// SPDX-License-Identifier: GPL-2.0
/*
* Implementation of the IOMMU SVA API for the ARM SMMUv3
*/
#include <linux/mm.h>
#include <linux/mmu_context.h>
#include <linux/mmu_notifier.h>
#include <linux/sched/mm.h>
#include <linux/slab.h>
#include <kunit/visibility.h>
#include "arm-smmu-v3.h"
#include "../../io-pgtable-arm.h"
static DEFINE_MUTEX(sva_lock);
static void __maybe_unused
arm_smmu_update_s1_domain_cd_entry(struct arm_smmu_domain *smmu_domain)
{
struct arm_smmu_master_domain *master_domain;
struct arm_smmu_cd target_cd;
unsigned long flags;
spin_lock_irqsave(&smmu_domain->devices_lock, flags);
list_for_each_entry(master_domain, &smmu_domain->devices, devices_elm) {
struct arm_smmu_master *master = master_domain->master;
struct arm_smmu_cd *cdptr;
cdptr = arm_smmu_get_cd_ptr(master, master_domain->ssid);
if (WARN_ON(!cdptr))
continue;
arm_smmu_make_s1_cd(&target_cd, master, smmu_domain);
arm_smmu_write_cd_entry(master, master_domain->ssid, cdptr,
&target_cd);
}
spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
}
static u64 page_size_to_cd(void)
{
static_assert(PAGE_SIZE == SZ_4K || PAGE_SIZE == SZ_16K ||
PAGE_SIZE == SZ_64K);
if (PAGE_SIZE == SZ_64K)
return ARM_LPAE_TCR_TG0_64K;
if (PAGE_SIZE == SZ_16K)
return ARM_LPAE_TCR_TG0_16K;
return ARM_LPAE_TCR_TG0_4K;
}
VISIBLE_IF_KUNIT
void arm_smmu_make_sva_cd(struct arm_smmu_cd *target,
struct arm_smmu_master *master, struct mm_struct *mm,
u16 asid)
{
u64 par;
memset(target, 0, sizeof(*target));
par = cpuid_feature_extract_unsigned_field(
read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1),
ID_AA64MMFR0_EL1_PARANGE_SHIFT);
target->data[0] = cpu_to_le64(
CTXDESC_CD_0_TCR_EPD1 |
#ifdef __BIG_ENDIAN
CTXDESC_CD_0_ENDI |
#endif
CTXDESC_CD_0_V |
FIELD_PREP(CTXDESC_CD_0_TCR_IPS, par) |
CTXDESC_CD_0_AA64 |
(master->stall_enabled ? CTXDESC_CD_0_S : 0) |
CTXDESC_CD_0_R |
CTXDESC_CD_0_A |
CTXDESC_CD_0_ASET |
FIELD_PREP(CTXDESC_CD_0_ASID, asid));
/*
* If no MM is passed then this creates a SVA entry that faults
* everything. arm_smmu_write_cd_entry() can hitlessly go between these
* two entries types since TTB0 is ignored by HW when EPD0 is set.
*/
if (mm) {
target->data[0] |= cpu_to_le64(
FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ,
64ULL - vabits_actual) |
FIELD_PREP(CTXDESC_CD_0_TCR_TG0, page_size_to_cd()) |
FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0,
ARM_LPAE_TCR_RGN_WBWA) |
FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0,
ARM_LPAE_TCR_RGN_WBWA) |
FIELD_PREP(CTXDESC_CD_0_TCR_SH0, ARM_LPAE_TCR_SH_IS));
target->data[1] = cpu_to_le64(virt_to_phys(mm->pgd) &
CTXDESC_CD_1_TTB0_MASK);
} else {
target->data[0] |= cpu_to_le64(CTXDESC_CD_0_TCR_EPD0);
/*
* Disable stall and immediately generate an abort if stall
* disable is permitted. This speeds up cleanup for an unclean
* exit if the device is still doing a lot of DMA.
*/
if (!(master->smmu->features & ARM_SMMU_FEAT_STALL_FORCE))
target->data[0] &=
cpu_to_le64(~(CTXDESC_CD_0_S | CTXDESC_CD_0_R));
}
/*
* MAIR value is pretty much constant and global, so we can just get it
* from the current CPU register
*/
target->data[3] = cpu_to_le64(read_sysreg(mair_el1));
}
EXPORT_SYMBOL_IF_KUNIT(arm_smmu_make_sva_cd);
/*
* Cloned from the MAX_TLBI_OPS in arch/arm64/include/asm/tlbflush.h, this
* is used as a threshold to replace per-page TLBI commands to issue in the
* command queue with an address-space TLBI command, when SMMU w/o a range
* invalidation feature handles too many per-page TLBI commands, which will
* otherwise result in a soft lockup.
*/
#define CMDQ_MAX_TLBI_OPS (1 << (PAGE_SHIFT - 3))
static void arm_smmu_mm_arch_invalidate_secondary_tlbs(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
struct arm_smmu_domain *smmu_domain =
container_of(mn, struct arm_smmu_domain, mmu_notifier);
size_t size;
/*
* The mm_types defines vm_end as the first byte after the end address,
* different from IOMMU subsystem using the last address of an address
* range. So do a simple translation here by calculating size correctly.
*/
size = end - start;
if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_RANGE_INV)) {
if (size >= CMDQ_MAX_TLBI_OPS * PAGE_SIZE)
size = 0;
} else {
if (size == ULONG_MAX)
size = 0;
}
if (!size)
arm_smmu_tlb_inv_asid(smmu_domain->smmu, smmu_domain->cd.asid);
else
arm_smmu_tlb_inv_range_asid(start, size, smmu_domain->cd.asid,
PAGE_SIZE, false, smmu_domain);
arm_smmu_atc_inv_domain(smmu_domain, start, size);
}
static void arm_smmu_mm_release(struct mmu_notifier *mn, struct mm_struct *mm)
{
struct arm_smmu_domain *smmu_domain =
container_of(mn, struct arm_smmu_domain, mmu_notifier);
struct arm_smmu_master_domain *master_domain;
unsigned long flags;
/*
* DMA may still be running. Keep the cd valid to avoid C_BAD_CD events,
* but disable translation.
*/
spin_lock_irqsave(&smmu_domain->devices_lock, flags);
list_for_each_entry(master_domain, &smmu_domain->devices,
devices_elm) {
struct arm_smmu_master *master = master_domain->master;
struct arm_smmu_cd target;
struct arm_smmu_cd *cdptr;
cdptr = arm_smmu_get_cd_ptr(master, master_domain->ssid);
if (WARN_ON(!cdptr))
continue;
arm_smmu_make_sva_cd(&target, master, NULL,
smmu_domain->cd.asid);
arm_smmu_write_cd_entry(master, master_domain->ssid, cdptr,
&target);
}
spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
arm_smmu_tlb_inv_asid(smmu_domain->smmu, smmu_domain->cd.asid);
arm_smmu_atc_inv_domain(smmu_domain, 0, 0);
}
static void arm_smmu_mmu_notifier_free(struct mmu_notifier *mn)
{
kfree(container_of(mn, struct arm_smmu_domain, mmu_notifier));
}
static const struct mmu_notifier_ops arm_smmu_mmu_notifier_ops = {
.arch_invalidate_secondary_tlbs = arm_smmu_mm_arch_invalidate_secondary_tlbs,
.release = arm_smmu_mm_release,
.free_notifier = arm_smmu_mmu_notifier_free,
};
bool arm_smmu_sva_supported(struct arm_smmu_device *smmu)
{
unsigned long reg, fld;
unsigned long oas;
unsigned long asid_bits;
u32 feat_mask = ARM_SMMU_FEAT_COHERENCY;
if (vabits_actual == 52)
feat_mask |= ARM_SMMU_FEAT_VAX;
if ((smmu->features & feat_mask) != feat_mask)
return false;
if (!(smmu->pgsize_bitmap & PAGE_SIZE))
return false;
/*
* Get the smallest PA size of all CPUs (sanitized by cpufeature). We're
* not even pretending to support AArch32 here. Abort if the MMU outputs
* addresses larger than what we support.
*/
reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
fld = cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
oas = id_aa64mmfr0_parange_to_phys_shift(fld);
if (smmu->oas < oas)
return false;
/* We can support bigger ASIDs than the CPU, but not smaller */
fld = cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT);
asid_bits = fld ? 16 : 8;
if (smmu->asid_bits < asid_bits)
return false;
/*
* See max_pinned_asids in arch/arm64/mm/context.c. The following is
* generally the maximum number of bindable processes.
*/
if (arm64_kernel_unmapped_at_el0())
asid_bits--;
dev_dbg(smmu->dev, "%d shared contexts\n", (1 << asid_bits) -
num_possible_cpus() - 2);
return true;
}
bool arm_smmu_master_iopf_supported(struct arm_smmu_master *master)
{
/* We're not keeping track of SIDs in fault events */
if (master->num_streams != 1)
return false;
return master->stall_enabled;
}
bool arm_smmu_master_sva_supported(struct arm_smmu_master *master)
{
if (!(master->smmu->features & ARM_SMMU_FEAT_SVA))
return false;
/* SSID support is mandatory for the moment */
return master->ssid_bits;
}
bool arm_smmu_master_sva_enabled(struct arm_smmu_master *master)
{
bool enabled;
mutex_lock(&sva_lock);
enabled = master->sva_enabled;
mutex_unlock(&sva_lock);
return enabled;
}
static int arm_smmu_master_sva_enable_iopf(struct arm_smmu_master *master)
{
struct device *dev = master->dev;
/*
* Drivers for devices supporting PRI or stall should enable IOPF first.
* Others have device-specific fault handlers and don't need IOPF.
*/
if (!arm_smmu_master_iopf_supported(master))
return 0;
if (!master->iopf_enabled)
return -EINVAL;
return iopf_queue_add_device(master->smmu->evtq.iopf, dev);
}
static void arm_smmu_master_sva_disable_iopf(struct arm_smmu_master *master)
{
struct device *dev = master->dev;
if (!master->iopf_enabled)
return;
iopf_queue_remove_device(master->smmu->evtq.iopf, dev);
}
int arm_smmu_master_enable_sva(struct arm_smmu_master *master)
{
int ret;
mutex_lock(&sva_lock);
ret = arm_smmu_master_sva_enable_iopf(master);
if (!ret)
master->sva_enabled = true;
mutex_unlock(&sva_lock);
return ret;
}
int arm_smmu_master_disable_sva(struct arm_smmu_master *master)
{
mutex_lock(&sva_lock);
arm_smmu_master_sva_disable_iopf(master);
master->sva_enabled = false;
mutex_unlock(&sva_lock);
return 0;
}
void arm_smmu_sva_notifier_synchronize(void)
{
/*
* Some MMU notifiers may still be waiting to be freed, using
* arm_smmu_mmu_notifier_free(). Wait for them.
*/
mmu_notifier_synchronize();
}
static int arm_smmu_sva_set_dev_pasid(struct iommu_domain *domain,
struct device *dev, ioasid_t id)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_master *master = dev_iommu_priv_get(dev);
struct arm_smmu_cd target;
int ret;
/* Prevent arm_smmu_mm_release from being called while we are attaching */
if (!mmget_not_zero(domain->mm))
return -EINVAL;
/*
* This does not need the arm_smmu_asid_lock because SVA domains never
* get reassigned
*/
arm_smmu_make_sva_cd(&target, master, domain->mm, smmu_domain->cd.asid);
ret = arm_smmu_set_pasid(master, smmu_domain, id, &target);
mmput(domain->mm);
return ret;
}
static void arm_smmu_sva_domain_free(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
/*
* Ensure the ASID is empty in the iommu cache before allowing reuse.
*/
arm_smmu_tlb_inv_asid(smmu_domain->smmu, smmu_domain->cd.asid);
/*
* Notice that the arm_smmu_mm_arch_invalidate_secondary_tlbs op can
* still be called/running at this point. We allow the ASID to be
* reused, and if there is a race then it just suffers harmless
* unnecessary invalidation.
*/
xa_erase(&arm_smmu_asid_xa, smmu_domain->cd.asid);
/*
* Actual free is defered to the SRCU callback
* arm_smmu_mmu_notifier_free()
*/
mmu_notifier_put(&smmu_domain->mmu_notifier);
}
static const struct iommu_domain_ops arm_smmu_sva_domain_ops = {
.set_dev_pasid = arm_smmu_sva_set_dev_pasid,
.free = arm_smmu_sva_domain_free
};
struct iommu_domain *arm_smmu_sva_domain_alloc(struct device *dev,
struct mm_struct *mm)
{
struct arm_smmu_master *master = dev_iommu_priv_get(dev);
struct arm_smmu_device *smmu = master->smmu;
struct arm_smmu_domain *smmu_domain;
u32 asid;
int ret;
smmu_domain = arm_smmu_domain_alloc();
if (IS_ERR(smmu_domain))
return ERR_CAST(smmu_domain);
smmu_domain->domain.type = IOMMU_DOMAIN_SVA;
smmu_domain->domain.ops = &arm_smmu_sva_domain_ops;
smmu_domain->smmu = smmu;
ret = xa_alloc(&arm_smmu_asid_xa, &asid, smmu_domain,
XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL);
if (ret)
goto err_free;
smmu_domain->cd.asid = asid;
smmu_domain->mmu_notifier.ops = &arm_smmu_mmu_notifier_ops;
ret = mmu_notifier_register(&smmu_domain->mmu_notifier, mm);
if (ret)
goto err_asid;
return &smmu_domain->domain;
err_asid:
xa_erase(&arm_smmu_asid_xa, smmu_domain->cd.asid);
err_free:
kfree(smmu_domain);
return ERR_PTR(ret);
}