// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics SA 2017
*
* Authors: Philippe Cornu <[email protected]>
* Yannick Fertre <[email protected]>
* Fabien Dessenne <[email protected]>
* Mickael Reulier <[email protected]>
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_blend.h>
#include <drm/drm_bridge.h>
#include <drm/drm_device.h>
#include <drm/drm_edid.h>
#include <drm/drm_fb_dma_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_gem_dma_helper.h>
#include <drm/drm_of.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_simple_kms_helper.h>
#include <drm/drm_vblank.h>
#include <drm/drm_managed.h>
#include <video/videomode.h>
#include "ltdc.h"
#define NB_CRTC 1
#define CRTC_MASK GENMASK(NB_CRTC - 1, 0)
#define MAX_IRQ 4
#define HWVER_10200 0x010200
#define HWVER_10300 0x010300
#define HWVER_20101 0x020101
#define HWVER_40100 0x040100
/*
* The address of some registers depends on the HW version: such registers have
* an extra offset specified with layer_ofs.
*/
#define LAY_OFS_0 0x80
#define LAY_OFS_1 0x100
#define LAY_OFS (ldev->caps.layer_ofs)
/* Global register offsets */
#define LTDC_IDR 0x0000 /* IDentification */
#define LTDC_LCR 0x0004 /* Layer Count */
#define LTDC_SSCR 0x0008 /* Synchronization Size Configuration */
#define LTDC_BPCR 0x000C /* Back Porch Configuration */
#define LTDC_AWCR 0x0010 /* Active Width Configuration */
#define LTDC_TWCR 0x0014 /* Total Width Configuration */
#define LTDC_GCR 0x0018 /* Global Control */
#define LTDC_GC1R 0x001C /* Global Configuration 1 */
#define LTDC_GC2R 0x0020 /* Global Configuration 2 */
#define LTDC_SRCR 0x0024 /* Shadow Reload Configuration */
#define LTDC_GACR 0x0028 /* GAmma Correction */
#define LTDC_BCCR 0x002C /* Background Color Configuration */
#define LTDC_IER 0x0034 /* Interrupt Enable */
#define LTDC_ISR 0x0038 /* Interrupt Status */
#define LTDC_ICR 0x003C /* Interrupt Clear */
#define LTDC_LIPCR 0x0040 /* Line Interrupt Position Conf. */
#define LTDC_CPSR 0x0044 /* Current Position Status */
#define LTDC_CDSR 0x0048 /* Current Display Status */
#define LTDC_EDCR 0x0060 /* External Display Control */
#define LTDC_CCRCR 0x007C /* Computed CRC value */
#define LTDC_FUT 0x0090 /* Fifo underrun Threshold */
/* Layer register offsets */
#define LTDC_L1C0R (ldev->caps.layer_regs[0]) /* L1 configuration 0 */
#define LTDC_L1C1R (ldev->caps.layer_regs[1]) /* L1 configuration 1 */
#define LTDC_L1RCR (ldev->caps.layer_regs[2]) /* L1 reload control */
#define LTDC_L1CR (ldev->caps.layer_regs[3]) /* L1 control register */
#define LTDC_L1WHPCR (ldev->caps.layer_regs[4]) /* L1 window horizontal position configuration */
#define LTDC_L1WVPCR (ldev->caps.layer_regs[5]) /* L1 window vertical position configuration */
#define LTDC_L1CKCR (ldev->caps.layer_regs[6]) /* L1 color keying configuration */
#define LTDC_L1PFCR (ldev->caps.layer_regs[7]) /* L1 pixel format configuration */
#define LTDC_L1CACR (ldev->caps.layer_regs[8]) /* L1 constant alpha configuration */
#define LTDC_L1DCCR (ldev->caps.layer_regs[9]) /* L1 default color configuration */
#define LTDC_L1BFCR (ldev->caps.layer_regs[10]) /* L1 blending factors configuration */
#define LTDC_L1BLCR (ldev->caps.layer_regs[11]) /* L1 burst length configuration */
#define LTDC_L1PCR (ldev->caps.layer_regs[12]) /* L1 planar configuration */
#define LTDC_L1CFBAR (ldev->caps.layer_regs[13]) /* L1 color frame buffer address */
#define LTDC_L1CFBLR (ldev->caps.layer_regs[14]) /* L1 color frame buffer length */
#define LTDC_L1CFBLNR (ldev->caps.layer_regs[15]) /* L1 color frame buffer line number */
#define LTDC_L1AFBA0R (ldev->caps.layer_regs[16]) /* L1 auxiliary frame buffer address 0 */
#define LTDC_L1AFBA1R (ldev->caps.layer_regs[17]) /* L1 auxiliary frame buffer address 1 */
#define LTDC_L1AFBLR (ldev->caps.layer_regs[18]) /* L1 auxiliary frame buffer length */
#define LTDC_L1AFBLNR (ldev->caps.layer_regs[19]) /* L1 auxiliary frame buffer line number */
#define LTDC_L1CLUTWR (ldev->caps.layer_regs[20]) /* L1 CLUT write */
#define LTDC_L1CYR0R (ldev->caps.layer_regs[21]) /* L1 Conversion YCbCr RGB 0 */
#define LTDC_L1CYR1R (ldev->caps.layer_regs[22]) /* L1 Conversion YCbCr RGB 1 */
#define LTDC_L1FPF0R (ldev->caps.layer_regs[23]) /* L1 Flexible Pixel Format 0 */
#define LTDC_L1FPF1R (ldev->caps.layer_regs[24]) /* L1 Flexible Pixel Format 1 */
/* Bit definitions */
#define SSCR_VSH GENMASK(10, 0) /* Vertical Synchronization Height */
#define SSCR_HSW GENMASK(27, 16) /* Horizontal Synchronization Width */
#define BPCR_AVBP GENMASK(10, 0) /* Accumulated Vertical Back Porch */
#define BPCR_AHBP GENMASK(27, 16) /* Accumulated Horizontal Back Porch */
#define AWCR_AAH GENMASK(10, 0) /* Accumulated Active Height */
#define AWCR_AAW GENMASK(27, 16) /* Accumulated Active Width */
#define TWCR_TOTALH GENMASK(10, 0) /* TOTAL Height */
#define TWCR_TOTALW GENMASK(27, 16) /* TOTAL Width */
#define GCR_LTDCEN BIT(0) /* LTDC ENable */
#define GCR_DEN BIT(16) /* Dither ENable */
#define GCR_CRCEN BIT(19) /* CRC ENable */
#define GCR_PCPOL BIT(28) /* Pixel Clock POLarity-Inverted */
#define GCR_DEPOL BIT(29) /* Data Enable POLarity-High */
#define GCR_VSPOL BIT(30) /* Vertical Synchro POLarity-High */
#define GCR_HSPOL BIT(31) /* Horizontal Synchro POLarity-High */
#define GC1R_WBCH GENMASK(3, 0) /* Width of Blue CHannel output */
#define GC1R_WGCH GENMASK(7, 4) /* Width of Green Channel output */
#define GC1R_WRCH GENMASK(11, 8) /* Width of Red Channel output */
#define GC1R_PBEN BIT(12) /* Precise Blending ENable */
#define GC1R_DT GENMASK(15, 14) /* Dithering Technique */
#define GC1R_GCT GENMASK(19, 17) /* Gamma Correction Technique */
#define GC1R_SHREN BIT(21) /* SHadow Registers ENabled */
#define GC1R_BCP BIT(22) /* Background Colour Programmable */
#define GC1R_BBEN BIT(23) /* Background Blending ENabled */
#define GC1R_LNIP BIT(24) /* Line Number IRQ Position */
#define GC1R_TP BIT(25) /* Timing Programmable */
#define GC1R_IPP BIT(26) /* IRQ Polarity Programmable */
#define GC1R_SPP BIT(27) /* Sync Polarity Programmable */
#define GC1R_DWP BIT(28) /* Dither Width Programmable */
#define GC1R_STREN BIT(29) /* STatus Registers ENabled */
#define GC1R_BMEN BIT(31) /* Blind Mode ENabled */
#define GC2R_EDCA BIT(0) /* External Display Control Ability */
#define GC2R_STSAEN BIT(1) /* Slave Timing Sync Ability ENabled */
#define GC2R_DVAEN BIT(2) /* Dual-View Ability ENabled */
#define GC2R_DPAEN BIT(3) /* Dual-Port Ability ENabled */
#define GC2R_BW GENMASK(6, 4) /* Bus Width (log2 of nb of bytes) */
#define GC2R_EDCEN BIT(7) /* External Display Control ENabled */
#define SRCR_IMR BIT(0) /* IMmediate Reload */
#define SRCR_VBR BIT(1) /* Vertical Blanking Reload */
#define BCCR_BCBLACK 0x00 /* Background Color BLACK */
#define BCCR_BCBLUE GENMASK(7, 0) /* Background Color BLUE */
#define BCCR_BCGREEN GENMASK(15, 8) /* Background Color GREEN */
#define BCCR_BCRED GENMASK(23, 16) /* Background Color RED */
#define BCCR_BCWHITE GENMASK(23, 0) /* Background Color WHITE */
#define IER_LIE BIT(0) /* Line Interrupt Enable */
#define IER_FUWIE BIT(1) /* Fifo Underrun Warning Interrupt Enable */
#define IER_TERRIE BIT(2) /* Transfer ERRor Interrupt Enable */
#define IER_RRIE BIT(3) /* Register Reload Interrupt Enable */
#define IER_FUEIE BIT(6) /* Fifo Underrun Error Interrupt Enable */
#define IER_CRCIE BIT(7) /* CRC Error Interrupt Enable */
#define IER_MASK (IER_LIE | IER_FUWIE | IER_TERRIE | IER_RRIE | IER_FUEIE | IER_CRCIE)
#define CPSR_CYPOS GENMASK(15, 0) /* Current Y position */
#define ISR_LIF BIT(0) /* Line Interrupt Flag */
#define ISR_FUWIF BIT(1) /* Fifo Underrun Warning Interrupt Flag */
#define ISR_TERRIF BIT(2) /* Transfer ERRor Interrupt Flag */
#define ISR_RRIF BIT(3) /* Register Reload Interrupt Flag */
#define ISR_FUEIF BIT(6) /* Fifo Underrun Error Interrupt Flag */
#define ISR_CRCIF BIT(7) /* CRC Error Interrupt Flag */
#define EDCR_OCYEN BIT(25) /* Output Conversion to YCbCr 422: ENable */
#define EDCR_OCYSEL BIT(26) /* Output Conversion to YCbCr 422: SELection of the CCIR */
#define EDCR_OCYCO BIT(27) /* Output Conversion to YCbCr 422: Chrominance Order */
#define LXCR_LEN BIT(0) /* Layer ENable */
#define LXCR_COLKEN BIT(1) /* Color Keying Enable */
#define LXCR_CLUTEN BIT(4) /* Color Look-Up Table ENable */
#define LXCR_HMEN BIT(8) /* Horizontal Mirroring ENable */
#define LXCR_MASK (LXCR_LEN | LXCR_COLKEN | LXCR_CLUTEN | LXCR_HMEN)
#define LXWHPCR_WHSTPOS GENMASK(11, 0) /* Window Horizontal StarT POSition */
#define LXWHPCR_WHSPPOS GENMASK(27, 16) /* Window Horizontal StoP POSition */
#define LXWVPCR_WVSTPOS GENMASK(10, 0) /* Window Vertical StarT POSition */
#define LXWVPCR_WVSPPOS GENMASK(26, 16) /* Window Vertical StoP POSition */
#define LXPFCR_PF GENMASK(2, 0) /* Pixel Format */
#define PF_FLEXIBLE 0x7 /* Flexible Pixel Format selected */
#define LXCACR_CONSTA GENMASK(7, 0) /* CONSTant Alpha */
#define LXBFCR_BF2 GENMASK(2, 0) /* Blending Factor 2 */
#define LXBFCR_BF1 GENMASK(10, 8) /* Blending Factor 1 */
#define LXBFCR_BOR GENMASK(18, 16) /* Blending ORder */
#define LXCFBLR_CFBLL GENMASK(12, 0) /* Color Frame Buffer Line Length */
#define LXCFBLR_CFBP GENMASK(31, 16) /* Color Frame Buffer Pitch in bytes */
#define LXCFBLNR_CFBLN GENMASK(10, 0) /* Color Frame Buffer Line Number */
#define LXCR_C1R_YIA BIT(0) /* Ycbcr 422 Interleaved Ability */
#define LXCR_C1R_YSPA BIT(1) /* Ycbcr 420 Semi-Planar Ability */
#define LXCR_C1R_YFPA BIT(2) /* Ycbcr 420 Full-Planar Ability */
#define LXCR_C1R_SCA BIT(31) /* SCaling Ability*/
#define LxPCR_YREN BIT(9) /* Y Rescale Enable for the color dynamic range */
#define LxPCR_OF BIT(8) /* Odd pixel First */
#define LxPCR_CBF BIT(7) /* CB component First */
#define LxPCR_YF BIT(6) /* Y component First */
#define LxPCR_YCM GENMASK(5, 4) /* Ycbcr Conversion Mode */
#define YCM_I 0x0 /* Interleaved 422 */
#define YCM_SP 0x1 /* Semi-Planar 420 */
#define YCM_FP 0x2 /* Full-Planar 420 */
#define LxPCR_YCEN BIT(3) /* YCbCr-to-RGB Conversion Enable */
#define LXRCR_IMR BIT(0) /* IMmediate Reload */
#define LXRCR_VBR BIT(1) /* Vertical Blanking Reload */
#define LXRCR_GRMSK BIT(2) /* Global (centralized) Reload MaSKed */
#define CLUT_SIZE 256
#define CONSTA_MAX 0xFF /* CONSTant Alpha MAX= 1.0 */
#define BF1_PAXCA 0x600 /* Pixel Alpha x Constant Alpha */
#define BF1_CA 0x400 /* Constant Alpha */
#define BF2_1PAXCA 0x007 /* 1 - (Pixel Alpha x Constant Alpha) */
#define BF2_1CA 0x005 /* 1 - Constant Alpha */
#define NB_PF 8 /* Max nb of HW pixel format */
#define FUT_DFT 128 /* Default value of fifo underrun threshold */
/*
* Skip the first value and the second in case CRC was enabled during
* the thread irq. This is to be sure CRC value is relevant for the
* frame.
*/
#define CRC_SKIP_FRAMES 2
enum ltdc_pix_fmt {
PF_NONE,
/* RGB formats */
PF_ARGB8888, /* ARGB [32 bits] */
PF_RGBA8888, /* RGBA [32 bits] */
PF_ABGR8888, /* ABGR [32 bits] */
PF_BGRA8888, /* BGRA [32 bits] */
PF_RGB888, /* RGB [24 bits] */
PF_BGR888, /* BGR [24 bits] */
PF_RGB565, /* RGB [16 bits] */
PF_BGR565, /* BGR [16 bits] */
PF_ARGB1555, /* ARGB A:1 bit RGB:15 bits [16 bits] */
PF_ARGB4444, /* ARGB A:4 bits R/G/B: 4 bits each [16 bits] */
/* Indexed formats */
PF_L8, /* Indexed 8 bits [8 bits] */
PF_AL44, /* Alpha:4 bits + indexed 4 bits [8 bits] */
PF_AL88 /* Alpha:8 bits + indexed 8 bits [16 bits] */
};
/* The index gives the encoding of the pixel format for an HW version */
static const enum ltdc_pix_fmt ltdc_pix_fmt_a0[NB_PF] = {
PF_ARGB8888, /* 0x00 */
PF_RGB888, /* 0x01 */
PF_RGB565, /* 0x02 */
PF_ARGB1555, /* 0x03 */
PF_ARGB4444, /* 0x04 */
PF_L8, /* 0x05 */
PF_AL44, /* 0x06 */
PF_AL88 /* 0x07 */
};
static const enum ltdc_pix_fmt ltdc_pix_fmt_a1[NB_PF] = {
PF_ARGB8888, /* 0x00 */
PF_RGB888, /* 0x01 */
PF_RGB565, /* 0x02 */
PF_RGBA8888, /* 0x03 */
PF_AL44, /* 0x04 */
PF_L8, /* 0x05 */
PF_ARGB1555, /* 0x06 */
PF_ARGB4444 /* 0x07 */
};
static const enum ltdc_pix_fmt ltdc_pix_fmt_a2[NB_PF] = {
PF_ARGB8888, /* 0x00 */
PF_ABGR8888, /* 0x01 */
PF_RGBA8888, /* 0x02 */
PF_BGRA8888, /* 0x03 */
PF_RGB565, /* 0x04 */
PF_BGR565, /* 0x05 */
PF_RGB888, /* 0x06 */
PF_NONE /* 0x07 */
};
static const u32 ltdc_drm_fmt_a0[] = {
DRM_FORMAT_ARGB8888,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB888,
DRM_FORMAT_RGB565,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_ARGB4444,
DRM_FORMAT_XRGB4444,
DRM_FORMAT_C8
};
static const u32 ltdc_drm_fmt_a1[] = {
DRM_FORMAT_ARGB8888,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB888,
DRM_FORMAT_RGB565,
DRM_FORMAT_RGBA8888,
DRM_FORMAT_RGBX8888,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_ARGB4444,
DRM_FORMAT_XRGB4444,
DRM_FORMAT_C8
};
static const u32 ltdc_drm_fmt_a2[] = {
DRM_FORMAT_ARGB8888,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_ABGR8888,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_RGBA8888,
DRM_FORMAT_RGBX8888,
DRM_FORMAT_BGRA8888,
DRM_FORMAT_BGRX8888,
DRM_FORMAT_RGB565,
DRM_FORMAT_BGR565,
DRM_FORMAT_RGB888,
DRM_FORMAT_BGR888,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_ARGB4444,
DRM_FORMAT_XRGB4444,
DRM_FORMAT_C8
};
static const u32 ltdc_drm_fmt_ycbcr_cp[] = {
DRM_FORMAT_YUYV,
DRM_FORMAT_YVYU,
DRM_FORMAT_UYVY,
DRM_FORMAT_VYUY
};
static const u32 ltdc_drm_fmt_ycbcr_sp[] = {
DRM_FORMAT_NV12,
DRM_FORMAT_NV21
};
static const u32 ltdc_drm_fmt_ycbcr_fp[] = {
DRM_FORMAT_YUV420,
DRM_FORMAT_YVU420
};
/* Layer register offsets */
static const u32 ltdc_layer_regs_a0[] = {
0x80, /* L1 configuration 0 */
0x00, /* not available */
0x00, /* not available */
0x84, /* L1 control register */
0x88, /* L1 window horizontal position configuration */
0x8c, /* L1 window vertical position configuration */
0x90, /* L1 color keying configuration */
0x94, /* L1 pixel format configuration */
0x98, /* L1 constant alpha configuration */
0x9c, /* L1 default color configuration */
0xa0, /* L1 blending factors configuration */
0x00, /* not available */
0x00, /* not available */
0xac, /* L1 color frame buffer address */
0xb0, /* L1 color frame buffer length */
0xb4, /* L1 color frame buffer line number */
0x00, /* not available */
0x00, /* not available */
0x00, /* not available */
0x00, /* not available */
0xc4, /* L1 CLUT write */
0x00, /* not available */
0x00, /* not available */
0x00, /* not available */
0x00 /* not available */
};
static const u32 ltdc_layer_regs_a1[] = {
0x80, /* L1 configuration 0 */
0x84, /* L1 configuration 1 */
0x00, /* L1 reload control */
0x88, /* L1 control register */
0x8c, /* L1 window horizontal position configuration */
0x90, /* L1 window vertical position configuration */
0x94, /* L1 color keying configuration */
0x98, /* L1 pixel format configuration */
0x9c, /* L1 constant alpha configuration */
0xa0, /* L1 default color configuration */
0xa4, /* L1 blending factors configuration */
0xa8, /* L1 burst length configuration */
0x00, /* not available */
0xac, /* L1 color frame buffer address */
0xb0, /* L1 color frame buffer length */
0xb4, /* L1 color frame buffer line number */
0xb8, /* L1 auxiliary frame buffer address 0 */
0xbc, /* L1 auxiliary frame buffer address 1 */
0xc0, /* L1 auxiliary frame buffer length */
0xc4, /* L1 auxiliary frame buffer line number */
0xc8, /* L1 CLUT write */
0x00, /* not available */
0x00, /* not available */
0x00, /* not available */
0x00 /* not available */
};
static const u32 ltdc_layer_regs_a2[] = {
0x100, /* L1 configuration 0 */
0x104, /* L1 configuration 1 */
0x108, /* L1 reload control */
0x10c, /* L1 control register */
0x110, /* L1 window horizontal position configuration */
0x114, /* L1 window vertical position configuration */
0x118, /* L1 color keying configuration */
0x11c, /* L1 pixel format configuration */
0x120, /* L1 constant alpha configuration */
0x124, /* L1 default color configuration */
0x128, /* L1 blending factors configuration */
0x12c, /* L1 burst length configuration */
0x130, /* L1 planar configuration */
0x134, /* L1 color frame buffer address */
0x138, /* L1 color frame buffer length */
0x13c, /* L1 color frame buffer line number */
0x140, /* L1 auxiliary frame buffer address 0 */
0x144, /* L1 auxiliary frame buffer address 1 */
0x148, /* L1 auxiliary frame buffer length */
0x14c, /* L1 auxiliary frame buffer line number */
0x150, /* L1 CLUT write */
0x16c, /* L1 Conversion YCbCr RGB 0 */
0x170, /* L1 Conversion YCbCr RGB 1 */
0x174, /* L1 Flexible Pixel Format 0 */
0x178 /* L1 Flexible Pixel Format 1 */
};
static const u64 ltdc_format_modifiers[] = {
DRM_FORMAT_MOD_LINEAR,
DRM_FORMAT_MOD_INVALID
};
static const struct regmap_config stm32_ltdc_regmap_cfg = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = sizeof(u32),
.max_register = 0x400,
.use_relaxed_mmio = true,
.cache_type = REGCACHE_NONE,
};
static const u32 ltdc_ycbcr2rgb_coeffs[DRM_COLOR_ENCODING_MAX][DRM_COLOR_RANGE_MAX][2] = {
[DRM_COLOR_YCBCR_BT601][DRM_COLOR_YCBCR_LIMITED_RANGE] = {
0x02040199, /* (b_cb = 516 / r_cr = 409) */
0x006400D0 /* (g_cb = 100 / g_cr = 208) */
},
[DRM_COLOR_YCBCR_BT601][DRM_COLOR_YCBCR_FULL_RANGE] = {
0x01C60167, /* (b_cb = 454 / r_cr = 359) */
0x005800B7 /* (g_cb = 88 / g_cr = 183) */
},
[DRM_COLOR_YCBCR_BT709][DRM_COLOR_YCBCR_LIMITED_RANGE] = {
0x021D01CB, /* (b_cb = 541 / r_cr = 459) */
0x00370089 /* (g_cb = 55 / g_cr = 137) */
},
[DRM_COLOR_YCBCR_BT709][DRM_COLOR_YCBCR_FULL_RANGE] = {
0x01DB0193, /* (b_cb = 475 / r_cr = 403) */
0x00300078 /* (g_cb = 48 / g_cr = 120) */
}
/* BT2020 not supported */
};
static inline struct ltdc_device *crtc_to_ltdc(struct drm_crtc *crtc)
{
return (struct ltdc_device *)crtc->dev->dev_private;
}
static inline struct ltdc_device *plane_to_ltdc(struct drm_plane *plane)
{
return (struct ltdc_device *)plane->dev->dev_private;
}
static inline enum ltdc_pix_fmt to_ltdc_pixelformat(u32 drm_fmt)
{
enum ltdc_pix_fmt pf;
switch (drm_fmt) {
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XRGB8888:
pf = PF_ARGB8888;
break;
case DRM_FORMAT_ABGR8888:
case DRM_FORMAT_XBGR8888:
pf = PF_ABGR8888;
break;
case DRM_FORMAT_RGBA8888:
case DRM_FORMAT_RGBX8888:
pf = PF_RGBA8888;
break;
case DRM_FORMAT_BGRA8888:
case DRM_FORMAT_BGRX8888:
pf = PF_BGRA8888;
break;
case DRM_FORMAT_RGB888:
pf = PF_RGB888;
break;
case DRM_FORMAT_BGR888:
pf = PF_BGR888;
break;
case DRM_FORMAT_RGB565:
pf = PF_RGB565;
break;
case DRM_FORMAT_BGR565:
pf = PF_BGR565;
break;
case DRM_FORMAT_ARGB1555:
case DRM_FORMAT_XRGB1555:
pf = PF_ARGB1555;
break;
case DRM_FORMAT_ARGB4444:
case DRM_FORMAT_XRGB4444:
pf = PF_ARGB4444;
break;
case DRM_FORMAT_C8:
pf = PF_L8;
break;
default:
pf = PF_NONE;
break;
/* Note: There are no DRM_FORMAT for AL44 and AL88 */
}
return pf;
}
static inline u32 ltdc_set_flexible_pixel_format(struct drm_plane *plane, enum ltdc_pix_fmt pix_fmt)
{
struct ltdc_device *ldev = plane_to_ltdc(plane);
u32 lofs = plane->index * LAY_OFS, ret = PF_FLEXIBLE;
int psize, alen, apos, rlen, rpos, glen, gpos, blen, bpos;
switch (pix_fmt) {
case PF_BGR888:
psize = 3;
alen = 0; apos = 0; rlen = 8; rpos = 0;
glen = 8; gpos = 8; blen = 8; bpos = 16;
break;
case PF_ARGB1555:
psize = 2;
alen = 1; apos = 15; rlen = 5; rpos = 10;
glen = 5; gpos = 5; blen = 5; bpos = 0;
break;
case PF_ARGB4444:
psize = 2;
alen = 4; apos = 12; rlen = 4; rpos = 8;
glen = 4; gpos = 4; blen = 4; bpos = 0;
break;
case PF_L8:
psize = 1;
alen = 0; apos = 0; rlen = 8; rpos = 0;
glen = 8; gpos = 0; blen = 8; bpos = 0;
break;
case PF_AL44:
psize = 1;
alen = 4; apos = 4; rlen = 4; rpos = 0;
glen = 4; gpos = 0; blen = 4; bpos = 0;
break;
case PF_AL88:
psize = 2;
alen = 8; apos = 8; rlen = 8; rpos = 0;
glen = 8; gpos = 0; blen = 8; bpos = 0;
break;
default:
ret = NB_PF; /* error case, trace msg is handled by the caller */
break;
}
if (ret == PF_FLEXIBLE) {
regmap_write(ldev->regmap, LTDC_L1FPF0R + lofs,
(rlen << 14) + (rpos << 9) + (alen << 5) + apos);
regmap_write(ldev->regmap, LTDC_L1FPF1R + lofs,
(psize << 18) + (blen << 14) + (bpos << 9) + (glen << 5) + gpos);
}
return ret;
}
/*
* All non-alpha color formats derived from native alpha color formats are
* either characterized by a FourCC format code
*/
static inline u32 is_xrgb(u32 drm)
{
return ((drm & 0xFF) == 'X' || ((drm >> 8) & 0xFF) == 'X');
}
static inline void ltdc_set_ycbcr_config(struct drm_plane *plane, u32 drm_pix_fmt)
{
struct ltdc_device *ldev = plane_to_ltdc(plane);
struct drm_plane_state *state = plane->state;
u32 lofs = plane->index * LAY_OFS;
u32 val;
switch (drm_pix_fmt) {
case DRM_FORMAT_YUYV:
val = (YCM_I << 4) | LxPCR_YF | LxPCR_CBF;
break;
case DRM_FORMAT_YVYU:
val = (YCM_I << 4) | LxPCR_YF;
break;
case DRM_FORMAT_UYVY:
val = (YCM_I << 4) | LxPCR_CBF;
break;
case DRM_FORMAT_VYUY:
val = (YCM_I << 4);
break;
case DRM_FORMAT_NV12:
val = (YCM_SP << 4) | LxPCR_CBF;
break;
case DRM_FORMAT_NV21:
val = (YCM_SP << 4);
break;
case DRM_FORMAT_YUV420:
case DRM_FORMAT_YVU420:
val = (YCM_FP << 4);
break;
default:
/* RGB or not a YCbCr supported format */
DRM_ERROR("Unsupported pixel format: %u\n", drm_pix_fmt);
return;
}
/* Enable limited range */
if (state->color_range == DRM_COLOR_YCBCR_LIMITED_RANGE)
val |= LxPCR_YREN;
/* enable ycbcr conversion */
val |= LxPCR_YCEN;
regmap_write(ldev->regmap, LTDC_L1PCR + lofs, val);
}
static inline void ltdc_set_ycbcr_coeffs(struct drm_plane *plane)
{
struct ltdc_device *ldev = plane_to_ltdc(plane);
struct drm_plane_state *state = plane->state;
enum drm_color_encoding enc = state->color_encoding;
enum drm_color_range ran = state->color_range;
u32 lofs = plane->index * LAY_OFS;
if (enc != DRM_COLOR_YCBCR_BT601 && enc != DRM_COLOR_YCBCR_BT709) {
DRM_ERROR("color encoding %d not supported, use bt601 by default\n", enc);
/* set by default color encoding to DRM_COLOR_YCBCR_BT601 */
enc = DRM_COLOR_YCBCR_BT601;
}
if (ran != DRM_COLOR_YCBCR_LIMITED_RANGE && ran != DRM_COLOR_YCBCR_FULL_RANGE) {
DRM_ERROR("color range %d not supported, use limited range by default\n", ran);
/* set by default color range to DRM_COLOR_YCBCR_LIMITED_RANGE */
ran = DRM_COLOR_YCBCR_LIMITED_RANGE;
}
DRM_DEBUG_DRIVER("Color encoding=%d, range=%d\n", enc, ran);
regmap_write(ldev->regmap, LTDC_L1CYR0R + lofs,
ltdc_ycbcr2rgb_coeffs[enc][ran][0]);
regmap_write(ldev->regmap, LTDC_L1CYR1R + lofs,
ltdc_ycbcr2rgb_coeffs[enc][ran][1]);
}
static inline void ltdc_irq_crc_handle(struct ltdc_device *ldev,
struct drm_crtc *crtc)
{
u32 crc;
int ret;
if (ldev->crc_skip_count < CRC_SKIP_FRAMES) {
ldev->crc_skip_count++;
return;
}
/* Get the CRC of the frame */
ret = regmap_read(ldev->regmap, LTDC_CCRCR, &crc);
if (ret)
return;
/* Report to DRM the CRC (hw dependent feature) */
drm_crtc_add_crc_entry(crtc, true, drm_crtc_accurate_vblank_count(crtc), &crc);
}
static irqreturn_t ltdc_irq_thread(int irq, void *arg)
{
struct drm_device *ddev = arg;
struct ltdc_device *ldev = ddev->dev_private;
struct drm_crtc *crtc = drm_crtc_from_index(ddev, 0);
/* Line IRQ : trigger the vblank event */
if (ldev->irq_status & ISR_LIF) {
drm_crtc_handle_vblank(crtc);
/* Early return if CRC is not active */
if (ldev->crc_active)
ltdc_irq_crc_handle(ldev, crtc);
}
mutex_lock(&ldev->err_lock);
if (ldev->irq_status & ISR_TERRIF)
ldev->transfer_err++;
if (ldev->irq_status & ISR_FUEIF)
ldev->fifo_err++;
if (ldev->irq_status & ISR_FUWIF)
ldev->fifo_warn++;
mutex_unlock(&ldev->err_lock);
return IRQ_HANDLED;
}
static irqreturn_t ltdc_irq(int irq, void *arg)
{
struct drm_device *ddev = arg;
struct ltdc_device *ldev = ddev->dev_private;
/*
* Read & Clear the interrupt status
* In order to write / read registers in this critical section
* very quickly, the regmap functions are not used.
*/
ldev->irq_status = readl_relaxed(ldev->regs + LTDC_ISR);
writel_relaxed(ldev->irq_status, ldev->regs + LTDC_ICR);
return IRQ_WAKE_THREAD;
}
/*
* DRM_CRTC
*/
static void ltdc_crtc_update_clut(struct drm_crtc *crtc)
{
struct ltdc_device *ldev = crtc_to_ltdc(crtc);
struct drm_color_lut *lut;
u32 val;
int i;
if (!crtc->state->color_mgmt_changed || !crtc->state->gamma_lut)
return;
lut = (struct drm_color_lut *)crtc->state->gamma_lut->data;
for (i = 0; i < CLUT_SIZE; i++, lut++) {
val = ((lut->red << 8) & 0xff0000) | (lut->green & 0xff00) |
(lut->blue >> 8) | (i << 24);
regmap_write(ldev->regmap, LTDC_L1CLUTWR, val);
}
}
static void ltdc_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct ltdc_device *ldev = crtc_to_ltdc(crtc);
struct drm_device *ddev = crtc->dev;
DRM_DEBUG_DRIVER("\n");
pm_runtime_get_sync(ddev->dev);
/* Sets the background color value */
regmap_write(ldev->regmap, LTDC_BCCR, BCCR_BCBLACK);
/* Enable IRQ */
regmap_set_bits(ldev->regmap, LTDC_IER, IER_FUWIE | IER_FUEIE | IER_TERRIE);
/* Commit shadow registers = update planes at next vblank */
if (!ldev->caps.plane_reg_shadow)
regmap_set_bits(ldev->regmap, LTDC_SRCR, SRCR_VBR);
drm_crtc_vblank_on(crtc);
}
static void ltdc_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct ltdc_device *ldev = crtc_to_ltdc(crtc);
struct drm_device *ddev = crtc->dev;
int layer_index = 0;
DRM_DEBUG_DRIVER("\n");
drm_crtc_vblank_off(crtc);
/* Disable all layers */
for (layer_index = 0; layer_index < ldev->caps.nb_layers; layer_index++)
regmap_write_bits(ldev->regmap, LTDC_L1CR + layer_index * LAY_OFS, LXCR_MASK, 0);
/* Disable IRQ */
regmap_clear_bits(ldev->regmap, LTDC_IER, IER_FUWIE | IER_FUEIE | IER_TERRIE);
/* immediately commit disable of layers before switching off LTDC */
if (!ldev->caps.plane_reg_shadow)
regmap_set_bits(ldev->regmap, LTDC_SRCR, SRCR_IMR);
pm_runtime_put_sync(ddev->dev);
/* clear interrupt error counters */
mutex_lock(&ldev->err_lock);
ldev->transfer_err = 0;
ldev->fifo_err = 0;
ldev->fifo_warn = 0;
mutex_unlock(&ldev->err_lock);
}
#define CLK_TOLERANCE_HZ 50
static enum drm_mode_status
ltdc_crtc_mode_valid(struct drm_crtc *crtc,
const struct drm_display_mode *mode)
{
struct ltdc_device *ldev = crtc_to_ltdc(crtc);
int target = mode->clock * 1000;
int target_min = target - CLK_TOLERANCE_HZ;
int target_max = target + CLK_TOLERANCE_HZ;
int result;
result = clk_round_rate(ldev->pixel_clk, target);
DRM_DEBUG_DRIVER("clk rate target %d, available %d\n", target, result);
/* Filter modes according to the max frequency supported by the pads */
if (result > ldev->caps.pad_max_freq_hz)
return MODE_CLOCK_HIGH;
/*
* Accept all "preferred" modes:
* - this is important for panels because panel clock tolerances are
* bigger than hdmi ones and there is no reason to not accept them
* (the fps may vary a little but it is not a problem).
* - the hdmi preferred mode will be accepted too, but userland will
* be able to use others hdmi "valid" modes if necessary.
*/
if (mode->type & DRM_MODE_TYPE_PREFERRED)
return MODE_OK;
/*
* Filter modes according to the clock value, particularly useful for
* hdmi modes that require precise pixel clocks.
*/
if (result < target_min || result > target_max)
return MODE_CLOCK_RANGE;
return MODE_OK;
}
static bool ltdc_crtc_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct ltdc_device *ldev = crtc_to_ltdc(crtc);
int rate = mode->clock * 1000;
if (clk_set_rate(ldev->pixel_clk, rate) < 0) {
DRM_ERROR("Cannot set rate (%dHz) for pixel clk\n", rate);
return false;
}
adjusted_mode->clock = clk_get_rate(ldev->pixel_clk) / 1000;
DRM_DEBUG_DRIVER("requested clock %dkHz, adjusted clock %dkHz\n",
mode->clock, adjusted_mode->clock);
return true;
}
static void ltdc_crtc_mode_set_nofb(struct drm_crtc *crtc)
{
struct ltdc_device *ldev = crtc_to_ltdc(crtc);
struct drm_device *ddev = crtc->dev;
struct drm_connector_list_iter iter;
struct drm_connector *connector = NULL;
struct drm_encoder *encoder = NULL, *en_iter;
struct drm_bridge *bridge = NULL, *br_iter;
struct drm_display_mode *mode = &crtc->state->adjusted_mode;
u32 hsync, vsync, accum_hbp, accum_vbp, accum_act_w, accum_act_h;
u32 total_width, total_height;
u32 bus_formats = MEDIA_BUS_FMT_RGB888_1X24;
u32 bus_flags = 0;
u32 val;
int ret;
/* get encoder from crtc */
drm_for_each_encoder(en_iter, ddev)
if (en_iter->crtc == crtc) {
encoder = en_iter;
break;
}
if (encoder) {
/* get bridge from encoder */
list_for_each_entry(br_iter, &encoder->bridge_chain, chain_node)
if (br_iter->encoder == encoder) {
bridge = br_iter;
break;
}
/* Get the connector from encoder */
drm_connector_list_iter_begin(ddev, &iter);
drm_for_each_connector_iter(connector, &iter)
if (connector->encoder == encoder)
break;
drm_connector_list_iter_end(&iter);
}
if (bridge && bridge->timings) {
bus_flags = bridge->timings->input_bus_flags;
} else if (connector) {
bus_flags = connector->display_info.bus_flags;
if (connector->display_info.num_bus_formats)
bus_formats = connector->display_info.bus_formats[0];
}
if (!pm_runtime_active(ddev->dev)) {
ret = pm_runtime_get_sync(ddev->dev);
if (ret) {
DRM_ERROR("Failed to set mode, cannot get sync\n");
return;
}
}
DRM_DEBUG_DRIVER("CRTC:%d mode:%s\n", crtc->base.id, mode->name);
DRM_DEBUG_DRIVER("Video mode: %dx%d", mode->hdisplay, mode->vdisplay);
DRM_DEBUG_DRIVER(" hfp %d hbp %d hsl %d vfp %d vbp %d vsl %d\n",
mode->hsync_start - mode->hdisplay,
mode->htotal - mode->hsync_end,
mode->hsync_end - mode->hsync_start,
mode->vsync_start - mode->vdisplay,
mode->vtotal - mode->vsync_end,
mode->vsync_end - mode->vsync_start);
/* Convert video timings to ltdc timings */
hsync = mode->hsync_end - mode->hsync_start - 1;
vsync = mode->vsync_end - mode->vsync_start - 1;
accum_hbp = mode->htotal - mode->hsync_start - 1;
accum_vbp = mode->vtotal - mode->vsync_start - 1;
accum_act_w = accum_hbp + mode->hdisplay;
accum_act_h = accum_vbp + mode->vdisplay;
total_width = mode->htotal - 1;
total_height = mode->vtotal - 1;
/* Configures the HS, VS, DE and PC polarities. Default Active Low */
val = 0;
if (mode->flags & DRM_MODE_FLAG_PHSYNC)
val |= GCR_HSPOL;
if (mode->flags & DRM_MODE_FLAG_PVSYNC)
val |= GCR_VSPOL;
if (bus_flags & DRM_BUS_FLAG_DE_LOW)
val |= GCR_DEPOL;
if (bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE)
val |= GCR_PCPOL;
regmap_update_bits(ldev->regmap, LTDC_GCR,
GCR_HSPOL | GCR_VSPOL | GCR_DEPOL | GCR_PCPOL, val);
/* Set Synchronization size */
val = (hsync << 16) | vsync;
regmap_update_bits(ldev->regmap, LTDC_SSCR, SSCR_VSH | SSCR_HSW, val);
/* Set Accumulated Back porch */
val = (accum_hbp << 16) | accum_vbp;
regmap_update_bits(ldev->regmap, LTDC_BPCR, BPCR_AVBP | BPCR_AHBP, val);
/* Set Accumulated Active Width */
val = (accum_act_w << 16) | accum_act_h;
regmap_update_bits(ldev->regmap, LTDC_AWCR, AWCR_AAW | AWCR_AAH, val);
/* Set total width & height */
val = (total_width << 16) | total_height;
regmap_update_bits(ldev->regmap, LTDC_TWCR, TWCR_TOTALH | TWCR_TOTALW, val);
regmap_write(ldev->regmap, LTDC_LIPCR, (accum_act_h + 1));
/* Configure the output format (hw version dependent) */
if (ldev->caps.ycbcr_output) {
/* Input video dynamic_range & colorimetry */
int vic = drm_match_cea_mode(mode);
u32 val;
if (vic == 6 || vic == 7 || vic == 21 || vic == 22 ||
vic == 2 || vic == 3 || vic == 17 || vic == 18)
/* ITU-R BT.601 */
val = 0;
else
/* ITU-R BT.709 */
val = EDCR_OCYSEL;
switch (bus_formats) {
case MEDIA_BUS_FMT_YUYV8_1X16:
/* enable ycbcr output converter */
regmap_write(ldev->regmap, LTDC_EDCR, EDCR_OCYEN | val);
break;
case MEDIA_BUS_FMT_YVYU8_1X16:
/* enable ycbcr output converter & invert chrominance order */
regmap_write(ldev->regmap, LTDC_EDCR, EDCR_OCYEN | EDCR_OCYCO | val);
break;
default:
/* disable ycbcr output converter */
regmap_write(ldev->regmap, LTDC_EDCR, 0);
break;
}
}
}
static void ltdc_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct ltdc_device *ldev = crtc_to_ltdc(crtc);
struct drm_device *ddev = crtc->dev;
struct drm_pending_vblank_event *event = crtc->state->event;
DRM_DEBUG_ATOMIC("\n");
ltdc_crtc_update_clut(crtc);
/* Commit shadow registers = update planes at next vblank */
if (!ldev->caps.plane_reg_shadow)
regmap_set_bits(ldev->regmap, LTDC_SRCR, SRCR_VBR);
if (event) {
crtc->state->event = NULL;
spin_lock_irq(&ddev->event_lock);
if (drm_crtc_vblank_get(crtc) == 0)
drm_crtc_arm_vblank_event(crtc, event);
else
drm_crtc_send_vblank_event(crtc, event);
spin_unlock_irq(&ddev->event_lock);
}
}
static bool ltdc_crtc_get_scanout_position(struct drm_crtc *crtc,
bool in_vblank_irq,
int *vpos, int *hpos,
ktime_t *stime, ktime_t *etime,
const struct drm_display_mode *mode)
{
struct drm_device *ddev = crtc->dev;
struct ltdc_device *ldev = ddev->dev_private;
int line, vactive_start, vactive_end, vtotal;
if (stime)
*stime = ktime_get();
/* The active area starts after vsync + front porch and ends
* at vsync + front porc + display size.
* The total height also include back porch.
* We have 3 possible cases to handle:
* - line < vactive_start: vpos = line - vactive_start and will be
* negative
* - vactive_start < line < vactive_end: vpos = line - vactive_start
* and will be positive
* - line > vactive_end: vpos = line - vtotal - vactive_start
* and will negative
*
* Computation for the two first cases are identical so we can
* simplify the code and only test if line > vactive_end
*/
if (pm_runtime_active(ddev->dev)) {
regmap_read(ldev->regmap, LTDC_CPSR, &line);
line &= CPSR_CYPOS;
regmap_read(ldev->regmap, LTDC_BPCR, &vactive_start);
vactive_start &= BPCR_AVBP;
regmap_read(ldev->regmap, LTDC_AWCR, &vactive_end);
vactive_end &= AWCR_AAH;
regmap_read(ldev->regmap, LTDC_TWCR, &vtotal);
vtotal &= TWCR_TOTALH;
if (line > vactive_end)
*vpos = line - vtotal - vactive_start;
else
*vpos = line - vactive_start;
} else {
*vpos = 0;
}
*hpos = 0;
if (etime)
*etime = ktime_get();
return true;
}
static const struct drm_crtc_helper_funcs ltdc_crtc_helper_funcs = {
.mode_valid = ltdc_crtc_mode_valid,
.mode_fixup = ltdc_crtc_mode_fixup,
.mode_set_nofb = ltdc_crtc_mode_set_nofb,
.atomic_flush = ltdc_crtc_atomic_flush,
.atomic_enable = ltdc_crtc_atomic_enable,
.atomic_disable = ltdc_crtc_atomic_disable,
.get_scanout_position = ltdc_crtc_get_scanout_position,
};
static int ltdc_crtc_enable_vblank(struct drm_crtc *crtc)
{
struct ltdc_device *ldev = crtc_to_ltdc(crtc);
struct drm_crtc_state *state = crtc->state;
DRM_DEBUG_DRIVER("\n");
if (state->enable)
regmap_set_bits(ldev->regmap, LTDC_IER, IER_LIE);
else
return -EPERM;
return 0;
}
static void ltdc_crtc_disable_vblank(struct drm_crtc *crtc)
{
struct ltdc_device *ldev = crtc_to_ltdc(crtc);
DRM_DEBUG_DRIVER("\n");
regmap_clear_bits(ldev->regmap, LTDC_IER, IER_LIE);
}
static int ltdc_crtc_set_crc_source(struct drm_crtc *crtc, const char *source)
{
struct ltdc_device *ldev;
int ret;
DRM_DEBUG_DRIVER("\n");
if (!crtc)
return -ENODEV;
ldev = crtc_to_ltdc(crtc);
if (source && strcmp(source, "auto") == 0) {
ldev->crc_active = true;
ret = regmap_set_bits(ldev->regmap, LTDC_GCR, GCR_CRCEN);
} else if (!source) {
ldev->crc_active = false;
ret = regmap_clear_bits(ldev->regmap, LTDC_GCR, GCR_CRCEN);
} else {
ret = -EINVAL;
}
ldev->crc_skip_count = 0;
return ret;
}
static int ltdc_crtc_verify_crc_source(struct drm_crtc *crtc,
const char *source, size_t *values_cnt)
{
DRM_DEBUG_DRIVER("\n");
if (!crtc)
return -ENODEV;
if (source && strcmp(source, "auto") != 0) {
DRM_DEBUG_DRIVER("Unknown CRC source %s for %s\n",
source, crtc->name);
return -EINVAL;
}
*values_cnt = 1;
return 0;
}
static void ltdc_crtc_atomic_print_state(struct drm_printer *p,
const struct drm_crtc_state *state)
{
struct drm_crtc *crtc = state->crtc;
struct ltdc_device *ldev = crtc_to_ltdc(crtc);
drm_printf(p, "\ttransfer_error=%d\n", ldev->transfer_err);
drm_printf(p, "\tfifo_underrun_error=%d\n", ldev->fifo_err);
drm_printf(p, "\tfifo_underrun_warning=%d\n", ldev->fifo_warn);
drm_printf(p, "\tfifo_underrun_threshold=%d\n", ldev->fifo_threshold);
}
static const struct drm_crtc_funcs ltdc_crtc_funcs = {
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.reset = drm_atomic_helper_crtc_reset,
.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
.enable_vblank = ltdc_crtc_enable_vblank,
.disable_vblank = ltdc_crtc_disable_vblank,
.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
.atomic_print_state = ltdc_crtc_atomic_print_state,
};
static const struct drm_crtc_funcs ltdc_crtc_with_crc_support_funcs = {
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.reset = drm_atomic_helper_crtc_reset,
.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
.enable_vblank = ltdc_crtc_enable_vblank,
.disable_vblank = ltdc_crtc_disable_vblank,
.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
.set_crc_source = ltdc_crtc_set_crc_source,
.verify_crc_source = ltdc_crtc_verify_crc_source,
.atomic_print_state = ltdc_crtc_atomic_print_state,
};
/*
* DRM_PLANE
*/
static int ltdc_plane_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
plane);
struct drm_framebuffer *fb = new_plane_state->fb;
u32 src_w, src_h;
DRM_DEBUG_DRIVER("\n");
if (!fb)
return 0;
/* convert src_ from 16:16 format */
src_w = new_plane_state->src_w >> 16;
src_h = new_plane_state->src_h >> 16;
/* Reject scaling */
if (src_w != new_plane_state->crtc_w || src_h != new_plane_state->crtc_h) {
DRM_DEBUG_DRIVER("Scaling is not supported");
return -EINVAL;
}
return 0;
}
static void ltdc_plane_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct ltdc_device *ldev = plane_to_ltdc(plane);
struct drm_plane_state *newstate = drm_atomic_get_new_plane_state(state,
plane);
struct drm_framebuffer *fb = newstate->fb;
u32 lofs = plane->index * LAY_OFS;
u32 x0 = newstate->crtc_x;
u32 x1 = newstate->crtc_x + newstate->crtc_w - 1;
u32 y0 = newstate->crtc_y;
u32 y1 = newstate->crtc_y + newstate->crtc_h - 1;
u32 src_x, src_y, src_w, src_h;
u32 val, pitch_in_bytes, line_length, line_number, ahbp, avbp, bpcr;
u32 paddr, paddr1, paddr2;
enum ltdc_pix_fmt pf;
if (!newstate->crtc || !fb) {
DRM_DEBUG_DRIVER("fb or crtc NULL");
return;
}
/* convert src_ from 16:16 format */
src_x = newstate->src_x >> 16;
src_y = newstate->src_y >> 16;
src_w = newstate->src_w >> 16;
src_h = newstate->src_h >> 16;
DRM_DEBUG_DRIVER("plane:%d fb:%d (%dx%d)@(%d,%d) -> (%dx%d)@(%d,%d)\n",
plane->base.id, fb->base.id,
src_w, src_h, src_x, src_y,
newstate->crtc_w, newstate->crtc_h,
newstate->crtc_x, newstate->crtc_y);
regmap_read(ldev->regmap, LTDC_BPCR, &bpcr);
ahbp = (bpcr & BPCR_AHBP) >> 16;
avbp = bpcr & BPCR_AVBP;
/* Configures the horizontal start and stop position */
val = ((x1 + 1 + ahbp) << 16) + (x0 + 1 + ahbp);
regmap_write_bits(ldev->regmap, LTDC_L1WHPCR + lofs,
LXWHPCR_WHSTPOS | LXWHPCR_WHSPPOS, val);
/* Configures the vertical start and stop position */
val = ((y1 + 1 + avbp) << 16) + (y0 + 1 + avbp);
regmap_write_bits(ldev->regmap, LTDC_L1WVPCR + lofs,
LXWVPCR_WVSTPOS | LXWVPCR_WVSPPOS, val);
/* Specifies the pixel format */
pf = to_ltdc_pixelformat(fb->format->format);
for (val = 0; val < NB_PF; val++)
if (ldev->caps.pix_fmt_hw[val] == pf)
break;
/* Use the flexible color format feature if necessary and available */
if (ldev->caps.pix_fmt_flex && val == NB_PF)
val = ltdc_set_flexible_pixel_format(plane, pf);
if (val == NB_PF) {
DRM_ERROR("Pixel format %.4s not supported\n",
(char *)&fb->format->format);
val = 0; /* set by default ARGB 32 bits */
}
regmap_write_bits(ldev->regmap, LTDC_L1PFCR + lofs, LXPFCR_PF, val);
/* Specifies the constant alpha value */
val = newstate->alpha >> 8;
regmap_write_bits(ldev->regmap, LTDC_L1CACR + lofs, LXCACR_CONSTA, val);
/* Specifies the blending factors */
val = BF1_PAXCA | BF2_1PAXCA;
if (!fb->format->has_alpha)
val = BF1_CA | BF2_1CA;
/* Manage hw-specific capabilities */
if (ldev->caps.non_alpha_only_l1 &&
plane->type != DRM_PLANE_TYPE_PRIMARY)
val = BF1_PAXCA | BF2_1PAXCA;
if (ldev->caps.dynamic_zorder) {
val |= (newstate->normalized_zpos << 16);
regmap_write_bits(ldev->regmap, LTDC_L1BFCR + lofs,
LXBFCR_BF2 | LXBFCR_BF1 | LXBFCR_BOR, val);
} else {
regmap_write_bits(ldev->regmap, LTDC_L1BFCR + lofs,
LXBFCR_BF2 | LXBFCR_BF1, val);
}
/* Sets the FB address */
paddr = (u32)drm_fb_dma_get_gem_addr(fb, newstate, 0);
if (newstate->rotation & DRM_MODE_REFLECT_X)
paddr += (fb->format->cpp[0] * (x1 - x0 + 1)) - 1;
if (newstate->rotation & DRM_MODE_REFLECT_Y)
paddr += (fb->pitches[0] * (y1 - y0));
DRM_DEBUG_DRIVER("fb: phys 0x%08x", paddr);
regmap_write(ldev->regmap, LTDC_L1CFBAR + lofs, paddr);
/* Configures the color frame buffer pitch in bytes & line length */
line_length = fb->format->cpp[0] *
(x1 - x0 + 1) + (ldev->caps.bus_width >> 3) - 1;
if (newstate->rotation & DRM_MODE_REFLECT_Y)
/* Compute negative value (signed on 16 bits) for the picth */
pitch_in_bytes = 0x10000 - fb->pitches[0];
else
pitch_in_bytes = fb->pitches[0];
val = (pitch_in_bytes << 16) | line_length;
regmap_write_bits(ldev->regmap, LTDC_L1CFBLR + lofs, LXCFBLR_CFBLL | LXCFBLR_CFBP, val);
/* Configures the frame buffer line number */
line_number = y1 - y0 + 1;
regmap_write_bits(ldev->regmap, LTDC_L1CFBLNR + lofs, LXCFBLNR_CFBLN, line_number);
if (ldev->caps.ycbcr_input) {
if (fb->format->is_yuv) {
switch (fb->format->format) {
case DRM_FORMAT_NV12:
case DRM_FORMAT_NV21:
/* Configure the auxiliary frame buffer address 0 */
paddr1 = (u32)drm_fb_dma_get_gem_addr(fb, newstate, 1);
if (newstate->rotation & DRM_MODE_REFLECT_X)
paddr1 += ((fb->format->cpp[1] * (x1 - x0 + 1)) >> 1) - 1;
if (newstate->rotation & DRM_MODE_REFLECT_Y)
paddr1 += (fb->pitches[1] * (y1 - y0 - 1)) >> 1;
regmap_write(ldev->regmap, LTDC_L1AFBA0R + lofs, paddr1);
break;
case DRM_FORMAT_YUV420:
/* Configure the auxiliary frame buffer address 0 & 1 */
paddr1 = (u32)drm_fb_dma_get_gem_addr(fb, newstate, 1);
paddr2 = (u32)drm_fb_dma_get_gem_addr(fb, newstate, 2);
if (newstate->rotation & DRM_MODE_REFLECT_X) {
paddr1 += ((fb->format->cpp[1] * (x1 - x0 + 1)) >> 1) - 1;
paddr2 += ((fb->format->cpp[2] * (x1 - x0 + 1)) >> 1) - 1;
}
if (newstate->rotation & DRM_MODE_REFLECT_Y) {
paddr1 += (fb->pitches[1] * (y1 - y0 - 1)) >> 1;
paddr2 += (fb->pitches[2] * (y1 - y0 - 1)) >> 1;
}
regmap_write(ldev->regmap, LTDC_L1AFBA0R + lofs, paddr1);
regmap_write(ldev->regmap, LTDC_L1AFBA1R + lofs, paddr2);
break;
case DRM_FORMAT_YVU420:
/* Configure the auxiliary frame buffer address 0 & 1 */
paddr1 = (u32)drm_fb_dma_get_gem_addr(fb, newstate, 2);
paddr2 = (u32)drm_fb_dma_get_gem_addr(fb, newstate, 1);
if (newstate->rotation & DRM_MODE_REFLECT_X) {
paddr1 += ((fb->format->cpp[1] * (x1 - x0 + 1)) >> 1) - 1;
paddr2 += ((fb->format->cpp[2] * (x1 - x0 + 1)) >> 1) - 1;
}
if (newstate->rotation & DRM_MODE_REFLECT_Y) {
paddr1 += (fb->pitches[1] * (y1 - y0 - 1)) >> 1;
paddr2 += (fb->pitches[2] * (y1 - y0 - 1)) >> 1;
}
regmap_write(ldev->regmap, LTDC_L1AFBA0R + lofs, paddr1);
regmap_write(ldev->regmap, LTDC_L1AFBA1R + lofs, paddr2);
break;
}
/*
* Set the length and the number of lines of the auxiliary
* buffers if the framebuffer contains more than one plane.
*/
if (fb->format->num_planes > 1) {
if (newstate->rotation & DRM_MODE_REFLECT_Y)
/*
* Compute negative value (signed on 16 bits)
* for the picth
*/
pitch_in_bytes = 0x10000 - fb->pitches[1];
else
pitch_in_bytes = fb->pitches[1];
line_length = ((fb->format->cpp[1] * (x1 - x0 + 1)) >> 1) +
(ldev->caps.bus_width >> 3) - 1;
/* Configure the auxiliary buffer length */
val = (pitch_in_bytes << 16) | line_length;
regmap_write(ldev->regmap, LTDC_L1AFBLR + lofs, val);
/* Configure the auxiliary frame buffer line number */
val = line_number >> 1;
regmap_write(ldev->regmap, LTDC_L1AFBLNR + lofs, val);
}
/* Configure YCbC conversion coefficient */
ltdc_set_ycbcr_coeffs(plane);
/* Configure YCbCr format and enable/disable conversion */
ltdc_set_ycbcr_config(plane, fb->format->format);
} else {
/* disable ycbcr conversion */
regmap_write(ldev->regmap, LTDC_L1PCR + lofs, 0);
}
}
/* Enable layer and CLUT if needed */
val = fb->format->format == DRM_FORMAT_C8 ? LXCR_CLUTEN : 0;
val |= LXCR_LEN;
/* Enable horizontal mirroring if requested */
if (newstate->rotation & DRM_MODE_REFLECT_X)
val |= LXCR_HMEN;
regmap_write_bits(ldev->regmap, LTDC_L1CR + lofs, LXCR_MASK, val);
/* Commit shadow registers = update plane at next vblank */
if (ldev->caps.plane_reg_shadow)
regmap_write_bits(ldev->regmap, LTDC_L1RCR + lofs,
LXRCR_IMR | LXRCR_VBR | LXRCR_GRMSK, LXRCR_VBR);
ldev->plane_fpsi[plane->index].counter++;
mutex_lock(&ldev->err_lock);
if (ldev->transfer_err) {
DRM_WARN("ltdc transfer error: %d\n", ldev->transfer_err);
ldev->transfer_err = 0;
}
if (ldev->caps.fifo_threshold) {
if (ldev->fifo_err) {
DRM_WARN("ltdc fifo underrun: please verify display mode\n");
ldev->fifo_err = 0;
}
} else {
if (ldev->fifo_warn >= ldev->fifo_threshold) {
DRM_WARN("ltdc fifo underrun: please verify display mode\n");
ldev->fifo_warn = 0;
}
}
mutex_unlock(&ldev->err_lock);
}
static void ltdc_plane_atomic_disable(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *oldstate = drm_atomic_get_old_plane_state(state,
plane);
struct ltdc_device *ldev = plane_to_ltdc(plane);
u32 lofs = plane->index * LAY_OFS;
/* Disable layer */
regmap_write_bits(ldev->regmap, LTDC_L1CR + lofs, LXCR_MASK, 0);
/* Reset the layer transparency to hide any related background color */
regmap_write_bits(ldev->regmap, LTDC_L1CACR + lofs, LXCACR_CONSTA, 0x00);
/* Commit shadow registers = update plane at next vblank */
if (ldev->caps.plane_reg_shadow)
regmap_write_bits(ldev->regmap, LTDC_L1RCR + lofs,
LXRCR_IMR | LXRCR_VBR | LXRCR_GRMSK, LXRCR_VBR);
DRM_DEBUG_DRIVER("CRTC:%d plane:%d\n",
oldstate->crtc->base.id, plane->base.id);
}
static void ltdc_plane_atomic_print_state(struct drm_printer *p,
const struct drm_plane_state *state)
{
struct drm_plane *plane = state->plane;
struct ltdc_device *ldev = plane_to_ltdc(plane);
struct fps_info *fpsi = &ldev->plane_fpsi[plane->index];
int ms_since_last;
ktime_t now;
now = ktime_get();
ms_since_last = ktime_to_ms(ktime_sub(now, fpsi->last_timestamp));
drm_printf(p, "\tuser_updates=%dfps\n",
DIV_ROUND_CLOSEST(fpsi->counter * 1000, ms_since_last));
fpsi->last_timestamp = now;
fpsi->counter = 0;
}
static const struct drm_plane_funcs ltdc_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.reset = drm_atomic_helper_plane_reset,
.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
.atomic_print_state = ltdc_plane_atomic_print_state,
};
static const struct drm_plane_helper_funcs ltdc_plane_helper_funcs = {
.atomic_check = ltdc_plane_atomic_check,
.atomic_update = ltdc_plane_atomic_update,
.atomic_disable = ltdc_plane_atomic_disable,
};
static struct drm_plane *ltdc_plane_create(struct drm_device *ddev,
enum drm_plane_type type,
int index)
{
unsigned long possible_crtcs = CRTC_MASK;
struct ltdc_device *ldev = ddev->dev_private;
struct device *dev = ddev->dev;
struct drm_plane *plane;
unsigned int i, nb_fmt = 0;
u32 *formats;
u32 drm_fmt;
const u64 *modifiers = ltdc_format_modifiers;
u32 lofs = index * LAY_OFS;
u32 val;
/* Allocate the biggest size according to supported color formats */
formats = devm_kzalloc(dev, (ldev->caps.pix_fmt_nb +
ARRAY_SIZE(ltdc_drm_fmt_ycbcr_cp) +
ARRAY_SIZE(ltdc_drm_fmt_ycbcr_sp) +
ARRAY_SIZE(ltdc_drm_fmt_ycbcr_fp)) *
sizeof(*formats), GFP_KERNEL);
if (!formats)
return NULL;
for (i = 0; i < ldev->caps.pix_fmt_nb; i++) {
drm_fmt = ldev->caps.pix_fmt_drm[i];
/* Manage hw-specific capabilities */
if (ldev->caps.non_alpha_only_l1)
/* XR24 & RX24 like formats supported only on primary layer */
if (type != DRM_PLANE_TYPE_PRIMARY && is_xrgb(drm_fmt))
continue;
formats[nb_fmt++] = drm_fmt;
}
/* Add YCbCr supported pixel formats */
if (ldev->caps.ycbcr_input) {
regmap_read(ldev->regmap, LTDC_L1C1R + lofs, &val);
if (val & LXCR_C1R_YIA) {
memcpy(&formats[nb_fmt], ltdc_drm_fmt_ycbcr_cp,
ARRAY_SIZE(ltdc_drm_fmt_ycbcr_cp) * sizeof(*formats));
nb_fmt += ARRAY_SIZE(ltdc_drm_fmt_ycbcr_cp);
}
if (val & LXCR_C1R_YSPA) {
memcpy(&formats[nb_fmt], ltdc_drm_fmt_ycbcr_sp,
ARRAY_SIZE(ltdc_drm_fmt_ycbcr_sp) * sizeof(*formats));
nb_fmt += ARRAY_SIZE(ltdc_drm_fmt_ycbcr_sp);
}
if (val & LXCR_C1R_YFPA) {
memcpy(&formats[nb_fmt], ltdc_drm_fmt_ycbcr_fp,
ARRAY_SIZE(ltdc_drm_fmt_ycbcr_fp) * sizeof(*formats));
nb_fmt += ARRAY_SIZE(ltdc_drm_fmt_ycbcr_fp);
}
}
plane = drmm_universal_plane_alloc(ddev, struct drm_plane, dev,
possible_crtcs, <dc_plane_funcs, formats,
nb_fmt, modifiers, type, NULL);
if (IS_ERR(plane))
return NULL;
if (ldev->caps.ycbcr_input) {
if (val & (LXCR_C1R_YIA | LXCR_C1R_YSPA | LXCR_C1R_YFPA))
drm_plane_create_color_properties(plane,
BIT(DRM_COLOR_YCBCR_BT601) |
BIT(DRM_COLOR_YCBCR_BT709),
BIT(DRM_COLOR_YCBCR_LIMITED_RANGE) |
BIT(DRM_COLOR_YCBCR_FULL_RANGE),
DRM_COLOR_YCBCR_BT601,
DRM_COLOR_YCBCR_LIMITED_RANGE);
}
drm_plane_helper_add(plane, <dc_plane_helper_funcs);
drm_plane_create_alpha_property(plane);
DRM_DEBUG_DRIVER("plane:%d created\n", plane->base.id);
return plane;
}
static int ltdc_crtc_init(struct drm_device *ddev, struct drm_crtc *crtc)
{
struct ltdc_device *ldev = ddev->dev_private;
struct drm_plane *primary, *overlay;
int supported_rotations = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y;
unsigned int i;
int ret;
primary = ltdc_plane_create(ddev, DRM_PLANE_TYPE_PRIMARY, 0);
if (!primary) {
DRM_ERROR("Can not create primary plane\n");
return -EINVAL;
}
if (ldev->caps.dynamic_zorder)
drm_plane_create_zpos_property(primary, 0, 0, ldev->caps.nb_layers - 1);
else
drm_plane_create_zpos_immutable_property(primary, 0);
if (ldev->caps.plane_rotation)
drm_plane_create_rotation_property(primary, DRM_MODE_ROTATE_0,
supported_rotations);
/* Init CRTC according to its hardware features */
if (ldev->caps.crc)
ret = drmm_crtc_init_with_planes(ddev, crtc, primary, NULL,
<dc_crtc_with_crc_support_funcs, NULL);
else
ret = drmm_crtc_init_with_planes(ddev, crtc, primary, NULL,
<dc_crtc_funcs, NULL);
if (ret) {
DRM_ERROR("Can not initialize CRTC\n");
return ret;
}
drm_crtc_helper_add(crtc, <dc_crtc_helper_funcs);
drm_mode_crtc_set_gamma_size(crtc, CLUT_SIZE);
drm_crtc_enable_color_mgmt(crtc, 0, false, CLUT_SIZE);
DRM_DEBUG_DRIVER("CRTC:%d created\n", crtc->base.id);
/* Add planes. Note : the first layer is used by primary plane */
for (i = 1; i < ldev->caps.nb_layers; i++) {
overlay = ltdc_plane_create(ddev, DRM_PLANE_TYPE_OVERLAY, i);
if (!overlay) {
DRM_ERROR("Can not create overlay plane %d\n", i);
return -ENOMEM;
}
if (ldev->caps.dynamic_zorder)
drm_plane_create_zpos_property(overlay, i, 0, ldev->caps.nb_layers - 1);
else
drm_plane_create_zpos_immutable_property(overlay, i);
if (ldev->caps.plane_rotation)
drm_plane_create_rotation_property(overlay, DRM_MODE_ROTATE_0,
supported_rotations);
}
return 0;
}
static void ltdc_encoder_disable(struct drm_encoder *encoder)
{
struct drm_device *ddev = encoder->dev;
struct ltdc_device *ldev = ddev->dev_private;
DRM_DEBUG_DRIVER("\n");
/* Disable LTDC */
regmap_clear_bits(ldev->regmap, LTDC_GCR, GCR_LTDCEN);
/* Set to sleep state the pinctrl whatever type of encoder */
pinctrl_pm_select_sleep_state(ddev->dev);
}
static void ltdc_encoder_enable(struct drm_encoder *encoder)
{
struct drm_device *ddev = encoder->dev;
struct ltdc_device *ldev = ddev->dev_private;
DRM_DEBUG_DRIVER("\n");
/* set fifo underrun threshold register */
if (ldev->caps.fifo_threshold)
regmap_write(ldev->regmap, LTDC_FUT, ldev->fifo_threshold);
/* Enable LTDC */
regmap_set_bits(ldev->regmap, LTDC_GCR, GCR_LTDCEN);
}
static void ltdc_encoder_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *ddev = encoder->dev;
DRM_DEBUG_DRIVER("\n");
/*
* Set to default state the pinctrl only with DPI type.
* Others types like DSI, don't need pinctrl due to
* internal bridge (the signals do not come out of the chipset).
*/
if (encoder->encoder_type == DRM_MODE_ENCODER_DPI)
pinctrl_pm_select_default_state(ddev->dev);
}
static const struct drm_encoder_helper_funcs ltdc_encoder_helper_funcs = {
.disable = ltdc_encoder_disable,
.enable = ltdc_encoder_enable,
.mode_set = ltdc_encoder_mode_set,
};
static int ltdc_encoder_init(struct drm_device *ddev, struct drm_bridge *bridge)
{
struct drm_encoder *encoder;
int ret;
encoder = drmm_simple_encoder_alloc(ddev, struct drm_encoder, dev,
DRM_MODE_ENCODER_DPI);
if (IS_ERR(encoder))
return PTR_ERR(encoder);
encoder->possible_crtcs = CRTC_MASK;
encoder->possible_clones = 0; /* No cloning support */
drm_encoder_helper_add(encoder, <dc_encoder_helper_funcs);
ret = drm_bridge_attach(encoder, bridge, NULL, 0);
if (ret)
return ret;
DRM_DEBUG_DRIVER("Bridge encoder:%d created\n", encoder->base.id);
return 0;
}
static int ltdc_get_caps(struct drm_device *ddev)
{
struct ltdc_device *ldev = ddev->dev_private;
u32 bus_width_log2, lcr, gc2r;
/*
* at least 1 layer must be managed & the number of layers
* must not exceed LTDC_MAX_LAYER
*/
regmap_read(ldev->regmap, LTDC_LCR, &lcr);
ldev->caps.nb_layers = clamp((int)lcr, 1, LTDC_MAX_LAYER);
/* set data bus width */
regmap_read(ldev->regmap, LTDC_GC2R, &gc2r);
bus_width_log2 = (gc2r & GC2R_BW) >> 4;
ldev->caps.bus_width = 8 << bus_width_log2;
regmap_read(ldev->regmap, LTDC_IDR, &ldev->caps.hw_version);
switch (ldev->caps.hw_version) {
case HWVER_10200:
case HWVER_10300:
ldev->caps.layer_ofs = LAY_OFS_0;
ldev->caps.layer_regs = ltdc_layer_regs_a0;
ldev->caps.pix_fmt_hw = ltdc_pix_fmt_a0;
ldev->caps.pix_fmt_drm = ltdc_drm_fmt_a0;
ldev->caps.pix_fmt_nb = ARRAY_SIZE(ltdc_drm_fmt_a0);
ldev->caps.pix_fmt_flex = false;
/*
* Hw older versions support non-alpha color formats derived
* from native alpha color formats only on the primary layer.
* For instance, RG16 native format without alpha works fine
* on 2nd layer but XR24 (derived color format from AR24)
* does not work on 2nd layer.
*/
ldev->caps.non_alpha_only_l1 = true;
ldev->caps.pad_max_freq_hz = 90000000;
if (ldev->caps.hw_version == HWVER_10200)
ldev->caps.pad_max_freq_hz = 65000000;
ldev->caps.nb_irq = 2;
ldev->caps.ycbcr_input = false;
ldev->caps.ycbcr_output = false;
ldev->caps.plane_reg_shadow = false;
ldev->caps.crc = false;
ldev->caps.dynamic_zorder = false;
ldev->caps.plane_rotation = false;
ldev->caps.fifo_threshold = false;
break;
case HWVER_20101:
ldev->caps.layer_ofs = LAY_OFS_0;
ldev->caps.layer_regs = ltdc_layer_regs_a1;
ldev->caps.pix_fmt_hw = ltdc_pix_fmt_a1;
ldev->caps.pix_fmt_drm = ltdc_drm_fmt_a1;
ldev->caps.pix_fmt_nb = ARRAY_SIZE(ltdc_drm_fmt_a1);
ldev->caps.pix_fmt_flex = false;
ldev->caps.non_alpha_only_l1 = false;
ldev->caps.pad_max_freq_hz = 150000000;
ldev->caps.nb_irq = 4;
ldev->caps.ycbcr_input = false;
ldev->caps.ycbcr_output = false;
ldev->caps.plane_reg_shadow = false;
ldev->caps.crc = false;
ldev->caps.dynamic_zorder = false;
ldev->caps.plane_rotation = false;
ldev->caps.fifo_threshold = false;
break;
case HWVER_40100:
ldev->caps.layer_ofs = LAY_OFS_1;
ldev->caps.layer_regs = ltdc_layer_regs_a2;
ldev->caps.pix_fmt_hw = ltdc_pix_fmt_a2;
ldev->caps.pix_fmt_drm = ltdc_drm_fmt_a2;
ldev->caps.pix_fmt_nb = ARRAY_SIZE(ltdc_drm_fmt_a2);
ldev->caps.pix_fmt_flex = true;
ldev->caps.non_alpha_only_l1 = false;
ldev->caps.pad_max_freq_hz = 90000000;
ldev->caps.nb_irq = 2;
ldev->caps.ycbcr_input = true;
ldev->caps.ycbcr_output = true;
ldev->caps.plane_reg_shadow = true;
ldev->caps.crc = true;
ldev->caps.dynamic_zorder = true;
ldev->caps.plane_rotation = true;
ldev->caps.fifo_threshold = true;
break;
default:
return -ENODEV;
}
return 0;
}
void ltdc_suspend(struct drm_device *ddev)
{
struct ltdc_device *ldev = ddev->dev_private;
DRM_DEBUG_DRIVER("\n");
clk_disable_unprepare(ldev->pixel_clk);
}
int ltdc_resume(struct drm_device *ddev)
{
struct ltdc_device *ldev = ddev->dev_private;
int ret;
DRM_DEBUG_DRIVER("\n");
ret = clk_prepare_enable(ldev->pixel_clk);
if (ret) {
DRM_ERROR("failed to enable pixel clock (%d)\n", ret);
return ret;
}
return 0;
}
int ltdc_load(struct drm_device *ddev)
{
struct platform_device *pdev = to_platform_device(ddev->dev);
struct ltdc_device *ldev = ddev->dev_private;
struct device *dev = ddev->dev;
struct device_node *np = dev->of_node;
struct drm_bridge *bridge;
struct drm_panel *panel;
struct drm_crtc *crtc;
struct reset_control *rstc;
struct resource *res;
int irq, i, nb_endpoints;
int ret = -ENODEV;
DRM_DEBUG_DRIVER("\n");
/* Get number of endpoints */
nb_endpoints = of_graph_get_endpoint_count(np);
if (!nb_endpoints)
return -ENODEV;
ldev->pixel_clk = devm_clk_get(dev, "lcd");
if (IS_ERR(ldev->pixel_clk)) {
if (PTR_ERR(ldev->pixel_clk) != -EPROBE_DEFER)
DRM_ERROR("Unable to get lcd clock\n");
return PTR_ERR(ldev->pixel_clk);
}
if (clk_prepare_enable(ldev->pixel_clk)) {
DRM_ERROR("Unable to prepare pixel clock\n");
return -ENODEV;
}
/* Get endpoints if any */
for (i = 0; i < nb_endpoints; i++) {
ret = drm_of_find_panel_or_bridge(np, 0, i, &panel, &bridge);
/*
* If at least one endpoint is -ENODEV, continue probing,
* else if at least one endpoint returned an error
* (ie -EPROBE_DEFER) then stop probing.
*/
if (ret == -ENODEV)
continue;
else if (ret)
goto err;
if (panel) {
bridge = drmm_panel_bridge_add(ddev, panel);
if (IS_ERR(bridge)) {
DRM_ERROR("panel-bridge endpoint %d\n", i);
ret = PTR_ERR(bridge);
goto err;
}
}
if (bridge) {
ret = ltdc_encoder_init(ddev, bridge);
if (ret) {
if (ret != -EPROBE_DEFER)
DRM_ERROR("init encoder endpoint %d\n", i);
goto err;
}
}
}
rstc = devm_reset_control_get_exclusive(dev, NULL);
mutex_init(&ldev->err_lock);
if (!IS_ERR(rstc)) {
reset_control_assert(rstc);
usleep_range(10, 20);
reset_control_deassert(rstc);
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ldev->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(ldev->regs)) {
DRM_ERROR("Unable to get ltdc registers\n");
ret = PTR_ERR(ldev->regs);
goto err;
}
ldev->regmap = devm_regmap_init_mmio(&pdev->dev, ldev->regs, &stm32_ltdc_regmap_cfg);
if (IS_ERR(ldev->regmap)) {
DRM_ERROR("Unable to regmap ltdc registers\n");
ret = PTR_ERR(ldev->regmap);
goto err;
}
ret = ltdc_get_caps(ddev);
if (ret) {
DRM_ERROR("hardware identifier (0x%08x) not supported!\n",
ldev->caps.hw_version);
goto err;
}
/* Disable all interrupts */
regmap_clear_bits(ldev->regmap, LTDC_IER, IER_MASK);
DRM_DEBUG_DRIVER("ltdc hw version 0x%08x\n", ldev->caps.hw_version);
/* initialize default value for fifo underrun threshold & clear interrupt error counters */
ldev->transfer_err = 0;
ldev->fifo_err = 0;
ldev->fifo_warn = 0;
ldev->fifo_threshold = FUT_DFT;
for (i = 0; i < ldev->caps.nb_irq; i++) {
irq = platform_get_irq(pdev, i);
if (irq < 0) {
ret = irq;
goto err;
}
ret = devm_request_threaded_irq(dev, irq, ltdc_irq,
ltdc_irq_thread, IRQF_ONESHOT,
dev_name(dev), ddev);
if (ret) {
DRM_ERROR("Failed to register LTDC interrupt\n");
goto err;
}
}
crtc = drmm_kzalloc(ddev, sizeof(*crtc), GFP_KERNEL);
if (!crtc) {
DRM_ERROR("Failed to allocate crtc\n");
ret = -ENOMEM;
goto err;
}
ret = ltdc_crtc_init(ddev, crtc);
if (ret) {
DRM_ERROR("Failed to init crtc\n");
goto err;
}
ret = drm_vblank_init(ddev, NB_CRTC);
if (ret) {
DRM_ERROR("Failed calling drm_vblank_init()\n");
goto err;
}
clk_disable_unprepare(ldev->pixel_clk);
pinctrl_pm_select_sleep_state(ddev->dev);
pm_runtime_enable(ddev->dev);
return 0;
err:
clk_disable_unprepare(ldev->pixel_clk);
return ret;
}
void ltdc_unload(struct drm_device *ddev)
{
DRM_DEBUG_DRIVER("\n");
pm_runtime_disable(ddev->dev);
}
MODULE_AUTHOR("Philippe Cornu <[email protected]>");
MODULE_AUTHOR("Yannick Fertre <[email protected]>");
MODULE_AUTHOR("Fabien Dessenne <[email protected]>");
MODULE_AUTHOR("Mickael Reulier <[email protected]>");
MODULE_DESCRIPTION("STMicroelectronics ST DRM LTDC driver");
MODULE_LICENSE("GPL v2");