// SPDX-License-Identifier: GPL-2.0-only OR MIT
/* Copyright (c) 2023 Imagination Technologies Ltd. */
#include "pvr_ccb.h"
#include "pvr_device.h"
#include "pvr_drv.h"
#include "pvr_free_list.h"
#include "pvr_fw.h"
#include "pvr_gem.h"
#include "pvr_power.h"
#include <drm/drm_managed.h>
#include <linux/compiler.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#define RESERVE_SLOT_TIMEOUT (1 * HZ) /* 1s */
#define RESERVE_SLOT_MIN_RETRIES 10
static void
ccb_ctrl_init(void *cpu_ptr, void *priv)
{
struct rogue_fwif_ccb_ctl *ctrl = cpu_ptr;
struct pvr_ccb *pvr_ccb = priv;
ctrl->write_offset = 0;
ctrl->read_offset = 0;
ctrl->wrap_mask = pvr_ccb->num_cmds - 1;
ctrl->cmd_size = pvr_ccb->cmd_size;
}
/**
* pvr_ccb_init() - Initialise a CCB
* @pvr_dev: Device pointer.
* @pvr_ccb: Pointer to CCB structure to initialise.
* @num_cmds_log2: Log2 of number of commands in this CCB.
* @cmd_size: Command size for this CCB.
*
* Return:
* * Zero on success, or
* * Any error code returned by pvr_fw_object_create_and_map().
*/
static int
pvr_ccb_init(struct pvr_device *pvr_dev, struct pvr_ccb *pvr_ccb,
u32 num_cmds_log2, size_t cmd_size)
{
u32 num_cmds = 1 << num_cmds_log2;
u32 ccb_size = num_cmds * cmd_size;
int err;
pvr_ccb->num_cmds = num_cmds;
pvr_ccb->cmd_size = cmd_size;
err = drmm_mutex_init(from_pvr_device(pvr_dev), &pvr_ccb->lock);
if (err)
return err;
/*
* Map CCB and control structure as uncached, so we don't have to flush
* CPU cache repeatedly when polling for space.
*/
pvr_ccb->ctrl = pvr_fw_object_create_and_map(pvr_dev, sizeof(*pvr_ccb->ctrl),
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
ccb_ctrl_init, pvr_ccb, &pvr_ccb->ctrl_obj);
if (IS_ERR(pvr_ccb->ctrl))
return PTR_ERR(pvr_ccb->ctrl);
pvr_ccb->ccb = pvr_fw_object_create_and_map(pvr_dev, ccb_size,
PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
NULL, NULL, &pvr_ccb->ccb_obj);
if (IS_ERR(pvr_ccb->ccb)) {
err = PTR_ERR(pvr_ccb->ccb);
goto err_free_ctrl;
}
pvr_fw_object_get_fw_addr(pvr_ccb->ctrl_obj, &pvr_ccb->ctrl_fw_addr);
pvr_fw_object_get_fw_addr(pvr_ccb->ccb_obj, &pvr_ccb->ccb_fw_addr);
WRITE_ONCE(pvr_ccb->ctrl->write_offset, 0);
WRITE_ONCE(pvr_ccb->ctrl->read_offset, 0);
WRITE_ONCE(pvr_ccb->ctrl->wrap_mask, num_cmds - 1);
WRITE_ONCE(pvr_ccb->ctrl->cmd_size, cmd_size);
return 0;
err_free_ctrl:
pvr_fw_object_unmap_and_destroy(pvr_ccb->ctrl_obj);
return err;
}
/**
* pvr_ccb_fini() - Release CCB structure
* @pvr_ccb: CCB to release.
*/
void
pvr_ccb_fini(struct pvr_ccb *pvr_ccb)
{
pvr_fw_object_unmap_and_destroy(pvr_ccb->ccb_obj);
pvr_fw_object_unmap_and_destroy(pvr_ccb->ctrl_obj);
}
/**
* pvr_ccb_slot_available_locked() - Test whether any slots are available in CCB
* @pvr_ccb: CCB to test.
* @write_offset: Address to store number of next available slot. May be %NULL.
*
* Caller must hold @pvr_ccb->lock.
*
* Return:
* * %true if a slot is available, or
* * %false if no slot is available.
*/
static __always_inline bool
pvr_ccb_slot_available_locked(struct pvr_ccb *pvr_ccb, u32 *write_offset)
{
struct rogue_fwif_ccb_ctl *ctrl = pvr_ccb->ctrl;
u32 next_write_offset = (READ_ONCE(ctrl->write_offset) + 1) & READ_ONCE(ctrl->wrap_mask);
lockdep_assert_held(&pvr_ccb->lock);
if (READ_ONCE(ctrl->read_offset) != next_write_offset) {
if (write_offset)
*write_offset = next_write_offset;
return true;
}
return false;
}
static void
process_fwccb_command(struct pvr_device *pvr_dev, struct rogue_fwif_fwccb_cmd *cmd)
{
switch (cmd->cmd_type) {
case ROGUE_FWIF_FWCCB_CMD_REQUEST_GPU_RESTART:
pvr_power_reset(pvr_dev, false);
break;
case ROGUE_FWIF_FWCCB_CMD_FREELISTS_RECONSTRUCTION:
pvr_free_list_process_reconstruct_req(pvr_dev,
&cmd->cmd_data.cmd_freelists_reconstruction);
break;
case ROGUE_FWIF_FWCCB_CMD_FREELIST_GROW:
pvr_free_list_process_grow_req(pvr_dev, &cmd->cmd_data.cmd_free_list_gs);
break;
default:
drm_info(from_pvr_device(pvr_dev), "Received unknown FWCCB command %x\n",
cmd->cmd_type);
break;
}
}
/**
* pvr_fwccb_process() - Process any pending FWCCB commands
* @pvr_dev: Target PowerVR device
*/
void pvr_fwccb_process(struct pvr_device *pvr_dev)
{
struct rogue_fwif_fwccb_cmd *fwccb = pvr_dev->fwccb.ccb;
struct rogue_fwif_ccb_ctl *ctrl = pvr_dev->fwccb.ctrl;
u32 read_offset;
mutex_lock(&pvr_dev->fwccb.lock);
while ((read_offset = READ_ONCE(ctrl->read_offset)) != READ_ONCE(ctrl->write_offset)) {
struct rogue_fwif_fwccb_cmd cmd = fwccb[read_offset];
WRITE_ONCE(ctrl->read_offset, (read_offset + 1) & READ_ONCE(ctrl->wrap_mask));
/* Drop FWCCB lock while we process command. */
mutex_unlock(&pvr_dev->fwccb.lock);
process_fwccb_command(pvr_dev, &cmd);
mutex_lock(&pvr_dev->fwccb.lock);
}
mutex_unlock(&pvr_dev->fwccb.lock);
}
/**
* pvr_kccb_capacity() - Returns the maximum number of usable KCCB slots.
* @pvr_dev: Target PowerVR device
*
* Return:
* * The maximum number of active slots.
*/
static u32 pvr_kccb_capacity(struct pvr_device *pvr_dev)
{
/* Capacity is the number of slot minus one to cope with the wrapping
* mechanisms. If we were to use all slots, we might end up with
* read_offset == write_offset, which the FW considers as a KCCB-is-empty
* condition.
*/
return pvr_dev->kccb.slot_count - 1;
}
/**
* pvr_kccb_used_slot_count_locked() - Get the number of used slots
* @pvr_dev: Device pointer.
*
* KCCB lock must be held.
*
* Return:
* * The number of slots currently used.
*/
static u32
pvr_kccb_used_slot_count_locked(struct pvr_device *pvr_dev)
{
struct pvr_ccb *pvr_ccb = &pvr_dev->kccb.ccb;
struct rogue_fwif_ccb_ctl *ctrl = pvr_ccb->ctrl;
u32 wr_offset = READ_ONCE(ctrl->write_offset);
u32 rd_offset = READ_ONCE(ctrl->read_offset);
u32 used_count;
lockdep_assert_held(&pvr_ccb->lock);
if (wr_offset >= rd_offset)
used_count = wr_offset - rd_offset;
else
used_count = wr_offset + pvr_dev->kccb.slot_count - rd_offset;
return used_count;
}
/**
* pvr_kccb_send_cmd_reserved_powered() - Send command to the KCCB, with the PM ref
* held and a slot pre-reserved
* @pvr_dev: Device pointer.
* @cmd: Command to sent.
* @kccb_slot: Address to store the KCCB slot for this command. May be %NULL.
*/
void
pvr_kccb_send_cmd_reserved_powered(struct pvr_device *pvr_dev,
struct rogue_fwif_kccb_cmd *cmd,
u32 *kccb_slot)
{
struct pvr_ccb *pvr_ccb = &pvr_dev->kccb.ccb;
struct rogue_fwif_kccb_cmd *kccb = pvr_ccb->ccb;
struct rogue_fwif_ccb_ctl *ctrl = pvr_ccb->ctrl;
u32 old_write_offset;
u32 new_write_offset;
WARN_ON(pvr_dev->lost);
mutex_lock(&pvr_ccb->lock);
if (WARN_ON(!pvr_dev->kccb.reserved_count))
goto out_unlock;
old_write_offset = READ_ONCE(ctrl->write_offset);
/* We reserved the slot, we should have one available. */
if (WARN_ON(!pvr_ccb_slot_available_locked(pvr_ccb, &new_write_offset)))
goto out_unlock;
memcpy(&kccb[old_write_offset], cmd,
sizeof(struct rogue_fwif_kccb_cmd));
if (kccb_slot) {
*kccb_slot = old_write_offset;
/* Clear return status for this slot. */
WRITE_ONCE(pvr_dev->kccb.rtn[old_write_offset],
ROGUE_FWIF_KCCB_RTN_SLOT_NO_RESPONSE);
}
mb(); /* memory barrier */
WRITE_ONCE(ctrl->write_offset, new_write_offset);
pvr_dev->kccb.reserved_count--;
/* Kick MTS */
pvr_fw_mts_schedule(pvr_dev,
PVR_FWIF_DM_GP & ~ROGUE_CR_MTS_SCHEDULE_DM_CLRMSK);
out_unlock:
mutex_unlock(&pvr_ccb->lock);
}
/**
* pvr_kccb_try_reserve_slot() - Try to reserve a KCCB slot
* @pvr_dev: Device pointer.
*
* Return:
* * true if a KCCB slot was reserved, or
* * false otherwise.
*/
static bool pvr_kccb_try_reserve_slot(struct pvr_device *pvr_dev)
{
bool reserved = false;
u32 used_count;
mutex_lock(&pvr_dev->kccb.ccb.lock);
used_count = pvr_kccb_used_slot_count_locked(pvr_dev);
if (pvr_dev->kccb.reserved_count < pvr_kccb_capacity(pvr_dev) - used_count) {
pvr_dev->kccb.reserved_count++;
reserved = true;
}
mutex_unlock(&pvr_dev->kccb.ccb.lock);
return reserved;
}
/**
* pvr_kccb_reserve_slot_sync() - Try to reserve a slot synchronously
* @pvr_dev: Device pointer.
*
* Return:
* * 0 on success, or
* * -EBUSY if no slots were reserved after %RESERVE_SLOT_TIMEOUT, with a minimum of
* %RESERVE_SLOT_MIN_RETRIES retries.
*/
static int pvr_kccb_reserve_slot_sync(struct pvr_device *pvr_dev)
{
unsigned long start_timestamp = jiffies;
bool reserved = false;
u32 retries = 0;
while ((jiffies - start_timestamp) < (u32)RESERVE_SLOT_TIMEOUT ||
retries < RESERVE_SLOT_MIN_RETRIES) {
reserved = pvr_kccb_try_reserve_slot(pvr_dev);
if (reserved)
break;
usleep_range(1, 50);
if (retries < U32_MAX)
retries++;
}
return reserved ? 0 : -EBUSY;
}
/**
* pvr_kccb_send_cmd_powered() - Send command to the KCCB, with a PM ref held
* @pvr_dev: Device pointer.
* @cmd: Command to sent.
* @kccb_slot: Address to store the KCCB slot for this command. May be %NULL.
*
* Returns:
* * Zero on success, or
* * -EBUSY if timeout while waiting for a free KCCB slot.
*/
int
pvr_kccb_send_cmd_powered(struct pvr_device *pvr_dev, struct rogue_fwif_kccb_cmd *cmd,
u32 *kccb_slot)
{
int err;
err = pvr_kccb_reserve_slot_sync(pvr_dev);
if (err)
return err;
pvr_kccb_send_cmd_reserved_powered(pvr_dev, cmd, kccb_slot);
return 0;
}
/**
* pvr_kccb_send_cmd() - Send command to the KCCB
* @pvr_dev: Device pointer.
* @cmd: Command to sent.
* @kccb_slot: Address to store the KCCB slot for this command. May be %NULL.
*
* Returns:
* * Zero on success, or
* * -EBUSY if timeout while waiting for a free KCCB slot.
*/
int
pvr_kccb_send_cmd(struct pvr_device *pvr_dev, struct rogue_fwif_kccb_cmd *cmd,
u32 *kccb_slot)
{
int err;
err = pvr_power_get(pvr_dev);
if (err)
return err;
err = pvr_kccb_send_cmd_powered(pvr_dev, cmd, kccb_slot);
pvr_power_put(pvr_dev);
return err;
}
/**
* pvr_kccb_wait_for_completion() - Wait for a KCCB command to complete
* @pvr_dev: Device pointer.
* @slot_nr: KCCB slot to wait on.
* @timeout: Timeout length (in jiffies).
* @rtn_out: Location to store KCCB command result. May be %NULL.
*
* Returns:
* * Zero on success, or
* * -ETIMEDOUT on timeout.
*/
int
pvr_kccb_wait_for_completion(struct pvr_device *pvr_dev, u32 slot_nr,
u32 timeout, u32 *rtn_out)
{
int ret = wait_event_timeout(pvr_dev->kccb.rtn_q, READ_ONCE(pvr_dev->kccb.rtn[slot_nr]) &
ROGUE_FWIF_KCCB_RTN_SLOT_CMD_EXECUTED, timeout);
if (ret && rtn_out)
*rtn_out = READ_ONCE(pvr_dev->kccb.rtn[slot_nr]);
return ret ? 0 : -ETIMEDOUT;
}
/**
* pvr_kccb_is_idle() - Returns whether the device's KCCB is idle
* @pvr_dev: Device pointer
*
* Returns:
* * %true if the KCCB is idle (contains no commands), or
* * %false if the KCCB contains pending commands.
*/
bool
pvr_kccb_is_idle(struct pvr_device *pvr_dev)
{
struct rogue_fwif_ccb_ctl *ctrl = pvr_dev->kccb.ccb.ctrl;
bool idle;
mutex_lock(&pvr_dev->kccb.ccb.lock);
idle = (READ_ONCE(ctrl->write_offset) == READ_ONCE(ctrl->read_offset));
mutex_unlock(&pvr_dev->kccb.ccb.lock);
return idle;
}
static const char *
pvr_kccb_fence_get_driver_name(struct dma_fence *f)
{
return PVR_DRIVER_NAME;
}
static const char *
pvr_kccb_fence_get_timeline_name(struct dma_fence *f)
{
return "kccb";
}
static const struct dma_fence_ops pvr_kccb_fence_ops = {
.get_driver_name = pvr_kccb_fence_get_driver_name,
.get_timeline_name = pvr_kccb_fence_get_timeline_name,
};
/**
* struct pvr_kccb_fence - Fence object used to wait for a KCCB slot
*/
struct pvr_kccb_fence {
/** @base: Base dma_fence object. */
struct dma_fence base;
/** @node: Node used to insert the fence in the pvr_device::kccb::waiters list. */
struct list_head node;
};
/**
* pvr_kccb_wake_up_waiters() - Check the KCCB waiters
* @pvr_dev: Target PowerVR device
*
* Signal as many KCCB fences as we have slots available.
*/
void pvr_kccb_wake_up_waiters(struct pvr_device *pvr_dev)
{
struct pvr_kccb_fence *fence, *tmp_fence;
u32 used_count, available_count;
/* Wake up those waiting for KCCB slot execution. */
wake_up_all(&pvr_dev->kccb.rtn_q);
/* Then iterate over all KCCB fences and signal as many as we can. */
mutex_lock(&pvr_dev->kccb.ccb.lock);
used_count = pvr_kccb_used_slot_count_locked(pvr_dev);
if (WARN_ON(used_count + pvr_dev->kccb.reserved_count > pvr_kccb_capacity(pvr_dev)))
goto out_unlock;
available_count = pvr_kccb_capacity(pvr_dev) - used_count - pvr_dev->kccb.reserved_count;
list_for_each_entry_safe(fence, tmp_fence, &pvr_dev->kccb.waiters, node) {
if (!available_count)
break;
list_del(&fence->node);
pvr_dev->kccb.reserved_count++;
available_count--;
dma_fence_signal(&fence->base);
dma_fence_put(&fence->base);
}
out_unlock:
mutex_unlock(&pvr_dev->kccb.ccb.lock);
}
/**
* pvr_kccb_fini() - Cleanup device KCCB
* @pvr_dev: Target PowerVR device
*/
void pvr_kccb_fini(struct pvr_device *pvr_dev)
{
pvr_ccb_fini(&pvr_dev->kccb.ccb);
WARN_ON(!list_empty(&pvr_dev->kccb.waiters));
WARN_ON(pvr_dev->kccb.reserved_count);
}
/**
* pvr_kccb_init() - Initialise device KCCB
* @pvr_dev: Target PowerVR device
*
* Returns:
* * 0 on success, or
* * Any error returned by pvr_ccb_init().
*/
int
pvr_kccb_init(struct pvr_device *pvr_dev)
{
pvr_dev->kccb.slot_count = 1 << ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT;
INIT_LIST_HEAD(&pvr_dev->kccb.waiters);
pvr_dev->kccb.fence_ctx.id = dma_fence_context_alloc(1);
spin_lock_init(&pvr_dev->kccb.fence_ctx.lock);
return pvr_ccb_init(pvr_dev, &pvr_dev->kccb.ccb,
ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT,
sizeof(struct rogue_fwif_kccb_cmd));
}
/**
* pvr_kccb_fence_alloc() - Allocate a pvr_kccb_fence object
*
* Return:
* * NULL if the allocation fails, or
* * A valid dma_fence pointer otherwise.
*/
struct dma_fence *pvr_kccb_fence_alloc(void)
{
struct pvr_kccb_fence *kccb_fence;
kccb_fence = kzalloc(sizeof(*kccb_fence), GFP_KERNEL);
if (!kccb_fence)
return NULL;
return &kccb_fence->base;
}
/**
* pvr_kccb_fence_put() - Drop a KCCB fence reference
* @fence: The fence to drop the reference on.
*
* If the fence hasn't been initialized yet, dma_fence_free() is called. This
* way we have a single function taking care of both cases.
*/
void pvr_kccb_fence_put(struct dma_fence *fence)
{
if (!fence)
return;
if (!fence->ops) {
dma_fence_free(fence);
} else {
WARN_ON(fence->ops != &pvr_kccb_fence_ops);
dma_fence_put(fence);
}
}
/**
* pvr_kccb_reserve_slot() - Reserve a KCCB slot for later use
* @pvr_dev: Target PowerVR device
* @f: KCCB fence object previously allocated with pvr_kccb_fence_alloc()
*
* Try to reserve a KCCB slot, and if there's no slot available,
* initializes the fence object and queue it to the waiters list.
*
* If NULL is returned, that means the slot is reserved. In that case,
* the @f is freed and shouldn't be accessed after that point.
*
* Return:
* * NULL if a slot was available directly, or
* * A valid dma_fence object to wait on if no slot was available.
*/
struct dma_fence *
pvr_kccb_reserve_slot(struct pvr_device *pvr_dev, struct dma_fence *f)
{
struct pvr_kccb_fence *fence = container_of(f, struct pvr_kccb_fence, base);
struct dma_fence *out_fence = NULL;
u32 used_count;
mutex_lock(&pvr_dev->kccb.ccb.lock);
used_count = pvr_kccb_used_slot_count_locked(pvr_dev);
if (pvr_dev->kccb.reserved_count >= pvr_kccb_capacity(pvr_dev) - used_count) {
dma_fence_init(&fence->base, &pvr_kccb_fence_ops,
&pvr_dev->kccb.fence_ctx.lock,
pvr_dev->kccb.fence_ctx.id,
atomic_inc_return(&pvr_dev->kccb.fence_ctx.seqno));
out_fence = dma_fence_get(&fence->base);
list_add_tail(&fence->node, &pvr_dev->kccb.waiters);
} else {
pvr_kccb_fence_put(f);
pvr_dev->kccb.reserved_count++;
}
mutex_unlock(&pvr_dev->kccb.ccb.lock);
return out_fence;
}
/**
* pvr_kccb_release_slot() - Release a KCCB slot reserved with
* pvr_kccb_reserve_slot()
* @pvr_dev: Target PowerVR device
*
* Should only be called if something failed after the
* pvr_kccb_reserve_slot() call and you know you won't call
* pvr_kccb_send_cmd_reserved().
*/
void pvr_kccb_release_slot(struct pvr_device *pvr_dev)
{
mutex_lock(&pvr_dev->kccb.ccb.lock);
if (!WARN_ON(!pvr_dev->kccb.reserved_count))
pvr_dev->kccb.reserved_count--;
mutex_unlock(&pvr_dev->kccb.ccb.lock);
}
/**
* pvr_fwccb_init() - Initialise device FWCCB
* @pvr_dev: Target PowerVR device
*
* Returns:
* * 0 on success, or
* * Any error returned by pvr_ccb_init().
*/
int
pvr_fwccb_init(struct pvr_device *pvr_dev)
{
return pvr_ccb_init(pvr_dev, &pvr_dev->fwccb,
ROGUE_FWIF_FWCCB_NUMCMDS_LOG2,
sizeof(struct rogue_fwif_fwccb_cmd));
}