chid) & ch_irq))
continue;
gchan = &gpii->gchan[chid];
state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg +
CNTXT_0_CONFIG);
state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state);
/*
* CH_CMD_DEALLOC cmd always successful. However cmd does
* not change hardware status. So overwriting software state
* to default state.
*/
if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC)
state = DEFAULT_CH_STATE;
gchan->ch_state = state;
/*
* Triggering complete all if ch_state is not a stop in process.
* Stop in process is a transition state and we will wait for
* stop interrupt before notifying.
*/
if (gchan->ch_state != CH_STATE_STOP_IN_PROC)
complete_all(&gpii->cmd_completion);
}
}
/* processing gpi general error interrupts */
static void gpi_process_gen_err_irq(struct gpii *gpii)
{
u32 gpii_id = gpii->gpii_id;
u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id);
u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
/* clear the status */
dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts);
/* Clear the register */
offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id);
gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
}
/* processing gpi level error interrupts */
static void gpi_process_glob_err_irq(struct gpii *gpii)
{
u32 gpii_id = gpii->gpii_id;
u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id);
u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id);
gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
/* only error interrupt should be set */
if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) {
dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts);
return;
}
offset = GPII_n_ERROR_LOG_OFFS(gpii_id);
gpi_write_reg(gpii, gpii->regs + offset, 0);
}
/* gpii interrupt handler */
static irqreturn_t gpi_handle_irq(int irq, void *data)
{
struct gpii *gpii = data;
u32 gpii_id = gpii->gpii_id;
u32 type, offset;
unsigned long flags;
read_lock_irqsave(&gpii->pm_lock, flags);
/*
* States are out of sync to receive interrupt
* while software state is in DISABLE state, bailing out.
*/
if (!REG_ACCESS_VALID(gpii->pm_state)) {
dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n",
TO_GPI_PM_STR(gpii->pm_state));
goto exit_irq;
}
offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
type = gpi_read_reg(gpii, gpii->regs + offset);
do {
/* global gpii error */
if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) {
gpi_process_glob_err_irq(gpii);
type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB);
}
/* transfer complete interrupt */
if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) {
gpi_process_ieob(gpii);
type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
}
/* event control irq */
if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) {
u32 ev_state;
u32 ev_ch_irq;
dev_dbg(gpii->gpi_dev->dev,
"processing EV CTRL interrupt\n");
offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id);
ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS
(gpii_id);
gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq);
ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg +
CNTXT_0_CONFIG);
ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state);
/*
* CMD EV_CMD_DEALLOC is always successful. However
* cmd does not change hardware status. So overwriting
* software state to default state.
*/
if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC)
ev_state = DEFAULT_EV_CH_STATE;
gpii->ev_state = ev_state;
dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n",
TO_GPI_EV_STATE_STR(gpii->ev_state));
complete_all(&gpii->cmd_completion);
type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL);
}
/* channel control irq */
if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) {
dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n");
gpi_process_ch_ctrl_irq(gpii);
type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
}
if (type) {
dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type);
gpi_process_gen_err_irq(gpii);
goto exit_irq;
}
offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
type = gpi_read_reg(gpii, gpii->regs + offset);
} while (type);
exit_irq:
read_unlock_irqrestore(&gpii->pm_lock, flags);
return IRQ_HANDLED;
}
/* process DMA Immediate completion data events */
static void gpi_process_imed_data_event(struct gchan *gchan,
struct immediate_data_event *imed_event)
{
struct gpii *gpii = gchan->gpii;
struct gpi_ring *ch_ring = &gchan->ch_ring;
void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index);
struct dmaengine_result result;
struct gpi_desc *gpi_desc;
struct virt_dma_desc *vd;
unsigned long flags;
u32 chid;
/*
* If channel not active don't process event
*/
if (gchan->pm_state != ACTIVE_STATE) {
dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
TO_GPI_PM_STR(gchan->pm_state));
return;
}
spin_lock_irqsave(&gchan->vc.lock, flags);
vd = vchan_next_desc(&gchan->vc);
if (!vd) {
struct gpi_ere *gpi_ere;
struct gpi_tre *gpi_tre;
spin_unlock_irqrestore(&gchan->vc.lock, flags);
dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n");
gpi_ere = (struct gpi_ere *)imed_event;
dev_dbg(gpii->gpi_dev->dev,
"Event: %08x %08x %08x %08x\n",
gpi_ere->dword[0], gpi_ere->dword[1],
gpi_ere->dword[2], gpi_ere->dword[3]);
gpi_tre = tre;
dev_dbg(gpii->gpi_dev->dev,
"Pending TRE: %08x %08x %08x %08x\n",
gpi_tre->dword[0], gpi_tre->dword[1],
gpi_tre->dword[2], gpi_tre->dword[3]);
return;
}
gpi_desc = to_gpi_desc(vd);
spin_unlock_irqrestore(&gchan->vc.lock, flags);
/*
* RP pointed by Event is to last TRE processed,
* we need to update ring rp to tre + 1
*/
tre += ch_ring->el_size;
if (tre >= (ch_ring->base + ch_ring->len))
tre = ch_ring->base;
ch_ring->rp = tre;
/* make sure rp updates are immediately visible to all cores */
smp_wmb();
chid = imed_event->chid;
if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
if (chid == GPI_RX_CHAN)
goto gpi_free_desc;
else
return;
}
if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR)
result.result = DMA_TRANS_ABORTED;
else
result.result = DMA_TRANS_NOERROR;
result.residue = gpi_desc->len - imed_event->length;
dma_cookie_complete(&vd->tx);
dmaengine_desc_get_callback_invoke(&vd->tx, &result);
gpi_free_desc:
spin_lock_irqsave(&gchan->vc.lock, flags);
list_del(&vd->node);
spin_unlock_irqrestore(&gchan->vc.lock, flags);
kfree(gpi_desc);
gpi_desc = NULL;
}
/* processing transfer completion events */
static void gpi_process_xfer_compl_event(struct gchan *gchan,
struct xfer_compl_event *compl_event)
{
struct gpii *gpii = gchan->gpii;
struct gpi_ring *ch_ring = &gchan->ch_ring;
void *ev_rp = to_virtual(ch_ring, compl_event->ptr);
struct virt_dma_desc *vd;
struct gpi_desc *gpi_desc;
struct dmaengine_result result;
unsigned long flags;
u32 chid;
/* only process events on active channel */
if (unlikely(gchan->pm_state != ACTIVE_STATE)) {
dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
TO_GPI_PM_STR(gchan->pm_state));
return;
}
spin_lock_irqsave(&gchan->vc.lock, flags);
vd = vchan_next_desc(&gchan->vc);
if (!vd) {
struct gpi_ere *gpi_ere;
spin_unlock_irqrestore(&gchan->vc.lock, flags);
dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n");
gpi_ere = (struct gpi_ere *)compl_event;
dev_err(gpii->gpi_dev->dev,
"Event: %08x %08x %08x %08x\n",
gpi_ere->dword[0], gpi_ere->dword[1],
gpi_ere->dword[2], gpi_ere->dword[3]);
return;
}
gpi_desc = to_gpi_desc(vd);
spin_unlock_irqrestore(&gchan->vc.lock, flags);
/*
* RP pointed by Event is to last TRE processed,
* we need to update ring rp to ev_rp + 1
*/
ev_rp += ch_ring->el_size;
if (ev_rp >= (ch_ring->base + ch_ring->len))
ev_rp = ch_ring->base;
ch_ring->rp = ev_rp;
/* update must be visible to other cores */
smp_wmb();
chid = compl_event->chid;
if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
if (chid == GPI_RX_CHAN)
goto gpi_free_desc;
else
return;
}
if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) {
dev_err(gpii->gpi_dev->dev, "Error in Transaction\n");
result.result = DMA_TRANS_ABORTED;
} else {
dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n");
result.result = DMA_TRANS_NOERROR;
}
result.residue = gpi_desc->len - compl_event->length;
dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue);
dma_cookie_complete(&vd->tx);
dmaengine_desc_get_callback_invoke(&vd->tx, &result);
gpi_free_desc:
spin_lock_irqsave(&gchan->vc.lock, flags);
list_del(&vd->node);
spin_unlock_irqrestore(&gchan->vc.lock, flags);
kfree(gpi_desc);
gpi_desc = NULL;
}
/* process all events */
static void gpi_process_events(struct gpii *gpii)
{
struct gpi_ring *ev_ring = &gpii->ev_ring;
phys_addr_t cntxt_rp;
void *rp;
union gpi_event *gpi_event;
struct gchan *gchan;
u32 chid, type;
cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
rp = to_virtual(ev_ring, cntxt_rp);
do {
while (rp != ev_ring->rp) {
gpi_event = ev_ring->rp;
chid = gpi_event->xfer_compl_event.chid;
type = gpi_event->xfer_compl_event.type;
dev_dbg(gpii->gpi_dev->dev,
"Event: CHID:%u, type:%x %08x %08x %08x %08x\n",
chid, type, gpi_event->gpi_ere.dword[0],
gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2],
gpi_event->gpi_ere.dword[3]);
switch (type) {
case XFER_COMPLETE_EV_TYPE:
gchan = &gpii->gchan[chid];
gpi_process_xfer_compl_event(gchan,
&gpi_event->xfer_compl_event);
break;
case STALE_EV_TYPE:
dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n");
break;
case IMMEDIATE_DATA_EV_TYPE:
gchan = &gpii->gchan[chid];
gpi_process_imed_data_event(gchan,
&gpi_event->immediate_data_event);
break;
case QUP_NOTIF_EV_TYPE:
dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n");
break;
default:
dev_dbg(gpii->gpi_dev->dev,
"not supported event type:0x%x\n", type);
}
gpi_ring_recycle_ev_element(ev_ring);
}
gpi_write_ev_db(gpii, ev_ring, ev_ring->wp);
/* clear pending IEOB events */
gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
rp = to_virtual(ev_ring, cntxt_rp);
} while (rp != ev_ring->rp);
}
/* processing events using tasklet */
static void gpi_ev_tasklet(unsigned long data)
{
struct gpii *gpii = (struct gpii *)data;
read_lock(&gpii->pm_lock);
if (!REG_ACCESS_VALID(gpii->pm_state)) {
read_unlock(&gpii->pm_lock);
dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n",
TO_GPI_PM_STR(gpii->pm_state));
return;
}
/* process the events */
gpi_process_events(gpii);
/* enable IEOB, switching back to interrupts */
gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1);
read_unlock(&gpii->pm_lock);
}
/* marks all pending events for the channel as stale */
static void gpi_mark_stale_events(struct gchan *gchan)
{
struct gpii *gpii = gchan->gpii;
struct gpi_ring *ev_ring = &gpii->ev_ring;
u32 cntxt_rp, local_rp;
void *ev_rp;
cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
ev_rp = ev_ring->rp;
local_rp = (u32)to_physical(ev_ring, ev_rp);
while (local_rp != cntxt_rp) {
union gpi_event *gpi_event = ev_rp;
u32 chid = gpi_event->xfer_compl_event.chid;
if (chid == gchan->chid)
gpi_event->xfer_compl_event.type = STALE_EV_TYPE;
ev_rp += ev_ring->el_size;
if (ev_rp >= (ev_ring->base + ev_ring->len))
ev_rp = ev_ring->base;
cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
local_rp = (u32)to_physical(ev_ring, ev_rp);
}
}
/* reset sw state and issue channel reset or de-alloc */
static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd)
{
struct gpii *gpii = gchan->gpii;
struct gpi_ring *ch_ring = &gchan->ch_ring;
LIST_HEAD(list);
int ret;
ret = gpi_send_cmd(gpii, gchan, gpi_cmd);
if (ret) {
dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
TO_GPI_CMD_STR(gpi_cmd), ret);
return ret;
}
/* initialize the local ring ptrs */
ch_ring->rp = ch_ring->base;
ch_ring->wp = ch_ring->base;
/* visible to other cores */
smp_wmb();
/* check event ring for any stale events */
write_lock_irq(&gpii->pm_lock);
gpi_mark_stale_events(gchan);
/* remove all async descriptors */
spin_lock(&gchan->vc.lock);
vchan_get_all_descriptors(&gchan->vc, &list);
spin_unlock(&gchan->vc.lock);
write_unlock_irq(&gpii->pm_lock);
vchan_dma_desc_free_list(&gchan->vc, &list);
return 0;
}
static int gpi_start_chan(struct gchan *gchan)
{
struct gpii *gpii = gchan->gpii;
int ret;
ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START);
if (ret) {
dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
TO_GPI_CMD_STR(GPI_CH_CMD_START), ret);
return ret;
}
/* gpii CH is active now */
write_lock_irq(&gpii->pm_lock);
gchan->pm_state = ACTIVE_STATE;
write_unlock_irq(&gpii->pm_lock);
return 0;
}
static int gpi_stop_chan(struct gchan *gchan)
{
struct gpii *gpii = gchan->gpii;
int ret;
ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP);
if (ret) {
dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret);
return ret;
}
return 0;
}
/* allocate and configure the transfer channel */
static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd)
{
struct gpii *gpii = chan->gpii;
struct gpi_ring *ring = &chan->ch_ring;
int ret;
u32 id = gpii->gpii_id;
u32 chid = chan->chid;
u32 pair_chid = !chid;
if (send_alloc_cmd) {
ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE);
if (ret) {
dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret);
return ret;
}
}
gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG,
GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI));
gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len);
gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr);
gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB,
upper_32_bits(ring->phys_addr));
gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
upper_32_bits(ring->phys_addr));
gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid),
GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid));
gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0);
gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0);
gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0);
gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1);
/* flush all the writes */
wmb();
return 0;
}
/* allocate and configure event ring */
static int gpi_alloc_ev_chan(struct gpii *gpii)
{
struct gpi_ring *ring = &gpii->ev_ring;
void __iomem *base = gpii->ev_cntxt_base_reg;
int ret;
ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE);
if (ret) {
dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n",
TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret);
return ret;
}
/* program event context */
gpi_write_reg(gpii, base + CNTXT_0_CONFIG,
GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV));
gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len);
gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr));
gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr));
gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
upper_32_bits(ring->phys_addr));
gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0);
gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0);
gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0);
gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0);
/* add events to ring */
ring->wp = (ring->base + ring->len - ring->el_size);
/* flush all the writes */
wmb();
/* gpii is active now */
write_lock_irq(&gpii->pm_lock);
gpii->pm_state = ACTIVE_STATE;
write_unlock_irq(&gpii->pm_lock);
gpi_write_ev_db(gpii, ring, ring->wp);
return 0;
}
/* calculate # of ERE/TRE available to queue */
static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring)
{
int elements = 0;
if (ring->wp < ring->rp) {
elements = ((ring->rp - ring->wp) / ring->el_size) - 1;
} else {
elements = (ring->rp - ring->base) / ring->el_size;
elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1;
}
return elements;
}
static int gpi_ring_add_element(struct gpi_ring *ring, void **wp)
{
if (gpi_ring_num_elements_avail(ring) <= 0)
return -ENOMEM;
*wp = ring->wp;
ring->wp += ring->el_size;
if (ring->wp >= (ring->base + ring->len))
ring->wp = ring->base;
/* visible to other cores */
smp_wmb();
return 0;
}
static void gpi_ring_recycle_ev_element(struct gpi_ring *ring)
{
/* Update the WP */
ring->wp += ring->el_size;
if (ring->wp >= (ring->base + ring->len))
ring->wp = ring->base;
/* Update the RP */
ring->rp += ring->el_size;
if (ring->rp >= (ring->base + ring->len))
ring->rp = ring->base;
/* visible to other cores */
smp_wmb();
}
static void gpi_free_ring(struct gpi_ring *ring,
struct gpii *gpii)
{
dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size,
ring->pre_aligned, ring->dma_handle);
memset(ring, 0, sizeof(*ring));
}
/* allocate memory for transfer and event rings */
static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements,
u32 el_size, struct gpii *gpii)
{
u64 len = elements * el_size;
int bit;
/* ring len must be power of 2 */
bit = find_last_bit((unsigned long *)&len, 32);
if (((1 << bit) - 1) & len)
bit++;
len = 1 << bit;
ring->alloc_size = (len + (len - 1));
dev_dbg(gpii->gpi_dev->dev,
"#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n",
elements, el_size, (elements * el_size), len,
ring->alloc_size);
ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev,
ring->alloc_size,
&ring->dma_handle, GFP_KERNEL);
if (!ring->pre_aligned) {
dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n",
ring->alloc_size);
return -ENOMEM;
}
/* align the physical mem */
ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1);
ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle);
ring->rp = ring->base;
ring->wp = ring->base;
ring->len = len;
ring->el_size = el_size;
ring->elements = ring->len / ring->el_size;
memset(ring->base, 0, ring->len);
ring->configured = true;
/* update to other cores */
smp_wmb();
dev_dbg(gpii->gpi_dev->dev,
"phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n",
&ring->dma_handle, &ring->phys_addr, ring->len,
ring->el_size, ring->elements);
return 0;
}
/* copy tre into transfer ring */
static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan,
struct gpi_tre *gpi_tre, void **wp)
{
struct gpi_tre *ch_tre;
int ret;
/* get next tre location we can copy */
ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre);
if (unlikely(ret)) {
dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n");
return;
}
/* copy the tre info */
memcpy(ch_tre, gpi_tre, sizeof(*ch_tre));
*wp = ch_tre;
}
/* reset and restart transfer channel */
static int gpi_terminate_all(struct dma_chan *chan)
{
struct gchan *gchan = to_gchan(chan);
struct gpii *gpii = gchan->gpii;
int schid, echid, i;
int ret = 0;
mutex_lock(&gpii->ctrl_lock);
/*
* treat both channels as a group if its protocol is not UART
* STOP, RESET, or START needs to be in lockstep
*/
schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0;
echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII;
/* stop the channel */
for (i = schid; i < echid; i++) {
gchan = &gpii->gchan[i];
/* disable ch state so no more TRE processing */
write_lock_irq(&gpii->pm_lock);
gchan->pm_state = PREPARE_TERMINATE;
write_unlock_irq(&gpii->pm_lock);
/* send command to Stop the channel */
ret = gpi_stop_chan(gchan);
}
/* reset the channels (clears any pending tre) */
for (i = schid; i < echid; i++) {
gchan = &gpii->gchan[i];
ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET);
if (ret) {
dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret);
goto terminate_exit;
}
/* reprogram channel CNTXT */
ret = gpi_alloc_chan(gchan, false);
if (ret) {
dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret);
goto terminate_exit;
}
}
/* restart the channels */
for (i = schid; i < echid; i++) {
gchan = &gpii->gchan[i];
ret = gpi_start_chan(gchan);
if (ret) {
dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret);
goto terminate_exit;
}
}
terminate_exit:
mutex_unlock(&gpii->ctrl_lock);
return ret;
}
/* pause dma transfer for all channels */
static int gpi_pause(struct dma_chan *chan)
{
struct gchan *gchan = to_gchan(chan);
struct gpii *gpii = gchan->gpii;
int i, ret;
mutex_lock(&gpii->ctrl_lock);
/*
* pause/resume are per gpii not per channel, so
* client needs to call pause only once
*/
if (gpii->pm_state == PAUSE_STATE) {
dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n");
mutex_unlock(&gpii->ctrl_lock);
return 0;
}
/* send stop command to stop the channels */
for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
ret = gpi_stop_chan(&gpii->gchan[i]);
if (ret) {
mutex_unlock(&gpii->ctrl_lock);
return ret;
}
}
disable_irq(gpii->irq);
/* Wait for threads to complete out */
tasklet_kill(&gpii->ev_task);
write_lock_irq(&gpii->pm_lock);
gpii->pm_state = PAUSE_STATE;
write_unlock_irq(&gpii->pm_lock);
mutex_unlock(&gpii->ctrl_lock);
return 0;
}
/* resume dma transfer */
static int gpi_resume(struct dma_chan *chan)
{
struct gchan *gchan = to_gchan(chan);
struct gpii *gpii = gchan->gpii;
int i, ret;
mutex_lock(&gpii->ctrl_lock);
if (gpii->pm_state == ACTIVE_STATE) {
dev_dbg(gpii->gpi_dev->dev, "channel is already active\n");
mutex_unlock(&gpii->ctrl_lock);
return 0;
}
enable_irq(gpii->irq);
/* send start command to start the channels */
for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START);
if (ret) {
dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret);
mutex_unlock(&gpii->ctrl_lock);
return ret;
}
}
write_lock_irq(&gpii->pm_lock);
gpii->pm_state = ACTIVE_STATE;
write_unlock_irq(&gpii->pm_lock);
mutex_unlock(&gpii->ctrl_lock);
return 0;
}
static void gpi_desc_free(struct virt_dma_desc *vd)
{
struct gpi_desc *gpi_desc = to_gpi_desc(vd);
kfree(gpi_desc);
gpi_desc = NULL;
}
static int
gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config)
{
struct gchan *gchan = to_gchan(chan);
if (!config->peripheral_config)
return -EINVAL;
gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT);
if (!gchan->config)
return -ENOMEM;
memcpy(gchan->config, config->peripheral_config, config->peripheral_size);
return 0;
}
static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc,
struct scatterlist *sgl, enum dma_transfer_direction direction)
{
struct gpi_i2c_config *i2c = chan->config;
struct device *dev = chan->gpii->gpi_dev->dev;
unsigned int tre_idx = 0;
dma_addr_t address;
struct gpi_tre *tre;
unsigned int i;
/* first create config tre if applicable */
if (i2c->set_config) {
tre = &desc->tre[tre_idx];
tre_idx++;
tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW);
tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH);
tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL);
tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK);
tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK);
tre->dword[1] = 0;
tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV);
tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
}
/* create the GO tre for Tx */
if (i2c->op == I2C_WRITE) {
tre = &desc->tre[tre_idx];
tre_idx++;
if (i2c->multi_msg)
tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD);
else
tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD);
tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR);
tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH);
tre->dword[1] = 0;
tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN);
tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
if (i2c->multi_msg)
tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
else
tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
}
if (i2c->op == I2C_READ || i2c->multi_msg == false) {
/* create the DMA TRE */
tre = &desc->tre[tre_idx];
tre_idx++;
address = sg_dma_address(sgl);
tre->dword[0] = lower_32_bits(address);
tre->dword[1] = upper_32_bits(address);
tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
}
for (i = 0; i < tre_idx; i++)
dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
return tre_idx;
}
static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc,
struct scatterlist *sgl, enum dma_transfer_direction direction)
{
struct gpi_spi_config *spi = chan->config;
struct device *dev = chan->gpii->gpi_dev->dev;
unsigned int tre_idx = 0;
dma_addr_t address;
struct gpi_tre *tre;
unsigned int i;
/* first create config tre if applicable */
if (direction == DMA_MEM_TO_DEV && spi->set_config) {
tre = &desc->tre[tre_idx];
tre_idx++;
tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ);
tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK);
tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL);
tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA);
tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK);
tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK);
tre->dword[1] = 0;
tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV);
tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC);
tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
}
/* create the GO tre for Tx */
if (direction == DMA_MEM_TO_DEV) {
tre = &desc->tre[tre_idx];
tre_idx++;
tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG);
tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS);
tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD);
tre->dword[1] = 0;
tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN);
tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
if (spi->cmd == SPI_RX) {
tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB);
tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
} else if (spi->cmd == SPI_TX) {
tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
} else { /* SPI_DUPLEX */
tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
}
}
/* create the dma tre */
tre = &desc->tre[tre_idx];
tre_idx++;
address = sg_dma_address(sgl);
tre->dword[0] = lower_32_bits(address);
tre->dword[1] = upper_32_bits(address);
tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
if (direction == DMA_MEM_TO_DEV)
tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
for (i = 0; i < tre_idx; i++)
dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
return tre_idx;
}
/* copy tre into transfer ring */
static struct dma_async_tx_descriptor *
gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct gchan *gchan = to_gchan(chan);
struct gpii *gpii = gchan->gpii;
struct device *dev = gpii->gpi_dev->dev;
struct gpi_ring *ch_ring = &gchan->ch_ring;
struct gpi_desc *gpi_desc;
u32 nr, nr_tre = 0;
u8 set_config;
int i;
gpii->ieob_set = false;
if (!is_slave_direction(direction)) {
dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction);
return NULL;
}
if (sg_len > 1) {
dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len);
return NULL;
}
nr_tre = 3;
set_config = *(u32 *)gchan->config;
if (!set_config)
nr_tre = 2;
if (direction == DMA_DEV_TO_MEM) /* rx */
nr_tre = 1;
/* calculate # of elements required & available */
nr = gpi_ring_num_elements_avail(ch_ring);
if (nr < nr_tre) {
dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre);
return NULL;
}
gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT);
if (!gpi_desc)
return NULL;
/* create TREs for xfer */
if (gchan->protocol == QCOM_GPI_SPI) {
i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction);
} else if (gchan->protocol == QCOM_GPI_I2C) {
i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction);
} else {
dev_err(dev, "invalid peripheral: %d\n", gchan->protocol);
kfree(gpi_desc);
return NULL;
}
/* set up the descriptor */
gpi_desc->gchan = gchan;
gpi_desc->len = sg_dma_len(sgl);
gpi_desc->num_tre = i;
return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags);
}
/* rings transfer ring db to being transfer */
static void gpi_issue_pending(struct dma_chan *chan)
{
struct gchan *gchan = to_gchan(chan);
struct gpii *gpii = gchan->gpii;
unsigned long flags, pm_lock_flags;
struct virt_dma_desc *vd = NULL;
struct gpi_desc *gpi_desc;
struct gpi_ring *ch_ring = &gchan->ch_ring;
void *tre, *wp = NULL;
int i;
read_lock_irqsave(&gpii->pm_lock, pm_lock_flags);
/* move all submitted descriptors to issued list */
spin_lock_irqsave(&gchan->vc.lock, flags);
if (vchan_issue_pending(&gchan->vc))
vd = list_last_entry(&gchan->vc.desc_issued,
struct virt_dma_desc, node);
spin_unlock_irqrestore(&gchan->vc.lock, flags);
/* nothing to do list is empty */
if (!vd) {
read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
return;
}
gpi_desc = to_gpi_desc(vd);
for (i = 0; i < gpi_desc->num_tre; i++) {
tre = &gpi_desc->tre[i];
gpi_queue_xfer(gpii, gchan, tre, &wp);
}
gpi_desc->db = ch_ring->wp;
gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db);
read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
}
static int gpi_ch_init(struct gchan *gchan)
{
struct gpii *gpii = gchan->gpii;
const int ev_factor = gpii->gpi_dev->ev_factor;
u32 elements;
int i = 0, ret = 0;
gchan->pm_state = CONFIG_STATE;
/* check if both channels are configured before continue */
for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
if (gpii->gchan[i].pm_state != CONFIG_STATE)
goto exit_gpi_init;
/* protocol must be same for both channels */
if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) {
dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n",
gpii->gchan[0].protocol, gpii->gchan[1].protocol);
ret = -EINVAL;
goto exit_gpi_init;
}
/* allocate memory for event ring */
elements = CHAN_TRES << ev_factor;
ret = gpi_alloc_ring(&gpii->ev_ring, elements,
sizeof(union gpi_event), gpii);
if (ret)
goto exit_gpi_init;
/* configure interrupts */
write_lock_irq(&gpii->pm_lock);
gpii->pm_state = PREPARE_HARDWARE;
write_unlock_irq(&gpii->pm_lock);
ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0);
if (ret) {
dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret);
goto error_config_int;
}
/* allocate event rings */
ret = gpi_alloc_ev_chan(gpii);
if (ret) {
dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret);
goto error_alloc_ev_ring;
}
/* Allocate all channels */
for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
ret = gpi_alloc_chan(&gpii->gchan[i], true);
if (ret) {
dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret);
goto error_alloc_chan;
}
}
/* start channels */
for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
ret = gpi_start_chan(&gpii->gchan[i]);
if (ret) {
dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret);
goto error_start_chan;
}
}
return ret;
error_start_chan:
for (i = i - 1; i >= 0; i--) {
gpi_stop_chan(&gpii->gchan[i]);
gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
}
i = 2;
error_alloc_chan:
for (i = i - 1; i >= 0; i--)
gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
error_alloc_ev_ring:
gpi_disable_interrupts(gpii);
error_config_int:
gpi_free_ring(&gpii->ev_ring, gpii);
exit_gpi_init:
return ret;
}
/* release all channel resources */
static void gpi_free_chan_resources(struct dma_chan *chan)
{
struct gchan *gchan = to_gchan(chan);
struct gpii *gpii = gchan->gpii;
enum gpi_pm_state cur_state;
int ret, i;
mutex_lock(&gpii->ctrl_lock);
cur_state = gchan->pm_state;
/* disable ch state so no more TRE processing for this channel */
write_lock_irq(&gpii->pm_lock);
gchan->pm_state = PREPARE_TERMINATE;
write_unlock_irq(&gpii->pm_lock);
/* attempt to do graceful hardware shutdown */
if (cur_state == ACTIVE_STATE) {
gpi_stop_chan(gchan);
ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
if (ret)
dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret);
gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
}
/* free all allocated memory */
gpi_free_ring(&gchan->ch_ring, gpii);
vchan_free_chan_resources(&gchan->vc);
kfree(gchan->config);
write_lock_irq(&gpii->pm_lock);
gchan->pm_state = DISABLE_STATE;
write_unlock_irq(&gpii->pm_lock);
/* if other rings are still active exit */
for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
if (gpii->gchan[i].ch_ring.configured)
goto exit_free;
/* deallocate EV Ring */
cur_state = gpii->pm_state;
write_lock_irq(&gpii->pm_lock);
gpii->pm_state = PREPARE_TERMINATE;
write_unlock_irq(&gpii->pm_lock);
/* wait for threads to complete out */
tasklet_kill(&gpii->ev_task);
/* send command to de allocate event ring */
if (cur_state == ACTIVE_STATE)
gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC);
gpi_free_ring(&gpii->ev_ring, gpii);
/* disable interrupts */
if (cur_state == ACTIVE_STATE)
gpi_disable_interrupts(gpii);
/* set final state to disable */
write_lock_irq(&gpii->pm_lock);
gpii->pm_state = DISABLE_STATE;
write_unlock_irq(&gpii->pm_lock);
exit_free:
mutex_unlock(&gpii->ctrl_lock);
}
/* allocate channel resources */
static int gpi_alloc_chan_resources(struct dma_chan *chan)
{
struct gchan *gchan = to_gchan(chan);
struct gpii *gpii = gchan->gpii;
int ret;
mutex_lock(&gpii->ctrl_lock);
/* allocate memory for transfer ring */
ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES,
sizeof(struct gpi_tre), gpii);
if (ret)
goto xfer_alloc_err;
ret = gpi_ch_init(gchan);
mutex_unlock(&gpii->ctrl_lock);
return ret;
xfer_alloc_err:
mutex_unlock(&gpii->ctrl_lock);
return ret;
}
static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid)
{
struct gchan *tx_chan, *rx_chan;
unsigned int gpii;
/* check if same seid is already configured for another chid */
for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
if (!((1 << gpii) & gpi_dev->gpii_mask))
continue;
tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
if (rx_chan->vc.chan.client_count && rx_chan->seid == seid)
return gpii;
if (tx_chan->vc.chan.client_count && tx_chan->seid == seid)
return gpii;
}
/* no channels configured with same seid, return next avail gpii */
for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
if (!((1 << gpii) & gpi_dev->gpii_mask))
continue;
tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
/* check if gpii is configured */
if (tx_chan->vc.chan.client_count ||
rx_chan->vc.chan.client_count)
continue;
/* found a free gpii */
return gpii;
}
/* no gpii instance available to use */
return -EIO;
}
/* gpi_of_dma_xlate: open client requested channel */
static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args,
struct of_dma *of_dma)
{
struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data;
u32 seid, chid;
int gpii;
struct gchan *gchan;
if (args->args_count < 3) {
dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n",
args->args_count);
return NULL;
}
chid = args->args[0];
if (chid >= MAX_CHANNELS_PER_GPII) {
dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid);
return NULL;
}
seid = args->args[1];
/* find next available gpii to use */
gpii = gpi_find_avail_gpii(gpi_dev, seid);
if (gpii < 0) {
dev_err(gpi_dev->dev, "no available gpii instances\n");
return NULL;
}
gchan = &gpi_dev->gpiis[gpii].gchan[chid];
if (gchan->vc.chan.client_count) {
dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n",
gpii, chid, gchan->seid);
return NULL;
}
gchan->seid = seid;
gchan->protocol = args->args[2];
return dma_get_slave_channel(&gchan->vc.chan);
}
static int gpi_probe(struct platform_device *pdev)
{
struct gpi_dev *gpi_dev;
unsigned int i;
u32 ee_offset;
int ret;
gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL);
if (!gpi_dev)
return -ENOMEM;
gpi_dev->dev = &pdev->dev;
gpi_dev->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &gpi_dev->res);
if (IS_ERR(gpi_dev->regs))
return PTR_ERR(gpi_dev->regs);
gpi_dev->ee_base = gpi_dev->regs;
ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels",
&gpi_dev->max_gpii);
if (ret) {
dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n");
return ret;
}
ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask",
&gpi_dev->gpii_mask);
if (ret) {
dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n");
return ret;
}
ee_offset = (uintptr_t)device_get_match_data(gpi_dev->dev);
gpi_dev->ee_base = gpi_dev->ee_base - ee_offset;
gpi_dev->ev_factor = EV_FACTOR;
ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64));
if (ret) {
dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret);
return ret;
}
gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) *
gpi_dev->max_gpii, GFP_KERNEL);
if (!gpi_dev->gpiis)
return -ENOMEM;
/* setup all the supported gpii */
INIT_LIST_HEAD(&gpi_dev->dma_device.channels);
for (i = 0; i < gpi_dev->max_gpii; i++) {
struct gpii *gpii = &gpi_dev->gpiis[i];
int chan;
if (!((1 << i) & gpi_dev->gpii_mask))
continue;
/* set up ev cntxt register map */
gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0);
gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0);
gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB;
gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i);
gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i);
/* set up irq */
ret = platform_get_irq(pdev, i);
if (ret < 0)
return ret;
gpii->irq = ret;
/* set up channel specific register info */
for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) {
struct gchan *gchan = &gpii->gchan[chan];
/* set up ch cntxt register map */
gchan->ch_cntxt_base_reg = gpi_dev->ee_base +
GPII_n_CH_k_CNTXT_0_OFFS(i, chan);
gchan->ch_cntxt_db_reg = gpi_dev->ee_base +
GPII_n_CH_k_DOORBELL_0_OFFS(i, chan);
gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i);
/* vchan setup */
vchan_init(&gchan->vc, &gpi_dev->dma_device);
gchan->vc.desc_free = gpi_desc_free;
gchan->chid = chan;
gchan->gpii = gpii;
gchan->dir = GPII_CHAN_DIR[chan];
}
mutex_init(&gpii->ctrl_lock);
rwlock_init(&gpii->pm_lock);
tasklet_init(&gpii->ev_task, gpi_ev_tasklet,
(unsigned long)gpii);
init_completion(&gpii->cmd_completion);
gpii->gpii_id = i;
gpii->regs = gpi_dev->ee_base;
gpii->gpi_dev = gpi_dev;
}
platform_set_drvdata(pdev, gpi_dev);
/* clear and Set capabilities */
dma_cap_zero(gpi_dev->dma_device.cap_mask);
dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask);
/* configure dmaengine apis */
gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources;
gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources;
gpi_dev->dma_device.device_tx_status = dma_cookie_status;
gpi_dev->dma_device.device_issue_pending = gpi_issue_pending;
gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg;
gpi_dev->dma_device.device_config = gpi_peripheral_config;
gpi_dev->dma_device.device_terminate_all = gpi_terminate_all;
gpi_dev->dma_device.dev = gpi_dev->dev;
gpi_dev->dma_device.device_pause = gpi_pause;
gpi_dev->dma_device.device_resume = gpi_resume;
/* register with dmaengine framework */
ret = dma_async_device_register(&gpi_dev->dma_device);
if (ret) {
dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret);
return ret;
}
ret = of_dma_controller_register(gpi_dev->dev->of_node,
gpi_of_dma_xlate, gpi_dev);
if (ret) {
dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret);
return ret;
}
return ret;
}
static const struct of_device_id gpi_of_match[] = {
{ .compatible = "qcom,sdm845-gpi-dma", .data = (void *)0x0 },
{ .compatible = "qcom,sm6350-gpi-dma", .data = (void *)0x10000 },
/*
* Do not grow the list for compatible devices. Instead use
* qcom,sdm845-gpi-dma (for ee_offset = 0x0) or qcom,sm6350-gpi-dma
* (for ee_offset = 0x10000).
*/
{ .compatible = "qcom,sc7280-gpi-dma", .data = (void *)0x10000 },
{ .compatible = "qcom,sm8150-gpi-dma", .data = (void *)0x0 },
{ .compatible = "qcom,sm8250-gpi-dma", .data = (void *)0x0 },
{ .compatible = "qcom,sm8350-gpi-dma", .data = (void *)0x10000 },
{ .compatible = "qcom,sm8450-gpi-dma", .data = (void *)0x10000 },
{ },
};
MODULE_DEVICE_TABLE(of, gpi_of_match);
static struct platform_driver gpi_driver = {
.probe = gpi_probe,
.driver = {
.name = KBUILD_MODNAME,
.of_match_table = gpi_of_match,
},
};
static int __init gpi_init(void)
{
return platform_driver_register(&gpi_driver);
}
subsys_initcall(gpi_init)
MODULE_DESCRIPTION("QCOM GPI DMA engine driver");
MODULE_LICENSE("GPL v2");