// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2014, Fuzhou Rockchip Electronics Co., Ltd
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/mmc/host.h>
#include <linux/of_address.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include "dw_mmc.h"
#include "dw_mmc-pltfm.h"
#define RK3288_CLKGEN_DIV 2
#define SDMMC_TIMING_CON0 0x130
#define SDMMC_TIMING_CON1 0x134
#define ROCKCHIP_MMC_DELAY_SEL BIT(10)
#define ROCKCHIP_MMC_DEGREE_MASK 0x3
#define ROCKCHIP_MMC_DEGREE_OFFSET 1
#define ROCKCHIP_MMC_DELAYNUM_OFFSET 2
#define ROCKCHIP_MMC_DELAYNUM_MASK (0xff << ROCKCHIP_MMC_DELAYNUM_OFFSET)
#define ROCKCHIP_MMC_DELAY_ELEMENT_PSEC 60
#define HIWORD_UPDATE(val, mask, shift) \
((val) << (shift) | (mask) << ((shift) + 16))
static const unsigned int freqs[] = { 100000, 200000, 300000, 400000 };
struct dw_mci_rockchip_priv_data {
struct clk *drv_clk;
struct clk *sample_clk;
int default_sample_phase;
int num_phases;
bool internal_phase;
};
/*
* Each fine delay is between 44ps-77ps. Assume each fine delay is 60ps to
* simplify calculations. So 45degs could be anywhere between 33deg and 57.8deg.
*/
static int rockchip_mmc_get_internal_phase(struct dw_mci *host, bool sample)
{
unsigned long rate = clk_get_rate(host->ciu_clk);
u32 raw_value;
u16 degrees;
u32 delay_num = 0;
/* Constant signal, no measurable phase shift */
if (!rate)
return 0;
if (sample)
raw_value = mci_readl(host, TIMING_CON1);
else
raw_value = mci_readl(host, TIMING_CON0);
raw_value >>= ROCKCHIP_MMC_DEGREE_OFFSET;
degrees = (raw_value & ROCKCHIP_MMC_DEGREE_MASK) * 90;
if (raw_value & ROCKCHIP_MMC_DELAY_SEL) {
/* degrees/delaynum * 1000000 */
unsigned long factor = (ROCKCHIP_MMC_DELAY_ELEMENT_PSEC / 10) *
36 * (rate / 10000);
delay_num = (raw_value & ROCKCHIP_MMC_DELAYNUM_MASK);
delay_num >>= ROCKCHIP_MMC_DELAYNUM_OFFSET;
degrees += DIV_ROUND_CLOSEST(delay_num * factor, 1000000);
}
return degrees % 360;
}
static int rockchip_mmc_get_phase(struct dw_mci *host, bool sample)
{
struct dw_mci_rockchip_priv_data *priv = host->priv;
struct clk *clock = sample ? priv->sample_clk : priv->drv_clk;
if (priv->internal_phase)
return rockchip_mmc_get_internal_phase(host, sample);
else
return clk_get_phase(clock);
}
static int rockchip_mmc_set_internal_phase(struct dw_mci *host, bool sample, int degrees)
{
unsigned long rate = clk_get_rate(host->ciu_clk);
u8 nineties, remainder;
u8 delay_num;
u32 raw_value;
u32 delay;
/*
* The below calculation is based on the output clock from
* MMC host to the card, which expects the phase clock inherits
* the clock rate from its parent, namely the output clock
* provider of MMC host. However, things may go wrong if
* (1) It is orphan.
* (2) It is assigned to the wrong parent.
*
* This check help debug the case (1), which seems to be the
* most likely problem we often face and which makes it difficult
* for people to debug unstable mmc tuning results.
*/
if (!rate) {
dev_err(host->dev, "%s: invalid clk rate\n", __func__);
return -EINVAL;
}
nineties = degrees / 90;
remainder = (degrees % 90);
/*
* Due to the inexact nature of the "fine" delay, we might
* actually go non-monotonic. We don't go _too_ monotonic
* though, so we should be OK. Here are options of how we may
* work:
*
* Ideally we end up with:
* 1.0, 2.0, ..., 69.0, 70.0, ..., 89.0, 90.0
*
* On one extreme (if delay is actually 44ps):
* .73, 1.5, ..., 50.6, 51.3, ..., 65.3, 90.0
* The other (if delay is actually 77ps):
* 1.3, 2.6, ..., 88.6. 89.8, ..., 114.0, 90
*
* It's possible we might make a delay that is up to 25
* degrees off from what we think we're making. That's OK
* though because we should be REALLY far from any bad range.
*/
/*
* Convert to delay; do a little extra work to make sure we
* don't overflow 32-bit / 64-bit numbers.
*/
delay = 10000000; /* PSECS_PER_SEC / 10000 / 10 */
delay *= remainder;
delay = DIV_ROUND_CLOSEST(delay,
(rate / 1000) * 36 *
(ROCKCHIP_MMC_DELAY_ELEMENT_PSEC / 10));
delay_num = (u8) min_t(u32, delay, 255);
raw_value = delay_num ? ROCKCHIP_MMC_DELAY_SEL : 0;
raw_value |= delay_num << ROCKCHIP_MMC_DELAYNUM_OFFSET;
raw_value |= nineties;
if (sample)
mci_writel(host, TIMING_CON1, HIWORD_UPDATE(raw_value, 0x07ff, 1));
else
mci_writel(host, TIMING_CON0, HIWORD_UPDATE(raw_value, 0x07ff, 1));
dev_dbg(host->dev, "set %s_phase(%d) delay_nums=%u actual_degrees=%d\n",
sample ? "sample" : "drv", degrees, delay_num,
rockchip_mmc_get_phase(host, sample)
);
return 0;
}
static int rockchip_mmc_set_phase(struct dw_mci *host, bool sample, int degrees)
{
struct dw_mci_rockchip_priv_data *priv = host->priv;
struct clk *clock = sample ? priv->sample_clk : priv->drv_clk;
if (priv->internal_phase)
return rockchip_mmc_set_internal_phase(host, sample, degrees);
else
return clk_set_phase(clock, degrees);
}
static void dw_mci_rk3288_set_ios(struct dw_mci *host, struct mmc_ios *ios)
{
struct dw_mci_rockchip_priv_data *priv = host->priv;
int ret;
unsigned int cclkin;
u32 bus_hz;
if (ios->clock == 0)
return;
/*
* cclkin: source clock of mmc controller
* bus_hz: card interface clock generated by CLKGEN
* bus_hz = cclkin / RK3288_CLKGEN_DIV
* ios->clock = (div == 0) ? bus_hz : (bus_hz / (2 * div))
*
* Note: div can only be 0 or 1, but div must be set to 1 for eMMC
* DDR52 8-bit mode.
*/
if (ios->bus_width == MMC_BUS_WIDTH_8 &&
ios->timing == MMC_TIMING_MMC_DDR52)
cclkin = 2 * ios->clock * RK3288_CLKGEN_DIV;
else
cclkin = ios->clock * RK3288_CLKGEN_DIV;
ret = clk_set_rate(host->ciu_clk, cclkin);
if (ret)
dev_warn(host->dev, "failed to set rate %uHz err: %d\n", cclkin, ret);
bus_hz = clk_get_rate(host->ciu_clk) / RK3288_CLKGEN_DIV;
if (bus_hz != host->bus_hz) {
host->bus_hz = bus_hz;
/* force dw_mci_setup_bus() */
host->current_speed = 0;
}
/* Make sure we use phases which we can enumerate with */
if (!IS_ERR(priv->sample_clk) && ios->timing <= MMC_TIMING_SD_HS)
rockchip_mmc_set_phase(host, true, priv->default_sample_phase);
/*
* Set the drive phase offset based on speed mode to achieve hold times.
*
* NOTE: this is _not_ a value that is dynamically tuned and is also
* _not_ a value that will vary from board to board. It is a value
* that could vary between different SoC models if they had massively
* different output clock delays inside their dw_mmc IP block (delay_o),
* but since it's OK to overshoot a little we don't need to do complex
* calculations and can pick values that will just work for everyone.
*
* When picking values we'll stick with picking 0/90/180/270 since
* those can be made very accurately on all known Rockchip SoCs.
*
* Note that these values match values from the DesignWare Databook
* tables for the most part except for SDR12 and "ID mode". For those
* two modes the databook calculations assume a clock in of 50MHz. As
* seen above, we always use a clock in rate that is exactly the
* card's input clock (times RK3288_CLKGEN_DIV, but that gets divided
* back out before the controller sees it).
*
* From measurement of a single device, it appears that delay_o is
* about .5 ns. Since we try to leave a bit of margin, it's expected
* that numbers here will be fine even with much larger delay_o
* (the 1.4 ns assumed by the DesignWare Databook would result in the
* same results, for instance).
*/
if (!IS_ERR(priv->drv_clk)) {
int phase;
/*
* In almost all cases a 90 degree phase offset will provide
* sufficient hold times across all valid input clock rates
* assuming delay_o is not absurd for a given SoC. We'll use
* that as a default.
*/
phase = 90;
switch (ios->timing) {
case MMC_TIMING_MMC_DDR52:
/*
* Since clock in rate with MMC_DDR52 is doubled when
* bus width is 8 we need to double the phase offset
* to get the same timings.
*/
if (ios->bus_width == MMC_BUS_WIDTH_8)
phase = 180;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/*
* In the case of 150 MHz clock (typical max for
* Rockchip SoCs), 90 degree offset will add a delay
* of 1.67 ns. That will meet min hold time of .8 ns
* as long as clock output delay is < .87 ns. On
* SoCs measured this seems to be OK, but it doesn't
* hurt to give margin here, so we use 180.
*/
phase = 180;
break;
}
rockchip_mmc_set_phase(host, false, phase);
}
}
#define TUNING_ITERATION_TO_PHASE(i, num_phases) \
(DIV_ROUND_UP((i) * 360, num_phases))
static int dw_mci_rk3288_execute_tuning(struct dw_mci_slot *slot, u32 opcode)
{
struct dw_mci *host = slot->host;
struct dw_mci_rockchip_priv_data *priv = host->priv;
struct mmc_host *mmc = slot->mmc;
int ret = 0;
int i;
bool v, prev_v = 0, first_v;
struct range_t {
int start;
int end; /* inclusive */
};
struct range_t *ranges;
unsigned int range_count = 0;
int longest_range_len = -1;
int longest_range = -1;
int middle_phase;
int phase;
if (IS_ERR(priv->sample_clk)) {
dev_err(host->dev, "Tuning clock (sample_clk) not defined.\n");
return -EIO;
}
ranges = kmalloc_array(priv->num_phases / 2 + 1,
sizeof(*ranges), GFP_KERNEL);
if (!ranges)
return -ENOMEM;
/* Try each phase and extract good ranges */
for (i = 0; i < priv->num_phases; ) {
rockchip_mmc_set_phase(host, true,
TUNING_ITERATION_TO_PHASE(
i,
priv->num_phases));
v = !mmc_send_tuning(mmc, opcode, NULL);
if (i == 0)
first_v = v;
if ((!prev_v) && v) {
range_count++;
ranges[range_count-1].start = i;
}
if (v) {
ranges[range_count-1].end = i;
i++;
} else if (i == priv->num_phases - 1) {
/* No extra skipping rules if we're at the end */
i++;
} else {
/*
* No need to check too close to an invalid
* one since testing bad phases is slow. Skip
* 20 degrees.
*/
i += DIV_ROUND_UP(20 * priv->num_phases, 360);
/* Always test the last one */
if (i >= priv->num_phases)
i = priv->num_phases - 1;
}
prev_v = v;
}
if (range_count == 0) {
dev_warn(host->dev, "All phases bad!");
ret = -EIO;
goto free;
}
/* wrap around case, merge the end points */
if ((range_count > 1) && first_v && v) {
ranges[0].start = ranges[range_count-1].start;
range_count--;
}
if (ranges[0].start == 0 && ranges[0].end == priv->num_phases - 1) {
rockchip_mmc_set_phase(host, true, priv->default_sample_phase);
dev_info(host->dev, "All phases work, using default phase %d.",
priv->default_sample_phase);
goto free;
}
/* Find the longest range */
for (i = 0; i < range_count; i++) {
int len = (ranges[i].end - ranges[i].start + 1);
if (len < 0)
len += priv->num_phases;
if (longest_range_len < len) {
longest_range_len = len;
longest_range = i;
}
dev_dbg(host->dev, "Good phase range %d-%d (%d len)\n",
TUNING_ITERATION_TO_PHASE(ranges[i].start,
priv->num_phases),
TUNING_ITERATION_TO_PHASE(ranges[i].end,
priv->num_phases),
len
);
}
dev_dbg(host->dev, "Best phase range %d-%d (%d len)\n",
TUNING_ITERATION_TO_PHASE(ranges[longest_range].start,
priv->num_phases),
TUNING_ITERATION_TO_PHASE(ranges[longest_range].end,
priv->num_phases),
longest_range_len
);
middle_phase = ranges[longest_range].start + longest_range_len / 2;
middle_phase %= priv->num_phases;
phase = TUNING_ITERATION_TO_PHASE(middle_phase, priv->num_phases);
dev_info(host->dev, "Successfully tuned phase to %d\n", phase);
rockchip_mmc_set_phase(host, true, phase);
free:
kfree(ranges);
return ret;
}
static int dw_mci_common_parse_dt(struct dw_mci *host)
{
struct device_node *np = host->dev->of_node;
struct dw_mci_rockchip_priv_data *priv;
priv = devm_kzalloc(host->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
if (of_property_read_u32(np, "rockchip,desired-num-phases",
&priv->num_phases))
priv->num_phases = 360;
if (of_property_read_u32(np, "rockchip,default-sample-phase",
&priv->default_sample_phase))
priv->default_sample_phase = 0;
host->priv = priv;
return 0;
}
static int dw_mci_rk3288_parse_dt(struct dw_mci *host)
{
struct dw_mci_rockchip_priv_data *priv;
int err;
err = dw_mci_common_parse_dt(host);
if (err)
return err;
priv = host->priv;
priv->drv_clk = devm_clk_get(host->dev, "ciu-drive");
if (IS_ERR(priv->drv_clk))
dev_dbg(host->dev, "ciu-drive not available\n");
priv->sample_clk = devm_clk_get(host->dev, "ciu-sample");
if (IS_ERR(priv->sample_clk))
dev_dbg(host->dev, "ciu-sample not available\n");
priv->internal_phase = false;
return 0;
}
static int dw_mci_rk3576_parse_dt(struct dw_mci *host)
{
struct dw_mci_rockchip_priv_data *priv;
int err = dw_mci_common_parse_dt(host);
if (err)
return err;
priv = host->priv;
priv->internal_phase = true;
return 0;
}
static int dw_mci_rockchip_init(struct dw_mci *host)
{
int ret, i;
/* It is slot 8 on Rockchip SoCs */
host->sdio_id0 = 8;
if (of_device_is_compatible(host->dev->of_node, "rockchip,rk3288-dw-mshc")) {
host->bus_hz /= RK3288_CLKGEN_DIV;
/* clock driver will fail if the clock is less than the lowest source clock
* divided by the internal clock divider. Test for the lowest available
* clock and set the minimum freq to clock / clock divider.
*/
for (i = 0; i < ARRAY_SIZE(freqs); i++) {
ret = clk_round_rate(host->ciu_clk, freqs[i] * RK3288_CLKGEN_DIV);
if (ret > 0) {
host->minimum_speed = ret / RK3288_CLKGEN_DIV;
break;
}
}
if (ret < 0)
dev_warn(host->dev, "no valid minimum freq: %d\n", ret);
}
return 0;
}
static const struct dw_mci_drv_data rk2928_drv_data = {
.init = dw_mci_rockchip_init,
};
static const struct dw_mci_drv_data rk3288_drv_data = {
.common_caps = MMC_CAP_CMD23,
.set_ios = dw_mci_rk3288_set_ios,
.execute_tuning = dw_mci_rk3288_execute_tuning,
.parse_dt = dw_mci_rk3288_parse_dt,
.init = dw_mci_rockchip_init,
};
static const struct dw_mci_drv_data rk3576_drv_data = {
.common_caps = MMC_CAP_CMD23,
.set_ios = dw_mci_rk3288_set_ios,
.execute_tuning = dw_mci_rk3288_execute_tuning,
.parse_dt = dw_mci_rk3576_parse_dt,
.init = dw_mci_rockchip_init,
};
static const struct of_device_id dw_mci_rockchip_match[] = {
{ .compatible = "rockchip,rk2928-dw-mshc",
.data = &rk2928_drv_data },
{ .compatible = "rockchip,rk3288-dw-mshc",
.data = &rk3288_drv_data },
{ .compatible = "rockchip,rk3576-dw-mshc",
.data = &rk3576_drv_data },
{},
};
MODULE_DEVICE_TABLE(of, dw_mci_rockchip_match);
static int dw_mci_rockchip_probe(struct platform_device *pdev)
{
const struct dw_mci_drv_data *drv_data;
const struct of_device_id *match;
int ret;
if (!pdev->dev.of_node)
return -ENODEV;
match = of_match_node(dw_mci_rockchip_match, pdev->dev.of_node);
drv_data = match->data;
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
pm_runtime_use_autosuspend(&pdev->dev);
ret = dw_mci_pltfm_register(pdev, drv_data);
if (ret) {
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
return ret;
}
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
}
static void dw_mci_rockchip_remove(struct platform_device *pdev)
{
pm_runtime_get_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
dw_mci_pltfm_remove(pdev);
}
static const struct dev_pm_ops dw_mci_rockchip_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(dw_mci_runtime_suspend,
dw_mci_runtime_resume,
NULL)
};
static struct platform_driver dw_mci_rockchip_pltfm_driver = {
.probe = dw_mci_rockchip_probe,
.remove_new = dw_mci_rockchip_remove,
.driver = {
.name = "dwmmc_rockchip",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = dw_mci_rockchip_match,
.pm = &dw_mci_rockchip_dev_pm_ops,
},
};
module_platform_driver(dw_mci_rockchip_pltfm_driver);
MODULE_AUTHOR("Addy Ke <[email protected]>");
MODULE_DESCRIPTION("Rockchip Specific DW-MSHC Driver Extension");
MODULE_ALIAS("platform:dwmmc_rockchip");
MODULE_LICENSE("GPL v2");