// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
* Copyright (c) 2024 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/cleanup.h>
#include <linux/device.h>
#include <linux/interconnect.h>
#include <linux/firmware/qcom/qcom_scm.h>
#include <linux/iopoll.h>
#include <linux/list.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/ratelimit.h>
#include <linux/spinlock.h>
#include "arm-smmu.h"
#include "arm-smmu-qcom.h"
#define TBU_DBG_TIMEOUT_US 100
#define DEBUG_AXUSER_REG 0x30
#define DEBUG_AXUSER_CDMID GENMASK_ULL(43, 36)
#define DEBUG_AXUSER_CDMID_VAL 0xff
#define DEBUG_PAR_REG 0x28
#define DEBUG_PAR_FAULT_VAL BIT(0)
#define DEBUG_PAR_PA GENMASK_ULL(47, 12)
#define DEBUG_SID_HALT_REG 0x0
#define DEBUG_SID_HALT_VAL BIT(16)
#define DEBUG_SID_HALT_SID GENMASK(9, 0)
#define DEBUG_SR_HALT_ACK_REG 0x20
#define DEBUG_SR_HALT_ACK_VAL BIT(1)
#define DEBUG_SR_ECATS_RUNNING_VAL BIT(0)
#define DEBUG_TXN_AXCACHE GENMASK(5, 2)
#define DEBUG_TXN_AXPROT GENMASK(8, 6)
#define DEBUG_TXN_AXPROT_PRIV 0x1
#define DEBUG_TXN_AXPROT_NSEC 0x2
#define DEBUG_TXN_TRIGG_REG 0x18
#define DEBUG_TXN_TRIGGER BIT(0)
#define DEBUG_VA_ADDR_REG 0x8
static LIST_HEAD(tbu_list);
static DEFINE_MUTEX(tbu_list_lock);
static DEFINE_SPINLOCK(atos_lock);
struct qcom_tbu {
struct device *dev;
struct device_node *smmu_np;
u32 sid_range[2];
struct list_head list;
struct clk *clk;
struct icc_path *path;
void __iomem *base;
spinlock_t halt_lock; /* multiple halt or resume can't execute concurrently */
int halt_count;
};
static struct qcom_smmu *to_qcom_smmu(struct arm_smmu_device *smmu)
{
return container_of(smmu, struct qcom_smmu, smmu);
}
void qcom_smmu_tlb_sync_debug(struct arm_smmu_device *smmu)
{
int ret;
u32 tbu_pwr_status, sync_inv_ack, sync_inv_progress;
struct qcom_smmu *qsmmu = container_of(smmu, struct qcom_smmu, smmu);
const struct qcom_smmu_config *cfg;
static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
if (__ratelimit(&rs)) {
dev_err(smmu->dev, "TLB sync timed out -- SMMU may be deadlocked\n");
cfg = qsmmu->cfg;
if (!cfg)
return;
ret = qcom_scm_io_readl(smmu->ioaddr + cfg->reg_offset[QCOM_SMMU_TBU_PWR_STATUS],
&tbu_pwr_status);
if (ret)
dev_err(smmu->dev,
"Failed to read TBU power status: %d\n", ret);
ret = qcom_scm_io_readl(smmu->ioaddr + cfg->reg_offset[QCOM_SMMU_STATS_SYNC_INV_TBU_ACK],
&sync_inv_ack);
if (ret)
dev_err(smmu->dev,
"Failed to read TBU sync/inv ack status: %d\n", ret);
ret = qcom_scm_io_readl(smmu->ioaddr + cfg->reg_offset[QCOM_SMMU_MMU2QSS_AND_SAFE_WAIT_CNTR],
&sync_inv_progress);
if (ret)
dev_err(smmu->dev,
"Failed to read TCU syn/inv progress: %d\n", ret);
dev_err(smmu->dev,
"TBU: power_status %#x sync_inv_ack %#x sync_inv_progress %#x\n",
tbu_pwr_status, sync_inv_ack, sync_inv_progress);
}
}
static struct qcom_tbu *qcom_find_tbu(struct qcom_smmu *qsmmu, u32 sid)
{
struct qcom_tbu *tbu;
u32 start, end;
guard(mutex)(&tbu_list_lock);
if (list_empty(&tbu_list))
return NULL;
list_for_each_entry(tbu, &tbu_list, list) {
start = tbu->sid_range[0];
end = start + tbu->sid_range[1];
if (qsmmu->smmu.dev->of_node == tbu->smmu_np &&
start <= sid && sid < end)
return tbu;
}
dev_err(qsmmu->smmu.dev, "Unable to find TBU for sid 0x%x\n", sid);
return NULL;
}
static int qcom_tbu_halt(struct qcom_tbu *tbu, struct arm_smmu_domain *smmu_domain)
{
struct arm_smmu_device *smmu = smmu_domain->smmu;
int ret = 0, idx = smmu_domain->cfg.cbndx;
u32 val, fsr, status;
guard(spinlock_irqsave)(&tbu->halt_lock);
if (tbu->halt_count) {
tbu->halt_count++;
return ret;
}
val = readl_relaxed(tbu->base + DEBUG_SID_HALT_REG);
val |= DEBUG_SID_HALT_VAL;
writel_relaxed(val, tbu->base + DEBUG_SID_HALT_REG);
fsr = arm_smmu_cb_read(smmu, idx, ARM_SMMU_CB_FSR);
if ((fsr & ARM_SMMU_CB_FSR_FAULT) && (fsr & ARM_SMMU_CB_FSR_SS)) {
u32 sctlr_orig, sctlr;
/*
* We are in a fault. Our request to halt the bus will not
* complete until transactions in front of us (such as the fault
* itself) have completed. Disable iommu faults and terminate
* any existing transactions.
*/
sctlr_orig = arm_smmu_cb_read(smmu, idx, ARM_SMMU_CB_SCTLR);
sctlr = sctlr_orig & ~(ARM_SMMU_SCTLR_CFCFG | ARM_SMMU_SCTLR_CFIE);
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_SCTLR, sctlr);
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_FSR, fsr);
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_RESUME, ARM_SMMU_RESUME_TERMINATE);
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_SCTLR, sctlr_orig);
}
if (readl_poll_timeout_atomic(tbu->base + DEBUG_SR_HALT_ACK_REG, status,
(status & DEBUG_SR_HALT_ACK_VAL),
0, TBU_DBG_TIMEOUT_US)) {
dev_err(tbu->dev, "Timeout while trying to halt TBU!\n");
ret = -ETIMEDOUT;
val = readl_relaxed(tbu->base + DEBUG_SID_HALT_REG);
val &= ~DEBUG_SID_HALT_VAL;
writel_relaxed(val, tbu->base + DEBUG_SID_HALT_REG);
return ret;
}
tbu->halt_count = 1;
return ret;
}
static void qcom_tbu_resume(struct qcom_tbu *tbu)
{
u32 val;
guard(spinlock_irqsave)(&tbu->halt_lock);
if (!tbu->halt_count) {
WARN(1, "%s: halt_count is 0", dev_name(tbu->dev));
return;
}
if (tbu->halt_count > 1) {
tbu->halt_count--;
return;
}
val = readl_relaxed(tbu->base + DEBUG_SID_HALT_REG);
val &= ~DEBUG_SID_HALT_VAL;
writel_relaxed(val, tbu->base + DEBUG_SID_HALT_REG);
tbu->halt_count = 0;
}
static phys_addr_t qcom_tbu_trigger_atos(struct arm_smmu_domain *smmu_domain,
struct qcom_tbu *tbu, dma_addr_t iova, u32 sid)
{
bool atos_timedout = false;
phys_addr_t phys = 0;
ktime_t timeout;
u64 val;
/* Set address and stream-id */
val = readq_relaxed(tbu->base + DEBUG_SID_HALT_REG);
val &= ~DEBUG_SID_HALT_SID;
val |= FIELD_PREP(DEBUG_SID_HALT_SID, sid);
writeq_relaxed(val, tbu->base + DEBUG_SID_HALT_REG);
writeq_relaxed(iova, tbu->base + DEBUG_VA_ADDR_REG);
val = FIELD_PREP(DEBUG_AXUSER_CDMID, DEBUG_AXUSER_CDMID_VAL);
writeq_relaxed(val, tbu->base + DEBUG_AXUSER_REG);
/* Write-back read and write-allocate */
val = FIELD_PREP(DEBUG_TXN_AXCACHE, 0xf);
/* Non-secure access */
val |= FIELD_PREP(DEBUG_TXN_AXPROT, DEBUG_TXN_AXPROT_NSEC);
/* Privileged access */
val |= FIELD_PREP(DEBUG_TXN_AXPROT, DEBUG_TXN_AXPROT_PRIV);
val |= DEBUG_TXN_TRIGGER;
writeq_relaxed(val, tbu->base + DEBUG_TXN_TRIGG_REG);
timeout = ktime_add_us(ktime_get(), TBU_DBG_TIMEOUT_US);
for (;;) {
val = readl_relaxed(tbu->base + DEBUG_SR_HALT_ACK_REG);
if (!(val & DEBUG_SR_ECATS_RUNNING_VAL))
break;
val = readl_relaxed(tbu->base + DEBUG_PAR_REG);
if (val & DEBUG_PAR_FAULT_VAL)
break;
if (ktime_compare(ktime_get(), timeout) > 0) {
atos_timedout = true;
break;
}
}
val = readq_relaxed(tbu->base + DEBUG_PAR_REG);
if (val & DEBUG_PAR_FAULT_VAL)
dev_err(tbu->dev, "ATOS generated a fault interrupt! PAR = %llx, SID=0x%x\n",
val, sid);
else if (atos_timedout)
dev_err_ratelimited(tbu->dev, "ATOS translation timed out!\n");
else
phys = FIELD_GET(DEBUG_PAR_PA, val);
/* Reset hardware */
writeq_relaxed(0, tbu->base + DEBUG_TXN_TRIGG_REG);
writeq_relaxed(0, tbu->base + DEBUG_VA_ADDR_REG);
val = readl_relaxed(tbu->base + DEBUG_SID_HALT_REG);
val &= ~DEBUG_SID_HALT_SID;
writel_relaxed(val, tbu->base + DEBUG_SID_HALT_REG);
return phys;
}
static phys_addr_t qcom_iova_to_phys(struct arm_smmu_domain *smmu_domain,
dma_addr_t iova, u32 sid)
{
struct arm_smmu_device *smmu = smmu_domain->smmu;
struct qcom_smmu *qsmmu = to_qcom_smmu(smmu);
int idx = smmu_domain->cfg.cbndx;
struct qcom_tbu *tbu;
u32 sctlr_orig, sctlr;
phys_addr_t phys = 0;
int attempt = 0;
int ret;
u64 fsr;
tbu = qcom_find_tbu(qsmmu, sid);
if (!tbu)
return 0;
ret = icc_set_bw(tbu->path, 0, UINT_MAX);
if (ret)
return ret;
ret = clk_prepare_enable(tbu->clk);
if (ret)
goto disable_icc;
ret = qcom_tbu_halt(tbu, smmu_domain);
if (ret)
goto disable_clk;
/*
* ATOS/ECATS can trigger the fault interrupt, so disable it temporarily
* and check for an interrupt manually.
*/
sctlr_orig = arm_smmu_cb_read(smmu, idx, ARM_SMMU_CB_SCTLR);
sctlr = sctlr_orig & ~(ARM_SMMU_SCTLR_CFCFG | ARM_SMMU_SCTLR_CFIE);
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_SCTLR, sctlr);
fsr = arm_smmu_cb_read(smmu, idx, ARM_SMMU_CB_FSR);
if (fsr & ARM_SMMU_CB_FSR_FAULT) {
/* Clear pending interrupts */
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_FSR, fsr);
/*
* TBU halt takes care of resuming any stalled transcation.
* Kept it here for completeness sake.
*/
if (fsr & ARM_SMMU_CB_FSR_SS)
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_RESUME,
ARM_SMMU_RESUME_TERMINATE);
}
/* Only one concurrent atos operation */
scoped_guard(spinlock_irqsave, &atos_lock) {
/*
* If the translation fails, attempt the lookup more time."
*/
do {
phys = qcom_tbu_trigger_atos(smmu_domain, tbu, iova, sid);
fsr = arm_smmu_cb_read(smmu, idx, ARM_SMMU_CB_FSR);
if (fsr & ARM_SMMU_CB_FSR_FAULT) {
/* Clear pending interrupts */
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_FSR, fsr);
if (fsr & ARM_SMMU_CB_FSR_SS)
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_RESUME,
ARM_SMMU_RESUME_TERMINATE);
}
} while (!phys && attempt++ < 2);
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_SCTLR, sctlr_orig);
}
qcom_tbu_resume(tbu);
/* Read to complete prior write transcations */
readl_relaxed(tbu->base + DEBUG_SR_HALT_ACK_REG);
disable_clk:
clk_disable_unprepare(tbu->clk);
disable_icc:
icc_set_bw(tbu->path, 0, 0);
return phys;
}
static phys_addr_t qcom_smmu_iova_to_phys_hard(struct arm_smmu_domain *smmu_domain, dma_addr_t iova)
{
struct arm_smmu_device *smmu = smmu_domain->smmu;
int idx = smmu_domain->cfg.cbndx;
u32 frsynra;
u16 sid;
frsynra = arm_smmu_gr1_read(smmu, ARM_SMMU_GR1_CBFRSYNRA(idx));
sid = FIELD_GET(ARM_SMMU_CBFRSYNRA_SID, frsynra);
return qcom_iova_to_phys(smmu_domain, iova, sid);
}
static phys_addr_t qcom_smmu_verify_fault(struct arm_smmu_domain *smmu_domain, dma_addr_t iova, u32 fsr)
{
struct io_pgtable *iop = io_pgtable_ops_to_pgtable(smmu_domain->pgtbl_ops);
struct arm_smmu_device *smmu = smmu_domain->smmu;
phys_addr_t phys_post_tlbiall;
phys_addr_t phys;
phys = qcom_smmu_iova_to_phys_hard(smmu_domain, iova);
io_pgtable_tlb_flush_all(iop);
phys_post_tlbiall = qcom_smmu_iova_to_phys_hard(smmu_domain, iova);
if (phys != phys_post_tlbiall) {
dev_err(smmu->dev,
"ATOS results differed across TLBIALL... (before: %pa after: %pa)\n",
&phys, &phys_post_tlbiall);
}
return (phys == 0 ? phys_post_tlbiall : phys);
}
irqreturn_t qcom_smmu_context_fault(int irq, void *dev)
{
struct arm_smmu_domain *smmu_domain = dev;
struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
struct arm_smmu_device *smmu = smmu_domain->smmu;
struct arm_smmu_context_fault_info cfi;
u32 resume = 0;
int idx = smmu_domain->cfg.cbndx;
phys_addr_t phys_soft;
int ret, tmp;
static DEFINE_RATELIMIT_STATE(_rs,
DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
arm_smmu_read_context_fault_info(smmu, idx, &cfi);
if (!(cfi.fsr & ARM_SMMU_CB_FSR_FAULT))
return IRQ_NONE;
if (list_empty(&tbu_list)) {
ret = report_iommu_fault(&smmu_domain->domain, NULL, cfi.iova,
cfi.fsynr & ARM_SMMU_CB_FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ);
if (ret == -ENOSYS)
arm_smmu_print_context_fault_info(smmu, idx, &cfi);
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_FSR, cfi.fsr);
return IRQ_HANDLED;
}
phys_soft = ops->iova_to_phys(ops, cfi.iova);
tmp = report_iommu_fault(&smmu_domain->domain, NULL, cfi.iova,
cfi.fsynr & ARM_SMMU_CB_FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ);
if (!tmp || tmp == -EBUSY) {
ret = IRQ_HANDLED;
resume = ARM_SMMU_RESUME_TERMINATE;
} else {
phys_addr_t phys_atos = qcom_smmu_verify_fault(smmu_domain, cfi.iova, cfi.fsr);
if (__ratelimit(&_rs)) {
arm_smmu_print_context_fault_info(smmu, idx, &cfi);
dev_err(smmu->dev,
"soft iova-to-phys=%pa\n", &phys_soft);
if (!phys_soft)
dev_err(smmu->dev,
"SOFTWARE TABLE WALK FAILED! Looks like %s accessed an unmapped address!\n",
dev_name(smmu->dev));
if (phys_atos)
dev_err(smmu->dev, "hard iova-to-phys (ATOS)=%pa\n",
&phys_atos);
else
dev_err(smmu->dev, "hard iova-to-phys (ATOS) failed\n");
}
ret = IRQ_NONE;
resume = ARM_SMMU_RESUME_TERMINATE;
}
/*
* If the client returns -EBUSY, do not clear FSR and do not RESUME
* if stalled. This is required to keep the IOMMU client stalled on
* the outstanding fault. This gives the client a chance to take any
* debug action and then terminate the stalled transaction.
* So, the sequence in case of stall on fault should be:
* 1) Do not clear FSR or write to RESUME here
* 2) Client takes any debug action
* 3) Client terminates the stalled transaction and resumes the IOMMU
* 4) Client clears FSR. The FSR should only be cleared after 3) and
* not before so that the fault remains outstanding. This ensures
* SCTLR.HUPCF has the desired effect if subsequent transactions also
* need to be terminated.
*/
if (tmp != -EBUSY) {
/* Clear the faulting FSR */
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_FSR, cfi.fsr);
/* Retry or terminate any stalled transactions */
if (cfi.fsr & ARM_SMMU_CB_FSR_SS)
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_RESUME, resume);
}
return ret;
}
int qcom_tbu_probe(struct platform_device *pdev)
{
struct of_phandle_args args = { .args_count = 2 };
struct device_node *np = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct qcom_tbu *tbu;
tbu = devm_kzalloc(dev, sizeof(*tbu), GFP_KERNEL);
if (!tbu)
return -ENOMEM;
tbu->dev = dev;
INIT_LIST_HEAD(&tbu->list);
spin_lock_init(&tbu->halt_lock);
if (of_parse_phandle_with_args(np, "qcom,stream-id-range", "#iommu-cells", 0, &args)) {
dev_err(dev, "Cannot parse the 'qcom,stream-id-range' DT property\n");
return -EINVAL;
}
tbu->smmu_np = args.np;
tbu->sid_range[0] = args.args[0];
tbu->sid_range[1] = args.args[1];
of_node_put(args.np);
tbu->base = devm_of_iomap(dev, np, 0, NULL);
if (IS_ERR(tbu->base))
return PTR_ERR(tbu->base);
tbu->clk = devm_clk_get_optional(dev, NULL);
if (IS_ERR(tbu->clk))
return PTR_ERR(tbu->clk);
tbu->path = devm_of_icc_get(dev, NULL);
if (IS_ERR(tbu->path))
return PTR_ERR(tbu->path);
guard(mutex)(&tbu_list_lock);
list_add_tail(&tbu->list, &tbu_list);
return 0;
}