// SPDX-License-Identifier: GPL-2.0
/*
* R-Car LVDS Encoder
*
* Copyright (C) 2013-2018 Renesas Electronics Corporation
*
* Contact: Laurent Pinchart ([email protected])
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/sys_soc.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include "rcar_lvds.h"
#include "rcar_lvds_regs.h"
struct rcar_lvds;
/* Keep in sync with the LVDCR0.LVMD hardware register values. */
enum rcar_lvds_mode {
RCAR_LVDS_MODE_JEIDA = 0,
RCAR_LVDS_MODE_MIRROR = 1,
RCAR_LVDS_MODE_VESA = 4,
};
enum rcar_lvds_link_type {
RCAR_LVDS_SINGLE_LINK = 0,
RCAR_LVDS_DUAL_LINK_EVEN_ODD_PIXELS = 1,
RCAR_LVDS_DUAL_LINK_ODD_EVEN_PIXELS = 2,
};
#define RCAR_LVDS_QUIRK_LANES BIT(0) /* LVDS lanes 1 and 3 inverted */
#define RCAR_LVDS_QUIRK_GEN3_LVEN BIT(1) /* LVEN bit needs to be set on R8A77970/R8A7799x */
#define RCAR_LVDS_QUIRK_PWD BIT(2) /* PWD bit available (all of Gen3 but E3) */
#define RCAR_LVDS_QUIRK_EXT_PLL BIT(3) /* Has extended PLL */
#define RCAR_LVDS_QUIRK_DUAL_LINK BIT(4) /* Supports dual-link operation */
struct rcar_lvds_device_info {
unsigned int gen;
unsigned int quirks;
void (*pll_setup)(struct rcar_lvds *lvds, unsigned int freq);
};
struct rcar_lvds {
struct device *dev;
const struct rcar_lvds_device_info *info;
struct reset_control *rstc;
struct drm_bridge bridge;
struct drm_bridge *next_bridge;
struct drm_panel *panel;
void __iomem *mmio;
struct {
struct clk *mod; /* CPG module clock */
struct clk *extal; /* External clock */
struct clk *dotclkin[2]; /* External DU clocks */
} clocks;
struct drm_bridge *companion;
enum rcar_lvds_link_type link_type;
};
#define bridge_to_rcar_lvds(b) \
container_of(b, struct rcar_lvds, bridge)
static u32 rcar_lvds_read(struct rcar_lvds *lvds, u32 reg)
{
return ioread32(lvds->mmio + reg);
}
static void rcar_lvds_write(struct rcar_lvds *lvds, u32 reg, u32 data)
{
iowrite32(data, lvds->mmio + reg);
}
/* -----------------------------------------------------------------------------
* PLL Setup
*/
static void rcar_lvds_pll_setup_gen2(struct rcar_lvds *lvds, unsigned int freq)
{
u32 val;
if (freq < 39000000)
val = LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_38M;
else if (freq < 61000000)
val = LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_60M;
else if (freq < 121000000)
val = LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_121M;
else
val = LVDPLLCR_PLLDLYCNT_150M;
rcar_lvds_write(lvds, LVDPLLCR, val);
}
static void rcar_lvds_pll_setup_gen3(struct rcar_lvds *lvds, unsigned int freq)
{
u32 val;
if (freq < 42000000)
val = LVDPLLCR_PLLDIVCNT_42M;
else if (freq < 85000000)
val = LVDPLLCR_PLLDIVCNT_85M;
else if (freq < 128000000)
val = LVDPLLCR_PLLDIVCNT_128M;
else
val = LVDPLLCR_PLLDIVCNT_148M;
rcar_lvds_write(lvds, LVDPLLCR, val);
}
struct pll_info {
unsigned long diff;
unsigned int pll_m;
unsigned int pll_n;
unsigned int pll_e;
unsigned int div;
u32 clksel;
};
static void rcar_lvds_d3_e3_pll_calc(struct rcar_lvds *lvds, struct clk *clk,
unsigned long target, struct pll_info *pll,
u32 clksel, bool dot_clock_only)
{
unsigned int div7 = dot_clock_only ? 1 : 7;
unsigned long output;
unsigned long fin;
unsigned int m_min;
unsigned int m_max;
unsigned int m;
int error;
if (!clk)
return;
/*
* The LVDS PLL is made of a pre-divider and a multiplier (strangely
* enough called M and N respectively), followed by a post-divider E.
*
* ,-----. ,-----. ,-----. ,-----.
* Fin --> | 1/M | -Fpdf-> | PFD | --> | VCO | -Fvco-> | 1/E | --> Fout
* `-----' ,-> | | `-----' | `-----'
* | `-----' |
* | ,-----. |
* `-------- | 1/N | <-------'
* `-----'
*
* The clock output by the PLL is then further divided by a programmable
* divider DIV to achieve the desired target frequency. Finally, an
* optional fixed /7 divider is used to convert the bit clock to a pixel
* clock (as LVDS transmits 7 bits per lane per clock sample).
*
* ,-------. ,-----. |\
* Fout --> | 1/DIV | --> | 1/7 | --> | |
* `-------' | `-----' | | --> dot clock
* `------------> | |
* |/
*
* The /7 divider is optional, it is enabled when the LVDS PLL is used
* to drive the LVDS encoder, and disabled when used to generate a dot
* clock for the DU RGB output, without using the LVDS encoder.
*
* The PLL allowed input frequency range is 12 MHz to 192 MHz.
*/
fin = clk_get_rate(clk);
if (fin < 12000000 || fin > 192000000)
return;
/*
* The comparison frequency range is 12 MHz to 24 MHz, which limits the
* allowed values for the pre-divider M (normal range 1-8).
*
* Fpfd = Fin / M
*/
m_min = max_t(unsigned int, 1, DIV_ROUND_UP(fin, 24000000));
m_max = min_t(unsigned int, 8, fin / 12000000);
for (m = m_min; m <= m_max; ++m) {
unsigned long fpfd;
unsigned int n_min;
unsigned int n_max;
unsigned int n;
/*
* The VCO operating range is 900 Mhz to 1800 MHz, which limits
* the allowed values for the multiplier N (normal range
* 60-120).
*
* Fvco = Fin * N / M
*/
fpfd = fin / m;
n_min = max_t(unsigned int, 60, DIV_ROUND_UP(900000000, fpfd));
n_max = min_t(unsigned int, 120, 1800000000 / fpfd);
for (n = n_min; n < n_max; ++n) {
unsigned long fvco;
unsigned int e_min;
unsigned int e;
/*
* The output frequency is limited to 1039.5 MHz,
* limiting again the allowed values for the
* post-divider E (normal value 1, 2 or 4).
*
* Fout = Fvco / E
*/
fvco = fpfd * n;
e_min = fvco > 1039500000 ? 1 : 0;
for (e = e_min; e < 3; ++e) {
unsigned long fout;
unsigned long diff;
unsigned int div;
/*
* Finally we have a programable divider after
* the PLL, followed by a an optional fixed /7
* divider.
*/
fout = fvco / (1 << e) / div7;
div = max(1UL, DIV_ROUND_CLOSEST(fout, target));
diff = abs(fout / div - target);
if (diff < pll->diff) {
pll->diff = diff;
pll->pll_m = m;
pll->pll_n = n;
pll->pll_e = e;
pll->div = div;
pll->clksel = clksel;
if (diff == 0)
goto done;
}
}
}
}
done:
output = fin * pll->pll_n / pll->pll_m / (1 << pll->pll_e)
/ div7 / pll->div;
error = (long)(output - target) * 10000 / (long)target;
dev_dbg(lvds->dev,
"%pC %lu Hz -> Fout %lu Hz (target %lu Hz, error %d.%02u%%), PLL M/N/E/DIV %u/%u/%u/%u\n",
clk, fin, output, target, error / 100,
error < 0 ? -error % 100 : error % 100,
pll->pll_m, pll->pll_n, pll->pll_e, pll->div);
}
static void rcar_lvds_pll_setup_d3_e3(struct rcar_lvds *lvds,
unsigned int freq, bool dot_clock_only)
{
struct pll_info pll = { .diff = (unsigned long)-1 };
u32 lvdpllcr;
rcar_lvds_d3_e3_pll_calc(lvds, lvds->clocks.dotclkin[0], freq, &pll,
LVDPLLCR_CKSEL_DU_DOTCLKIN(0), dot_clock_only);
rcar_lvds_d3_e3_pll_calc(lvds, lvds->clocks.dotclkin[1], freq, &pll,
LVDPLLCR_CKSEL_DU_DOTCLKIN(1), dot_clock_only);
rcar_lvds_d3_e3_pll_calc(lvds, lvds->clocks.extal, freq, &pll,
LVDPLLCR_CKSEL_EXTAL, dot_clock_only);
lvdpllcr = LVDPLLCR_PLLON | pll.clksel | LVDPLLCR_CLKOUT
| LVDPLLCR_PLLN(pll.pll_n - 1) | LVDPLLCR_PLLM(pll.pll_m - 1);
if (pll.pll_e > 0)
lvdpllcr |= LVDPLLCR_STP_CLKOUTE | LVDPLLCR_OUTCLKSEL
| LVDPLLCR_PLLE(pll.pll_e - 1);
if (dot_clock_only)
lvdpllcr |= LVDPLLCR_OCKSEL;
rcar_lvds_write(lvds, LVDPLLCR, lvdpllcr);
if (pll.div > 1)
/*
* The DIVRESET bit is a misnomer, setting it to 1 deasserts the
* divisor reset.
*/
rcar_lvds_write(lvds, LVDDIV, LVDDIV_DIVSEL |
LVDDIV_DIVRESET | LVDDIV_DIV(pll.div - 1));
else
rcar_lvds_write(lvds, LVDDIV, 0);
}
/* -----------------------------------------------------------------------------
* Enable/disable
*/
static enum rcar_lvds_mode rcar_lvds_get_lvds_mode(struct rcar_lvds *lvds,
const struct drm_connector *connector)
{
const struct drm_display_info *info;
enum rcar_lvds_mode mode;
/*
* There is no API yet to retrieve LVDS mode from a bridge, only panels
* are supported.
*/
if (!lvds->panel)
return RCAR_LVDS_MODE_JEIDA;
info = &connector->display_info;
if (!info->num_bus_formats || !info->bus_formats) {
dev_warn(lvds->dev,
"no LVDS bus format reported, using JEIDA\n");
return RCAR_LVDS_MODE_JEIDA;
}
switch (info->bus_formats[0]) {
case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
mode = RCAR_LVDS_MODE_JEIDA;
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
mode = RCAR_LVDS_MODE_VESA;
break;
default:
dev_warn(lvds->dev,
"unsupported LVDS bus format 0x%04x, using JEIDA\n",
info->bus_formats[0]);
return RCAR_LVDS_MODE_JEIDA;
}
if (info->bus_flags & DRM_BUS_FLAG_DATA_LSB_TO_MSB)
mode |= RCAR_LVDS_MODE_MIRROR;
return mode;
}
static void rcar_lvds_enable(struct drm_bridge *bridge,
struct drm_atomic_state *state,
struct drm_crtc *crtc,
struct drm_connector *connector)
{
struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge);
u32 lvdhcr;
u32 lvdcr0;
int ret;
ret = pm_runtime_resume_and_get(lvds->dev);
if (ret)
return;
/* Enable the companion LVDS encoder in dual-link mode. */
if (lvds->link_type != RCAR_LVDS_SINGLE_LINK && lvds->companion)
rcar_lvds_enable(lvds->companion, state, crtc, connector);
/*
* Hardcode the channels and control signals routing for now.
*
* HSYNC -> CTRL0
* VSYNC -> CTRL1
* DISP -> CTRL2
* 0 -> CTRL3
*/
rcar_lvds_write(lvds, LVDCTRCR, LVDCTRCR_CTR3SEL_ZERO |
LVDCTRCR_CTR2SEL_DISP | LVDCTRCR_CTR1SEL_VSYNC |
LVDCTRCR_CTR0SEL_HSYNC);
if (lvds->info->quirks & RCAR_LVDS_QUIRK_LANES)
lvdhcr = LVDCHCR_CHSEL_CH(0, 0) | LVDCHCR_CHSEL_CH(1, 3)
| LVDCHCR_CHSEL_CH(2, 2) | LVDCHCR_CHSEL_CH(3, 1);
else
lvdhcr = LVDCHCR_CHSEL_CH(0, 0) | LVDCHCR_CHSEL_CH(1, 1)
| LVDCHCR_CHSEL_CH(2, 2) | LVDCHCR_CHSEL_CH(3, 3);
rcar_lvds_write(lvds, LVDCHCR, lvdhcr);
if (lvds->info->quirks & RCAR_LVDS_QUIRK_DUAL_LINK) {
u32 lvdstripe = 0;
if (lvds->link_type != RCAR_LVDS_SINGLE_LINK) {
/*
* By default we generate even pixels from the primary
* encoder and odd pixels from the companion encoder.
* Swap pixels around if the sink requires odd pixels
* from the primary encoder and even pixels from the
* companion encoder.
*/
bool swap_pixels = lvds->link_type ==
RCAR_LVDS_DUAL_LINK_ODD_EVEN_PIXELS;
/*
* Configure vertical stripe since we are dealing with
* an LVDS dual-link connection.
*
* ST_SWAP is reserved for the companion encoder, only
* set it in the primary encoder.
*/
lvdstripe = LVDSTRIPE_ST_ON
| (lvds->companion && swap_pixels ?
LVDSTRIPE_ST_SWAP : 0);
}
rcar_lvds_write(lvds, LVDSTRIPE, lvdstripe);
}
/*
* PLL clock configuration on all instances but the companion in
* dual-link mode.
*
* The extended PLL has been turned on by an explicit call to
* rcar_lvds_pclk_enable() from the DU driver.
*/
if ((lvds->link_type == RCAR_LVDS_SINGLE_LINK || lvds->companion) &&
!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) {
const struct drm_crtc_state *crtc_state =
drm_atomic_get_new_crtc_state(state, crtc);
const struct drm_display_mode *mode =
&crtc_state->adjusted_mode;
lvds->info->pll_setup(lvds, mode->clock * 1000);
}
/* Set the LVDS mode and select the input. */
lvdcr0 = rcar_lvds_get_lvds_mode(lvds, connector) << LVDCR0_LVMD_SHIFT;
if (lvds->bridge.encoder) {
if (drm_crtc_index(crtc) == 2)
lvdcr0 |= LVDCR0_DUSEL;
}
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
/* Turn all the channels on. */
rcar_lvds_write(lvds, LVDCR1,
LVDCR1_CHSTBY(3) | LVDCR1_CHSTBY(2) |
LVDCR1_CHSTBY(1) | LVDCR1_CHSTBY(0) | LVDCR1_CLKSTBY);
if (lvds->info->gen < 3) {
/* Enable LVDS operation and turn the bias circuitry on. */
lvdcr0 |= LVDCR0_BEN | LVDCR0_LVEN;
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
}
if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) {
/*
* Turn the PLL on (simple PLL only, extended PLL is fully
* controlled through LVDPLLCR).
*/
lvdcr0 |= LVDCR0_PLLON;
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
}
if (lvds->info->quirks & RCAR_LVDS_QUIRK_PWD) {
/* Set LVDS normal mode. */
lvdcr0 |= LVDCR0_PWD;
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
}
if (lvds->info->quirks & RCAR_LVDS_QUIRK_GEN3_LVEN) {
/*
* Turn on the LVDS PHY. On D3, the LVEN and LVRES bit must be
* set at the same time, so don't write the register yet.
*/
lvdcr0 |= LVDCR0_LVEN;
if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_PWD))
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
}
if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) {
/* Wait for the PLL startup delay (simple PLL only). */
usleep_range(100, 150);
}
/* Turn the output on. */
lvdcr0 |= LVDCR0_LVRES;
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
}
static void rcar_lvds_disable(struct drm_bridge *bridge)
{
struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge);
u32 lvdcr0;
/*
* Clear the LVDCR0 bits in the order specified by the hardware
* documentation, ending with a write of 0 to the full register to
* clear all remaining bits.
*/
lvdcr0 = rcar_lvds_read(lvds, LVDCR0);
lvdcr0 &= ~LVDCR0_LVRES;
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
if (lvds->info->quirks & RCAR_LVDS_QUIRK_GEN3_LVEN) {
lvdcr0 &= ~LVDCR0_LVEN;
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
}
if (lvds->info->quirks & RCAR_LVDS_QUIRK_PWD) {
lvdcr0 &= ~LVDCR0_PWD;
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
}
if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) {
lvdcr0 &= ~LVDCR0_PLLON;
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
}
rcar_lvds_write(lvds, LVDCR0, 0);
rcar_lvds_write(lvds, LVDCR1, 0);
/* The extended PLL is turned off in rcar_lvds_pclk_disable(). */
if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL))
rcar_lvds_write(lvds, LVDPLLCR, 0);
/* Disable the companion LVDS encoder in dual-link mode. */
if (lvds->link_type != RCAR_LVDS_SINGLE_LINK && lvds->companion)
rcar_lvds_disable(lvds->companion);
pm_runtime_put_sync(lvds->dev);
}
/* -----------------------------------------------------------------------------
* Clock - D3/E3 only
*/
int rcar_lvds_pclk_enable(struct drm_bridge *bridge, unsigned long freq,
bool dot_clk_only)
{
struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge);
int ret;
if (WARN_ON(!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)))
return -ENODEV;
dev_dbg(lvds->dev, "enabling LVDS PLL, freq=%luHz\n", freq);
ret = pm_runtime_resume_and_get(lvds->dev);
if (ret)
return ret;
rcar_lvds_pll_setup_d3_e3(lvds, freq, dot_clk_only);
return 0;
}
EXPORT_SYMBOL_GPL(rcar_lvds_pclk_enable);
void rcar_lvds_pclk_disable(struct drm_bridge *bridge, bool dot_clk_only)
{
struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge);
if (WARN_ON(!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)))
return;
dev_dbg(lvds->dev, "disabling LVDS PLL\n");
if (!dot_clk_only)
rcar_lvds_disable(bridge);
rcar_lvds_write(lvds, LVDPLLCR, 0);
pm_runtime_put_sync(lvds->dev);
}
EXPORT_SYMBOL_GPL(rcar_lvds_pclk_disable);
/* -----------------------------------------------------------------------------
* Bridge
*/
static void rcar_lvds_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct drm_atomic_state *state = old_bridge_state->base.state;
struct drm_connector *connector;
struct drm_crtc *crtc;
connector = drm_atomic_get_new_connector_for_encoder(state,
bridge->encoder);
crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
rcar_lvds_enable(bridge, state, crtc, connector);
}
static void rcar_lvds_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge);
/*
* For D3 and E3, disabling the LVDS encoder before the DU would stall
* the DU, causing a vblank wait timeout when stopping the DU. This has
* been traced to clearing the LVEN bit, but the exact reason is
* unknown. Keep the encoder enabled, it will be disabled by an explicit
* call to rcar_lvds_pclk_disable() from the DU driver.
*
* We could clear the LVRES bit already to disable the LVDS output, but
* that's likely pointless.
*/
if (lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)
return;
rcar_lvds_disable(bridge);
}
static bool rcar_lvds_mode_fixup(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge);
int min_freq;
/*
* The internal LVDS encoder has a restricted clock frequency operating
* range, from 5MHz to 148.5MHz on D3 and E3, and from 31MHz to
* 148.5MHz on all other platforms. Clamp the clock accordingly.
*/
min_freq = lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL ? 5000 : 31000;
adjusted_mode->clock = clamp(adjusted_mode->clock, min_freq, 148500);
return true;
}
static int rcar_lvds_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge);
if (!lvds->next_bridge)
return 0;
return drm_bridge_attach(bridge->encoder, lvds->next_bridge, bridge,
flags);
}
static const struct drm_bridge_funcs rcar_lvds_bridge_ops = {
.attach = rcar_lvds_attach,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_enable = rcar_lvds_atomic_enable,
.atomic_disable = rcar_lvds_atomic_disable,
.mode_fixup = rcar_lvds_mode_fixup,
};
bool rcar_lvds_dual_link(struct drm_bridge *bridge)
{
struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge);
return lvds->link_type != RCAR_LVDS_SINGLE_LINK;
}
EXPORT_SYMBOL_GPL(rcar_lvds_dual_link);
bool rcar_lvds_is_connected(struct drm_bridge *bridge)
{
struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge);
return lvds->next_bridge != NULL;
}
EXPORT_SYMBOL_GPL(rcar_lvds_is_connected);
/* -----------------------------------------------------------------------------
* Probe & Remove
*/
static int rcar_lvds_parse_dt_companion(struct rcar_lvds *lvds)
{
const struct of_device_id *match;
struct device_node *companion;
struct device_node *port0, *port1;
struct rcar_lvds *companion_lvds;
struct device *dev = lvds->dev;
int dual_link;
int ret = 0;
/* Locate the companion LVDS encoder for dual-link operation, if any. */
companion = of_parse_phandle(dev->of_node, "renesas,companion", 0);
if (!companion)
return 0;
/*
* Sanity check: the companion encoder must have the same compatible
* string.
*/
match = of_match_device(dev->driver->of_match_table, dev);
if (!of_device_is_compatible(companion, match->compatible)) {
dev_err(dev, "Companion LVDS encoder is invalid\n");
ret = -ENXIO;
goto done;
}
/*
* We need to work out if the sink is expecting us to function in
* dual-link mode. We do this by looking at the DT port nodes we are
* connected to, if they are marked as expecting even pixels and
* odd pixels than we need to enable vertical stripe output.
*/
port0 = of_graph_get_port_by_id(dev->of_node, 1);
port1 = of_graph_get_port_by_id(companion, 1);
dual_link = drm_of_lvds_get_dual_link_pixel_order(port0, port1);
of_node_put(port0);
of_node_put(port1);
switch (dual_link) {
case DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS:
lvds->link_type = RCAR_LVDS_DUAL_LINK_ODD_EVEN_PIXELS;
break;
case DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS:
lvds->link_type = RCAR_LVDS_DUAL_LINK_EVEN_ODD_PIXELS;
break;
default:
/*
* Early dual-link bridge specific implementations populate the
* timings field of drm_bridge. If the flag is set, we assume
* that we are expected to generate even pixels from the primary
* encoder, and odd pixels from the companion encoder.
*/
if (lvds->next_bridge->timings &&
lvds->next_bridge->timings->dual_link)
lvds->link_type = RCAR_LVDS_DUAL_LINK_EVEN_ODD_PIXELS;
else
lvds->link_type = RCAR_LVDS_SINGLE_LINK;
}
if (lvds->link_type == RCAR_LVDS_SINGLE_LINK) {
dev_dbg(dev, "Single-link configuration detected\n");
goto done;
}
lvds->companion = of_drm_find_bridge(companion);
if (!lvds->companion) {
ret = -EPROBE_DEFER;
goto done;
}
dev_dbg(dev,
"Dual-link configuration detected (companion encoder %pOF)\n",
companion);
if (lvds->link_type == RCAR_LVDS_DUAL_LINK_ODD_EVEN_PIXELS)
dev_dbg(dev, "Data swapping required\n");
/*
* FIXME: We should not be messing with the companion encoder private
* data from the primary encoder, we should rather let the companion
* encoder work things out on its own. However, the companion encoder
* doesn't hold a reference to the primary encoder, and
* drm_of_lvds_get_dual_link_pixel_order needs to be given references
* to the output ports of both encoders, therefore leave it like this
* for the time being.
*/
companion_lvds = bridge_to_rcar_lvds(lvds->companion);
companion_lvds->link_type = lvds->link_type;
done:
of_node_put(companion);
return ret;
}
static int rcar_lvds_parse_dt(struct rcar_lvds *lvds)
{
int ret;
ret = drm_of_find_panel_or_bridge(lvds->dev->of_node, 1, 0,
&lvds->panel, &lvds->next_bridge);
if (ret)
goto done;
if (lvds->panel) {
lvds->next_bridge = devm_drm_panel_bridge_add(lvds->dev,
lvds->panel);
if (IS_ERR_OR_NULL(lvds->next_bridge)) {
ret = -EINVAL;
goto done;
}
}
if (lvds->info->quirks & RCAR_LVDS_QUIRK_DUAL_LINK)
ret = rcar_lvds_parse_dt_companion(lvds);
done:
/*
* On D3/E3 the LVDS encoder provides a clock to the DU, which can be
* used for the DPAD output even when the LVDS output is not connected.
* Don't fail probe in that case as the DU will need the bridge to
* control the clock.
*/
if (lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)
return ret == -ENODEV ? 0 : ret;
return ret;
}
static struct clk *rcar_lvds_get_clock(struct rcar_lvds *lvds, const char *name,
bool optional)
{
struct clk *clk;
clk = devm_clk_get(lvds->dev, name);
if (!IS_ERR(clk))
return clk;
if (PTR_ERR(clk) == -ENOENT && optional)
return NULL;
dev_err_probe(lvds->dev, PTR_ERR(clk), "failed to get %s clock\n",
name ? name : "module");
return clk;
}
static int rcar_lvds_get_clocks(struct rcar_lvds *lvds)
{
lvds->clocks.mod = rcar_lvds_get_clock(lvds, NULL, false);
if (IS_ERR(lvds->clocks.mod))
return PTR_ERR(lvds->clocks.mod);
/*
* LVDS encoders without an extended PLL have no external clock inputs.
*/
if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL))
return 0;
lvds->clocks.extal = rcar_lvds_get_clock(lvds, "extal", true);
if (IS_ERR(lvds->clocks.extal))
return PTR_ERR(lvds->clocks.extal);
lvds->clocks.dotclkin[0] = rcar_lvds_get_clock(lvds, "dclkin.0", true);
if (IS_ERR(lvds->clocks.dotclkin[0]))
return PTR_ERR(lvds->clocks.dotclkin[0]);
lvds->clocks.dotclkin[1] = rcar_lvds_get_clock(lvds, "dclkin.1", true);
if (IS_ERR(lvds->clocks.dotclkin[1]))
return PTR_ERR(lvds->clocks.dotclkin[1]);
/* At least one input to the PLL must be available. */
if (!lvds->clocks.extal && !lvds->clocks.dotclkin[0] &&
!lvds->clocks.dotclkin[1]) {
dev_err(lvds->dev,
"no input clock (extal, dclkin.0 or dclkin.1)\n");
return -EINVAL;
}
return 0;
}
static const struct rcar_lvds_device_info rcar_lvds_r8a7790es1_info = {
.gen = 2,
.quirks = RCAR_LVDS_QUIRK_LANES,
.pll_setup = rcar_lvds_pll_setup_gen2,
};
static const struct soc_device_attribute lvds_quirk_matches[] = {
{
.soc_id = "r8a7790", .revision = "ES1.*",
.data = &rcar_lvds_r8a7790es1_info,
},
{ /* sentinel */ }
};
static int rcar_lvds_probe(struct platform_device *pdev)
{
const struct soc_device_attribute *attr;
struct rcar_lvds *lvds;
int ret;
lvds = devm_kzalloc(&pdev->dev, sizeof(*lvds), GFP_KERNEL);
if (lvds == NULL)
return -ENOMEM;
platform_set_drvdata(pdev, lvds);
lvds->dev = &pdev->dev;
lvds->info = of_device_get_match_data(&pdev->dev);
attr = soc_device_match(lvds_quirk_matches);
if (attr)
lvds->info = attr->data;
ret = rcar_lvds_parse_dt(lvds);
if (ret < 0)
return ret;
lvds->bridge.funcs = &rcar_lvds_bridge_ops;
lvds->bridge.of_node = pdev->dev.of_node;
lvds->mmio = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(lvds->mmio))
return PTR_ERR(lvds->mmio);
ret = rcar_lvds_get_clocks(lvds);
if (ret < 0)
return ret;
lvds->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(lvds->rstc))
return dev_err_probe(&pdev->dev, PTR_ERR(lvds->rstc),
"failed to get cpg reset\n");
pm_runtime_enable(&pdev->dev);
drm_bridge_add(&lvds->bridge);
return 0;
}
static void rcar_lvds_remove(struct platform_device *pdev)
{
struct rcar_lvds *lvds = platform_get_drvdata(pdev);
drm_bridge_remove(&lvds->bridge);
pm_runtime_disable(&pdev->dev);
}
static const struct rcar_lvds_device_info rcar_lvds_gen2_info = {
.gen = 2,
.pll_setup = rcar_lvds_pll_setup_gen2,
};
static const struct rcar_lvds_device_info rcar_lvds_gen3_info = {
.gen = 3,
.quirks = RCAR_LVDS_QUIRK_PWD,
.pll_setup = rcar_lvds_pll_setup_gen3,
};
static const struct rcar_lvds_device_info rcar_lvds_r8a77970_info = {
.gen = 3,
.quirks = RCAR_LVDS_QUIRK_PWD | RCAR_LVDS_QUIRK_GEN3_LVEN,
.pll_setup = rcar_lvds_pll_setup_gen2,
};
static const struct rcar_lvds_device_info rcar_lvds_r8a77990_info = {
.gen = 3,
.quirks = RCAR_LVDS_QUIRK_GEN3_LVEN | RCAR_LVDS_QUIRK_EXT_PLL
| RCAR_LVDS_QUIRK_DUAL_LINK,
};
static const struct rcar_lvds_device_info rcar_lvds_r8a77995_info = {
.gen = 3,
.quirks = RCAR_LVDS_QUIRK_GEN3_LVEN | RCAR_LVDS_QUIRK_PWD
| RCAR_LVDS_QUIRK_EXT_PLL | RCAR_LVDS_QUIRK_DUAL_LINK,
};
static const struct of_device_id rcar_lvds_of_table[] = {
{ .compatible = "renesas,r8a7742-lvds", .data = &rcar_lvds_gen2_info },
{ .compatible = "renesas,r8a7743-lvds", .data = &rcar_lvds_gen2_info },
{ .compatible = "renesas,r8a7744-lvds", .data = &rcar_lvds_gen2_info },
{ .compatible = "renesas,r8a774a1-lvds", .data = &rcar_lvds_gen3_info },
{ .compatible = "renesas,r8a774b1-lvds", .data = &rcar_lvds_gen3_info },
{ .compatible = "renesas,r8a774c0-lvds", .data = &rcar_lvds_r8a77990_info },
{ .compatible = "renesas,r8a774e1-lvds", .data = &rcar_lvds_gen3_info },
{ .compatible = "renesas,r8a7790-lvds", .data = &rcar_lvds_gen2_info },
{ .compatible = "renesas,r8a7791-lvds", .data = &rcar_lvds_gen2_info },
{ .compatible = "renesas,r8a7793-lvds", .data = &rcar_lvds_gen2_info },
{ .compatible = "renesas,r8a7795-lvds", .data = &rcar_lvds_gen3_info },
{ .compatible = "renesas,r8a7796-lvds", .data = &rcar_lvds_gen3_info },
{ .compatible = "renesas,r8a77961-lvds", .data = &rcar_lvds_gen3_info },
{ .compatible = "renesas,r8a77965-lvds", .data = &rcar_lvds_gen3_info },
{ .compatible = "renesas,r8a77970-lvds", .data = &rcar_lvds_r8a77970_info },
{ .compatible = "renesas,r8a77980-lvds", .data = &rcar_lvds_gen3_info },
{ .compatible = "renesas,r8a77990-lvds", .data = &rcar_lvds_r8a77990_info },
{ .compatible = "renesas,r8a77995-lvds", .data = &rcar_lvds_r8a77995_info },
{ }
};
MODULE_DEVICE_TABLE(of, rcar_lvds_of_table);
static int rcar_lvds_runtime_suspend(struct device *dev)
{
struct rcar_lvds *lvds = dev_get_drvdata(dev);
clk_disable_unprepare(lvds->clocks.mod);
reset_control_assert(lvds->rstc);
return 0;
}
static int rcar_lvds_runtime_resume(struct device *dev)
{
struct rcar_lvds *lvds = dev_get_drvdata(dev);
int ret;
ret = reset_control_deassert(lvds->rstc);
if (ret)
return ret;
ret = clk_prepare_enable(lvds->clocks.mod);
if (ret < 0)
goto err_reset_assert;
return 0;
err_reset_assert:
reset_control_assert(lvds->rstc);
return ret;
}
static const struct dev_pm_ops rcar_lvds_pm_ops = {
SET_RUNTIME_PM_OPS(rcar_lvds_runtime_suspend, rcar_lvds_runtime_resume, NULL)
};
static struct platform_driver rcar_lvds_platform_driver = {
.probe = rcar_lvds_probe,
.remove_new = rcar_lvds_remove,
.driver = {
.name = "rcar-lvds",
.pm = &rcar_lvds_pm_ops,
.of_match_table = rcar_lvds_of_table,
},
};
module_platform_driver(rcar_lvds_platform_driver);
MODULE_AUTHOR("Laurent Pinchart <[email protected]>");
MODULE_DESCRIPTION("Renesas R-Car LVDS Encoder Driver");
MODULE_LICENSE("GPL");