// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2012 Regents of the University of California
* Copyright (C) 2017-2018 SiFive
* Copyright (C) 2020 Western Digital Corporation or its affiliates.
*/
#define pr_fmt(fmt) "riscv-intc: " fmt
#include <linux/acpi.h>
#include <linux/atomic.h>
#include <linux/bits.h>
#include <linux/cpu.h>
#include <linux/irq.h>
#include <linux/irqchip.h>
#include <linux/irqdomain.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/smp.h>
#include <linux/soc/andes/irq.h>
#include <asm/hwcap.h>
static struct irq_domain *intc_domain;
static unsigned int riscv_intc_nr_irqs __ro_after_init = BITS_PER_LONG;
static unsigned int riscv_intc_custom_base __ro_after_init = BITS_PER_LONG;
static unsigned int riscv_intc_custom_nr_irqs __ro_after_init;
static void riscv_intc_irq(struct pt_regs *regs)
{
unsigned long cause = regs->cause & ~CAUSE_IRQ_FLAG;
if (generic_handle_domain_irq(intc_domain, cause))
pr_warn_ratelimited("Failed to handle interrupt (cause: %ld)\n", cause);
}
static void riscv_intc_aia_irq(struct pt_regs *regs)
{
unsigned long topi;
while ((topi = csr_read(CSR_TOPI)))
generic_handle_domain_irq(intc_domain, topi >> TOPI_IID_SHIFT);
}
/*
* On RISC-V systems local interrupts are masked or unmasked by writing
* the SIE (Supervisor Interrupt Enable) CSR. As CSRs can only be written
* on the local hart, these functions can only be called on the hart that
* corresponds to the IRQ chip.
*/
static void riscv_intc_irq_mask(struct irq_data *d)
{
if (IS_ENABLED(CONFIG_32BIT) && d->hwirq >= BITS_PER_LONG)
csr_clear(CSR_IEH, BIT(d->hwirq - BITS_PER_LONG));
else
csr_clear(CSR_IE, BIT(d->hwirq));
}
static void riscv_intc_irq_unmask(struct irq_data *d)
{
if (IS_ENABLED(CONFIG_32BIT) && d->hwirq >= BITS_PER_LONG)
csr_set(CSR_IEH, BIT(d->hwirq - BITS_PER_LONG));
else
csr_set(CSR_IE, BIT(d->hwirq));
}
static void andes_intc_irq_mask(struct irq_data *d)
{
/*
* Andes specific S-mode local interrupt causes (hwirq)
* are defined as (256 + n) and controlled by n-th bit
* of SLIE.
*/
unsigned int mask = BIT(d->hwirq % BITS_PER_LONG);
if (d->hwirq < ANDES_SLI_CAUSE_BASE)
csr_clear(CSR_IE, mask);
else
csr_clear(ANDES_CSR_SLIE, mask);
}
static void andes_intc_irq_unmask(struct irq_data *d)
{
unsigned int mask = BIT(d->hwirq % BITS_PER_LONG);
if (d->hwirq < ANDES_SLI_CAUSE_BASE)
csr_set(CSR_IE, mask);
else
csr_set(ANDES_CSR_SLIE, mask);
}
static void riscv_intc_irq_eoi(struct irq_data *d)
{
/*
* The RISC-V INTC driver uses handle_percpu_devid_irq() flow
* for the per-HART local interrupts and child irqchip drivers
* (such as PLIC, SBI IPI, CLINT, APLIC, IMSIC, etc) implement
* chained handlers for the per-HART local interrupts.
*
* In the absence of irq_eoi(), the chained_irq_enter() and
* chained_irq_exit() functions (used by child irqchip drivers)
* will do unnecessary mask/unmask of per-HART local interrupts
* at the time of handling interrupts. To avoid this, we provide
* an empty irq_eoi() callback for RISC-V INTC irqchip.
*/
}
static struct irq_chip riscv_intc_chip = {
.name = "RISC-V INTC",
.irq_mask = riscv_intc_irq_mask,
.irq_unmask = riscv_intc_irq_unmask,
.irq_eoi = riscv_intc_irq_eoi,
};
static struct irq_chip andes_intc_chip = {
.name = "RISC-V INTC",
.irq_mask = andes_intc_irq_mask,
.irq_unmask = andes_intc_irq_unmask,
.irq_eoi = riscv_intc_irq_eoi,
};
static int riscv_intc_domain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hwirq)
{
struct irq_chip *chip = d->host_data;
irq_set_percpu_devid(irq);
irq_domain_set_info(d, irq, hwirq, chip, NULL, handle_percpu_devid_irq,
NULL, NULL);
return 0;
}
static int riscv_intc_domain_alloc(struct irq_domain *domain,
unsigned int virq, unsigned int nr_irqs,
void *arg)
{
int i, ret;
irq_hw_number_t hwirq;
unsigned int type = IRQ_TYPE_NONE;
struct irq_fwspec *fwspec = arg;
ret = irq_domain_translate_onecell(domain, fwspec, &hwirq, &type);
if (ret)
return ret;
/*
* Only allow hwirq for which we have corresponding standard or
* custom interrupt enable register.
*/
if (hwirq >= riscv_intc_nr_irqs &&
(hwirq < riscv_intc_custom_base ||
hwirq >= riscv_intc_custom_base + riscv_intc_custom_nr_irqs))
return -EINVAL;
for (i = 0; i < nr_irqs; i++) {
ret = riscv_intc_domain_map(domain, virq + i, hwirq + i);
if (ret)
return ret;
}
return 0;
}
static const struct irq_domain_ops riscv_intc_domain_ops = {
.map = riscv_intc_domain_map,
.xlate = irq_domain_xlate_onecell,
.alloc = riscv_intc_domain_alloc
};
static struct fwnode_handle *riscv_intc_hwnode(void)
{
return intc_domain->fwnode;
}
static int __init riscv_intc_init_common(struct fwnode_handle *fn, struct irq_chip *chip)
{
int rc;
intc_domain = irq_domain_create_tree(fn, &riscv_intc_domain_ops, chip);
if (!intc_domain) {
pr_err("unable to add IRQ domain\n");
return -ENXIO;
}
if (riscv_isa_extension_available(NULL, SxAIA)) {
riscv_intc_nr_irqs = 64;
rc = set_handle_irq(&riscv_intc_aia_irq);
} else {
rc = set_handle_irq(&riscv_intc_irq);
}
if (rc) {
pr_err("failed to set irq handler\n");
return rc;
}
riscv_set_intc_hwnode_fn(riscv_intc_hwnode);
pr_info("%d local interrupts mapped%s\n",
riscv_intc_nr_irqs,
riscv_isa_extension_available(NULL, SxAIA) ? " using AIA" : "");
if (riscv_intc_custom_nr_irqs)
pr_info("%d custom local interrupts mapped\n", riscv_intc_custom_nr_irqs);
return 0;
}
static int __init riscv_intc_init(struct device_node *node,
struct device_node *parent)
{
struct irq_chip *chip = &riscv_intc_chip;
unsigned long hartid;
int rc;
rc = riscv_of_parent_hartid(node, &hartid);
if (rc < 0) {
pr_warn("unable to find hart id for %pOF\n", node);
return 0;
}
/*
* The DT will have one INTC DT node under each CPU (or HART)
* DT node so riscv_intc_init() function will be called once
* for each INTC DT node. We only need to do INTC initialization
* for the INTC DT node belonging to boot CPU (or boot HART).
*/
if (riscv_hartid_to_cpuid(hartid) != smp_processor_id()) {
/*
* The INTC nodes of each CPU are suppliers for downstream
* interrupt controllers (such as PLIC, IMSIC and APLIC
* direct-mode) so we should mark an INTC node as initialized
* if we are not creating IRQ domain for it.
*/
fwnode_dev_initialized(of_fwnode_handle(node), true);
return 0;
}
if (of_device_is_compatible(node, "andestech,cpu-intc")) {
riscv_intc_custom_base = ANDES_SLI_CAUSE_BASE;
riscv_intc_custom_nr_irqs = ANDES_RV_IRQ_LAST;
chip = &andes_intc_chip;
}
return riscv_intc_init_common(of_node_to_fwnode(node), chip);
}
IRQCHIP_DECLARE(riscv, "riscv,cpu-intc", riscv_intc_init);
IRQCHIP_DECLARE(andes, "andestech,cpu-intc", riscv_intc_init);
#ifdef CONFIG_ACPI
struct rintc_data {
union {
u32 ext_intc_id;
struct {
u32 context_id : 16,
reserved : 8,
aplic_plic_id : 8;
};
};
unsigned long hart_id;
u64 imsic_addr;
u32 imsic_size;
};
static u32 nr_rintc;
static struct rintc_data *rintc_acpi_data[NR_CPUS];
#define for_each_matching_plic(_plic_id) \
unsigned int _plic; \
\
for (_plic = 0; _plic < nr_rintc; _plic++) \
if (rintc_acpi_data[_plic]->aplic_plic_id != _plic_id) \
continue; \
else
unsigned int acpi_rintc_get_plic_nr_contexts(unsigned int plic_id)
{
unsigned int nctx = 0;
for_each_matching_plic(plic_id)
nctx++;
return nctx;
}
static struct rintc_data *get_plic_context(unsigned int plic_id, unsigned int ctxt_idx)
{
unsigned int ctxt = 0;
for_each_matching_plic(plic_id) {
if (ctxt == ctxt_idx)
return rintc_acpi_data[_plic];
ctxt++;
}
return NULL;
}
unsigned long acpi_rintc_ext_parent_to_hartid(unsigned int plic_id, unsigned int ctxt_idx)
{
struct rintc_data *data = get_plic_context(plic_id, ctxt_idx);
return data ? data->hart_id : INVALID_HARTID;
}
unsigned int acpi_rintc_get_plic_context(unsigned int plic_id, unsigned int ctxt_idx)
{
struct rintc_data *data = get_plic_context(plic_id, ctxt_idx);
return data ? data->context_id : INVALID_CONTEXT;
}
unsigned long acpi_rintc_index_to_hartid(u32 index)
{
return index >= nr_rintc ? INVALID_HARTID : rintc_acpi_data[index]->hart_id;
}
int acpi_rintc_get_imsic_mmio_info(u32 index, struct resource *res)
{
if (index >= nr_rintc)
return -1;
res->start = rintc_acpi_data[index]->imsic_addr;
res->end = res->start + rintc_acpi_data[index]->imsic_size - 1;
res->flags = IORESOURCE_MEM;
return 0;
}
static int __init riscv_intc_acpi_init(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_madt_rintc *rintc;
struct fwnode_handle *fn;
int rc;
rintc = (struct acpi_madt_rintc *)header;
rintc_acpi_data[nr_rintc] = kzalloc(sizeof(*rintc_acpi_data[0]), GFP_KERNEL);
if (!rintc_acpi_data[nr_rintc])
return -ENOMEM;
rintc_acpi_data[nr_rintc]->ext_intc_id = rintc->ext_intc_id;
rintc_acpi_data[nr_rintc]->hart_id = rintc->hart_id;
rintc_acpi_data[nr_rintc]->imsic_addr = rintc->imsic_addr;
rintc_acpi_data[nr_rintc]->imsic_size = rintc->imsic_size;
nr_rintc++;
/*
* The ACPI MADT will have one INTC for each CPU (or HART)
* so riscv_intc_acpi_init() function will be called once
* for each INTC. We only do INTC initialization
* for the INTC belonging to the boot CPU (or boot HART).
*/
if (riscv_hartid_to_cpuid(rintc->hart_id) != smp_processor_id())
return 0;
fn = irq_domain_alloc_named_fwnode("RISCV-INTC");
if (!fn) {
pr_err("unable to allocate INTC FW node\n");
return -ENOMEM;
}
rc = riscv_intc_init_common(fn, &riscv_intc_chip);
if (rc)
irq_domain_free_fwnode(fn);
else
acpi_set_irq_model(ACPI_IRQ_MODEL_RINTC, riscv_acpi_get_gsi_domain_id);
return rc;
}
IRQCHIP_ACPI_DECLARE(riscv_intc, ACPI_MADT_TYPE_RINTC, NULL,
ACPI_MADT_RINTC_VERSION_V1, riscv_intc_acpi_init);
#endif