// SPDX-License-Identifier: GPL-2.0
/*
* QMC driver
*
* Copyright 2022 CS GROUP France
*
* Author: Herve Codina <[email protected]>
*/
#include <soc/fsl/qe/qmc.h>
#include <linux/bitfield.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/hdlc.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <soc/fsl/cpm.h>
#include <soc/fsl/qe/ucc_slow.h>
#include <soc/fsl/qe/qe.h>
#include <sysdev/fsl_soc.h>
#include "tsa.h"
/* SCC general mode register low (32 bits) (GUMR_L in QE) */
#define SCC_GSMRL 0x00
#define SCC_GSMRL_ENR BIT(5)
#define SCC_GSMRL_ENT BIT(4)
#define SCC_GSMRL_MODE_MASK GENMASK(3, 0)
#define SCC_CPM1_GSMRL_MODE_QMC FIELD_PREP_CONST(SCC_GSMRL_MODE_MASK, 0x0A)
#define SCC_QE_GSMRL_MODE_QMC FIELD_PREP_CONST(SCC_GSMRL_MODE_MASK, 0x02)
/* SCC general mode register high (32 bits) (identical to GUMR_H in QE) */
#define SCC_GSMRH 0x04
#define SCC_GSMRH_CTSS BIT(7)
#define SCC_GSMRH_CDS BIT(8)
#define SCC_GSMRH_CTSP BIT(9)
#define SCC_GSMRH_CDP BIT(10)
#define SCC_GSMRH_TTX BIT(11)
#define SCC_GSMRH_TRX BIT(12)
/* SCC event register (16 bits) (identical to UCCE in QE) */
#define SCC_SCCE 0x10
#define SCC_SCCE_IQOV BIT(3)
#define SCC_SCCE_GINT BIT(2)
#define SCC_SCCE_GUN BIT(1)
#define SCC_SCCE_GOV BIT(0)
/* SCC mask register (16 bits) */
#define SCC_SCCM 0x14
/* UCC Extended Mode Register (8 bits, QE only) */
#define SCC_QE_UCC_GUEMR 0x90
/* Multichannel base pointer (32 bits) */
#define QMC_GBL_MCBASE 0x00
/* Multichannel controller state (16 bits) */
#define QMC_GBL_QMCSTATE 0x04
/* Maximum receive buffer length (16 bits) */
#define QMC_GBL_MRBLR 0x06
/* Tx time-slot assignment table pointer (16 bits) */
#define QMC_GBL_TX_S_PTR 0x08
/* Rx pointer (16 bits) */
#define QMC_GBL_RXPTR 0x0A
/* Global receive frame threshold (16 bits) */
#define QMC_GBL_GRFTHR 0x0C
/* Global receive frame count (16 bits) */
#define QMC_GBL_GRFCNT 0x0E
/* Multichannel interrupt base address (32 bits) */
#define QMC_GBL_INTBASE 0x10
/* Multichannel interrupt pointer (32 bits) */
#define QMC_GBL_INTPTR 0x14
/* Rx time-slot assignment table pointer (16 bits) */
#define QMC_GBL_RX_S_PTR 0x18
/* Tx pointer (16 bits) */
#define QMC_GBL_TXPTR 0x1A
/* CRC constant (32 bits) */
#define QMC_GBL_C_MASK32 0x1C
/* Time slot assignment table Rx (32 x 16 bits) */
#define QMC_GBL_TSATRX 0x20
/* Time slot assignment table Tx (32 x 16 bits) */
#define QMC_GBL_TSATTX 0x60
/* CRC constant (16 bits) */
#define QMC_GBL_C_MASK16 0xA0
/* Rx framer base pointer (16 bits, QE only) */
#define QMC_QE_GBL_RX_FRM_BASE 0xAC
/* Tx framer base pointer (16 bits, QE only) */
#define QMC_QE_GBL_TX_FRM_BASE 0xAE
/* A reserved area (0xB0 -> 0xC3) that must be initialized to 0 (QE only) */
#define QMC_QE_GBL_RSV_B0_START 0xB0
#define QMC_QE_GBL_RSV_B0_SIZE 0x14
/* QMC Global Channel specific base (32 bits, QE only) */
#define QMC_QE_GBL_GCSBASE 0xC4
/* TSA entry (16bit entry in TSATRX and TSATTX) */
#define QMC_TSA_VALID BIT(15)
#define QMC_TSA_WRAP BIT(14)
#define QMC_TSA_MASK_MASKH GENMASK(13, 12)
#define QMC_TSA_MASK_MASKL GENMASK(5, 0)
#define QMC_TSA_MASK_8BIT (FIELD_PREP_CONST(QMC_TSA_MASK_MASKH, 0x3) | \
FIELD_PREP_CONST(QMC_TSA_MASK_MASKL, 0x3F))
#define QMC_TSA_CHANNEL_MASK GENMASK(11, 6)
#define QMC_TSA_CHANNEL(x) FIELD_PREP(QMC_TSA_CHANNEL_MASK, x)
/* Tx buffer descriptor base address (16 bits, offset from MCBASE) */
#define QMC_SPE_TBASE 0x00
/* Channel mode register (16 bits) */
#define QMC_SPE_CHAMR 0x02
#define QMC_SPE_CHAMR_MODE_MASK GENMASK(15, 15)
#define QMC_SPE_CHAMR_MODE_HDLC FIELD_PREP_CONST(QMC_SPE_CHAMR_MODE_MASK, 1)
#define QMC_SPE_CHAMR_MODE_TRANSP (FIELD_PREP_CONST(QMC_SPE_CHAMR_MODE_MASK, 0) | BIT(13))
#define QMC_SPE_CHAMR_ENT BIT(12)
#define QMC_SPE_CHAMR_POL BIT(8)
#define QMC_SPE_CHAMR_HDLC_IDLM BIT(13)
#define QMC_SPE_CHAMR_HDLC_CRC BIT(7)
#define QMC_SPE_CHAMR_HDLC_NOF_MASK GENMASK(3, 0)
#define QMC_SPE_CHAMR_HDLC_NOF(x) FIELD_PREP(QMC_SPE_CHAMR_HDLC_NOF_MASK, x)
#define QMC_SPE_CHAMR_TRANSP_RD BIT(14)
#define QMC_SPE_CHAMR_TRANSP_SYNC BIT(10)
/* Tx internal state (32 bits) */
#define QMC_SPE_TSTATE 0x04
/* Tx buffer descriptor pointer (16 bits) */
#define QMC_SPE_TBPTR 0x0C
/* Zero-insertion state (32 bits) */
#define QMC_SPE_ZISTATE 0x14
/* Channel’s interrupt mask flags (16 bits) */
#define QMC_SPE_INTMSK 0x1C
/* Rx buffer descriptor base address (16 bits, offset from MCBASE) */
#define QMC_SPE_RBASE 0x20
/* HDLC: Maximum frame length register (16 bits) */
#define QMC_SPE_MFLR 0x22
/* TRANSPARENT: Transparent maximum receive length (16 bits) */
#define QMC_SPE_TMRBLR 0x22
/* Rx internal state (32 bits) */
#define QMC_SPE_RSTATE 0x24
/* Rx buffer descriptor pointer (16 bits) */
#define QMC_SPE_RBPTR 0x2C
/* Packs 4 bytes to 1 long word before writing to buffer (32 bits) */
#define QMC_SPE_RPACK 0x30
/* Zero deletion state (32 bits) */
#define QMC_SPE_ZDSTATE 0x34
/* Transparent synchronization (16 bits) */
#define QMC_SPE_TRNSYNC 0x3C
#define QMC_SPE_TRNSYNC_RX_MASK GENMASK(15, 8)
#define QMC_SPE_TRNSYNC_RX(x) FIELD_PREP(QMC_SPE_TRNSYNC_RX_MASK, x)
#define QMC_SPE_TRNSYNC_TX_MASK GENMASK(7, 0)
#define QMC_SPE_TRNSYNC_TX(x) FIELD_PREP(QMC_SPE_TRNSYNC_TX_MASK, x)
/* Interrupt related registers bits */
#define QMC_INT_V BIT(15)
#define QMC_INT_W BIT(14)
#define QMC_INT_NID BIT(13)
#define QMC_INT_IDL BIT(12)
#define QMC_INT_CHANNEL_MASK GENMASK(11, 6)
#define QMC_INT_GET_CHANNEL(x) FIELD_GET(QMC_INT_CHANNEL_MASK, x)
#define QMC_INT_MRF BIT(5)
#define QMC_INT_UN BIT(4)
#define QMC_INT_RXF BIT(3)
#define QMC_INT_BSY BIT(2)
#define QMC_INT_TXB BIT(1)
#define QMC_INT_RXB BIT(0)
/* BD related registers bits */
#define QMC_BD_RX_E BIT(15)
#define QMC_BD_RX_W BIT(13)
#define QMC_BD_RX_I BIT(12)
#define QMC_BD_RX_L BIT(11)
#define QMC_BD_RX_F BIT(10)
#define QMC_BD_RX_CM BIT(9)
#define QMC_BD_RX_UB BIT(7)
#define QMC_BD_RX_LG BIT(5)
#define QMC_BD_RX_NO BIT(4)
#define QMC_BD_RX_AB BIT(3)
#define QMC_BD_RX_CR BIT(2)
#define QMC_BD_TX_R BIT(15)
#define QMC_BD_TX_W BIT(13)
#define QMC_BD_TX_I BIT(12)
#define QMC_BD_TX_L BIT(11)
#define QMC_BD_TX_TC BIT(10)
#define QMC_BD_TX_CM BIT(9)
#define QMC_BD_TX_UB BIT(7)
#define QMC_BD_TX_PAD_MASK GENMASK(3, 0)
#define QMC_BD_TX_PAD(x) FIELD_PREP(QMC_BD_TX_PAD_MASK, x)
/* Numbers of BDs and interrupt items */
#define QMC_NB_TXBDS 8
#define QMC_NB_RXBDS 8
#define QMC_NB_INTS 128
struct qmc_xfer_desc {
union {
void (*tx_complete)(void *context);
void (*rx_complete)(void *context, size_t length, unsigned int flags);
};
void *context;
};
struct qmc_chan {
struct list_head list;
unsigned int id;
struct qmc *qmc;
void __iomem *s_param;
enum qmc_mode mode;
spinlock_t ts_lock; /* Protect timeslots */
u64 tx_ts_mask_avail;
u64 tx_ts_mask;
u64 rx_ts_mask_avail;
u64 rx_ts_mask;
bool is_reverse_data;
spinlock_t tx_lock; /* Protect Tx related data */
cbd_t __iomem *txbds;
cbd_t __iomem *txbd_free;
cbd_t __iomem *txbd_done;
struct qmc_xfer_desc tx_desc[QMC_NB_TXBDS];
u64 nb_tx_underrun;
bool is_tx_stopped;
spinlock_t rx_lock; /* Protect Rx related data */
cbd_t __iomem *rxbds;
cbd_t __iomem *rxbd_free;
cbd_t __iomem *rxbd_done;
struct qmc_xfer_desc rx_desc[QMC_NB_RXBDS];
u64 nb_rx_busy;
int rx_pending;
bool is_rx_halted;
bool is_rx_stopped;
};
enum qmc_version {
QMC_CPM1,
QMC_QE,
};
struct qmc_data {
enum qmc_version version;
u32 tstate; /* Initial TSTATE value */
u32 rstate; /* Initial RSTATE value */
u32 zistate; /* Initial ZISTATE value */
u32 zdstate_hdlc; /* Initial ZDSTATE value (HDLC mode) */
u32 zdstate_transp; /* Initial ZDSTATE value (Transparent mode) */
u32 rpack; /* Initial RPACK value */
};
struct qmc {
struct device *dev;
const struct qmc_data *data;
struct tsa_serial *tsa_serial;
void __iomem *scc_regs;
void __iomem *scc_pram;
void __iomem *dpram;
u16 scc_pram_offset;
u32 dpram_offset;
u32 qe_subblock;
cbd_t __iomem *bd_table;
dma_addr_t bd_dma_addr;
size_t bd_size;
u16 __iomem *int_table;
u16 __iomem *int_curr;
dma_addr_t int_dma_addr;
size_t int_size;
bool is_tsa_64rxtx;
struct list_head chan_head;
struct qmc_chan *chans[64];
};
static void qmc_write8(void __iomem *addr, u8 val)
{
iowrite8(val, addr);
}
static void qmc_write16(void __iomem *addr, u16 val)
{
iowrite16be(val, addr);
}
static u16 qmc_read16(void __iomem *addr)
{
return ioread16be(addr);
}
static void qmc_setbits16(void __iomem *addr, u16 set)
{
qmc_write16(addr, qmc_read16(addr) | set);
}
static void qmc_clrbits16(void __iomem *addr, u16 clr)
{
qmc_write16(addr, qmc_read16(addr) & ~clr);
}
static void qmc_clrsetbits16(void __iomem *addr, u16 clr, u16 set)
{
qmc_write16(addr, (qmc_read16(addr) & ~clr) | set);
}
static void qmc_write32(void __iomem *addr, u32 val)
{
iowrite32be(val, addr);
}
static u32 qmc_read32(void __iomem *addr)
{
return ioread32be(addr);
}
static void qmc_setbits32(void __iomem *addr, u32 set)
{
qmc_write32(addr, qmc_read32(addr) | set);
}
static bool qmc_is_qe(const struct qmc *qmc)
{
if (IS_ENABLED(CONFIG_QUICC_ENGINE) && IS_ENABLED(CONFIG_CPM))
return qmc->data->version == QMC_QE;
return IS_ENABLED(CONFIG_QUICC_ENGINE);
}
int qmc_chan_get_info(struct qmc_chan *chan, struct qmc_chan_info *info)
{
struct tsa_serial_info tsa_info;
unsigned long flags;
int ret;
/* Retrieve info from the TSA related serial */
ret = tsa_serial_get_info(chan->qmc->tsa_serial, &tsa_info);
if (ret)
return ret;
spin_lock_irqsave(&chan->ts_lock, flags);
info->mode = chan->mode;
info->rx_fs_rate = tsa_info.rx_fs_rate;
info->rx_bit_rate = tsa_info.rx_bit_rate;
info->nb_tx_ts = hweight64(chan->tx_ts_mask);
info->tx_fs_rate = tsa_info.tx_fs_rate;
info->tx_bit_rate = tsa_info.tx_bit_rate;
info->nb_rx_ts = hweight64(chan->rx_ts_mask);
spin_unlock_irqrestore(&chan->ts_lock, flags);
return 0;
}
EXPORT_SYMBOL(qmc_chan_get_info);
int qmc_chan_get_ts_info(struct qmc_chan *chan, struct qmc_chan_ts_info *ts_info)
{
unsigned long flags;
spin_lock_irqsave(&chan->ts_lock, flags);
ts_info->rx_ts_mask_avail = chan->rx_ts_mask_avail;
ts_info->tx_ts_mask_avail = chan->tx_ts_mask_avail;
ts_info->rx_ts_mask = chan->rx_ts_mask;
ts_info->tx_ts_mask = chan->tx_ts_mask;
spin_unlock_irqrestore(&chan->ts_lock, flags);
return 0;
}
EXPORT_SYMBOL(qmc_chan_get_ts_info);
int qmc_chan_set_ts_info(struct qmc_chan *chan, const struct qmc_chan_ts_info *ts_info)
{
unsigned long flags;
int ret;
/* Only a subset of available timeslots is allowed */
if ((ts_info->rx_ts_mask & chan->rx_ts_mask_avail) != ts_info->rx_ts_mask)
return -EINVAL;
if ((ts_info->tx_ts_mask & chan->tx_ts_mask_avail) != ts_info->tx_ts_mask)
return -EINVAL;
/* In case of common rx/tx table, rx/tx masks must be identical */
if (chan->qmc->is_tsa_64rxtx) {
if (ts_info->rx_ts_mask != ts_info->tx_ts_mask)
return -EINVAL;
}
spin_lock_irqsave(&chan->ts_lock, flags);
if ((chan->tx_ts_mask != ts_info->tx_ts_mask && !chan->is_tx_stopped) ||
(chan->rx_ts_mask != ts_info->rx_ts_mask && !chan->is_rx_stopped)) {
dev_err(chan->qmc->dev, "Channel rx and/or tx not stopped\n");
ret = -EBUSY;
} else {
chan->tx_ts_mask = ts_info->tx_ts_mask;
chan->rx_ts_mask = ts_info->rx_ts_mask;
ret = 0;
}
spin_unlock_irqrestore(&chan->ts_lock, flags);
return ret;
}
EXPORT_SYMBOL(qmc_chan_set_ts_info);
int qmc_chan_set_param(struct qmc_chan *chan, const struct qmc_chan_param *param)
{
if (param->mode != chan->mode)
return -EINVAL;
switch (param->mode) {
case QMC_HDLC:
if (param->hdlc.max_rx_buf_size % 4 ||
param->hdlc.max_rx_buf_size < 8)
return -EINVAL;
qmc_write16(chan->qmc->scc_pram + QMC_GBL_MRBLR,
param->hdlc.max_rx_buf_size - 8);
qmc_write16(chan->s_param + QMC_SPE_MFLR,
param->hdlc.max_rx_frame_size);
if (param->hdlc.is_crc32) {
qmc_setbits16(chan->s_param + QMC_SPE_CHAMR,
QMC_SPE_CHAMR_HDLC_CRC);
} else {
qmc_clrbits16(chan->s_param + QMC_SPE_CHAMR,
QMC_SPE_CHAMR_HDLC_CRC);
}
break;
case QMC_TRANSPARENT:
qmc_write16(chan->s_param + QMC_SPE_TMRBLR,
param->transp.max_rx_buf_size);
break;
default:
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(qmc_chan_set_param);
int qmc_chan_write_submit(struct qmc_chan *chan, dma_addr_t addr, size_t length,
void (*complete)(void *context), void *context)
{
struct qmc_xfer_desc *xfer_desc;
unsigned long flags;
cbd_t __iomem *bd;
u16 ctrl;
int ret;
/*
* R bit UB bit
* 0 0 : The BD is free
* 1 1 : The BD is in used, waiting for transfer
* 0 1 : The BD is in used, waiting for completion
* 1 0 : Should not append
*/
spin_lock_irqsave(&chan->tx_lock, flags);
bd = chan->txbd_free;
ctrl = qmc_read16(&bd->cbd_sc);
if (ctrl & (QMC_BD_TX_R | QMC_BD_TX_UB)) {
/* We are full ... */
ret = -EBUSY;
goto end;
}
qmc_write16(&bd->cbd_datlen, length);
qmc_write32(&bd->cbd_bufaddr, addr);
xfer_desc = &chan->tx_desc[bd - chan->txbds];
xfer_desc->tx_complete = complete;
xfer_desc->context = context;
/* Activate the descriptor */
ctrl |= (QMC_BD_TX_R | QMC_BD_TX_UB);
wmb(); /* Be sure to flush the descriptor before control update */
qmc_write16(&bd->cbd_sc, ctrl);
if (!chan->is_tx_stopped)
qmc_setbits16(chan->s_param + QMC_SPE_CHAMR, QMC_SPE_CHAMR_POL);
if (ctrl & QMC_BD_TX_W)
chan->txbd_free = chan->txbds;
else
chan->txbd_free++;
ret = 0;
end:
spin_unlock_irqrestore(&chan->tx_lock, flags);
return ret;
}
EXPORT_SYMBOL(qmc_chan_write_submit);
static void qmc_chan_write_done(struct qmc_chan *chan)
{
struct qmc_xfer_desc *xfer_desc;
void (*complete)(void *context);
unsigned long flags;
void *context;
cbd_t __iomem *bd;
u16 ctrl;
/*
* R bit UB bit
* 0 0 : The BD is free
* 1 1 : The BD is in used, waiting for transfer
* 0 1 : The BD is in used, waiting for completion
* 1 0 : Should not append
*/
spin_lock_irqsave(&chan->tx_lock, flags);
bd = chan->txbd_done;
ctrl = qmc_read16(&bd->cbd_sc);
while (!(ctrl & QMC_BD_TX_R)) {
if (!(ctrl & QMC_BD_TX_UB))
goto end;
xfer_desc = &chan->tx_desc[bd - chan->txbds];
complete = xfer_desc->tx_complete;
context = xfer_desc->context;
xfer_desc->tx_complete = NULL;
xfer_desc->context = NULL;
qmc_write16(&bd->cbd_sc, ctrl & ~QMC_BD_TX_UB);
if (ctrl & QMC_BD_TX_W)
chan->txbd_done = chan->txbds;
else
chan->txbd_done++;
if (complete) {
spin_unlock_irqrestore(&chan->tx_lock, flags);
complete(context);
spin_lock_irqsave(&chan->tx_lock, flags);
}
bd = chan->txbd_done;
ctrl = qmc_read16(&bd->cbd_sc);
}
end:
spin_unlock_irqrestore(&chan->tx_lock, flags);
}
int qmc_chan_read_submit(struct qmc_chan *chan, dma_addr_t addr, size_t length,
void (*complete)(void *context, size_t length, unsigned int flags),
void *context)
{
struct qmc_xfer_desc *xfer_desc;
unsigned long flags;
cbd_t __iomem *bd;
u16 ctrl;
int ret;
/*
* E bit UB bit
* 0 0 : The BD is free
* 1 1 : The BD is in used, waiting for transfer
* 0 1 : The BD is in used, waiting for completion
* 1 0 : Should not append
*/
spin_lock_irqsave(&chan->rx_lock, flags);
bd = chan->rxbd_free;
ctrl = qmc_read16(&bd->cbd_sc);
if (ctrl & (QMC_BD_RX_E | QMC_BD_RX_UB)) {
/* We are full ... */
ret = -EBUSY;
goto end;
}
qmc_write16(&bd->cbd_datlen, 0); /* data length is updated by the QMC */
qmc_write32(&bd->cbd_bufaddr, addr);
xfer_desc = &chan->rx_desc[bd - chan->rxbds];
xfer_desc->rx_complete = complete;
xfer_desc->context = context;
/* Clear previous status flags */
ctrl &= ~(QMC_BD_RX_L | QMC_BD_RX_F | QMC_BD_RX_LG | QMC_BD_RX_NO |
QMC_BD_RX_AB | QMC_BD_RX_CR);
/* Activate the descriptor */
ctrl |= (QMC_BD_RX_E | QMC_BD_RX_UB);
wmb(); /* Be sure to flush data before descriptor activation */
qmc_write16(&bd->cbd_sc, ctrl);
/* Restart receiver if needed */
if (chan->is_rx_halted && !chan->is_rx_stopped) {
/* Restart receiver */
qmc_write32(chan->s_param + QMC_SPE_RPACK, chan->qmc->data->rpack);
qmc_write32(chan->s_param + QMC_SPE_ZDSTATE,
chan->mode == QMC_TRANSPARENT ?
chan->qmc->data->zdstate_transp :
chan->qmc->data->zdstate_hdlc);
qmc_write32(chan->s_param + QMC_SPE_RSTATE, chan->qmc->data->rstate);
chan->is_rx_halted = false;
}
chan->rx_pending++;
if (ctrl & QMC_BD_RX_W)
chan->rxbd_free = chan->rxbds;
else
chan->rxbd_free++;
ret = 0;
end:
spin_unlock_irqrestore(&chan->rx_lock, flags);
return ret;
}
EXPORT_SYMBOL(qmc_chan_read_submit);
static void qmc_chan_read_done(struct qmc_chan *chan)
{
void (*complete)(void *context, size_t size, unsigned int flags);
struct qmc_xfer_desc *xfer_desc;
unsigned long flags;
cbd_t __iomem *bd;
void *context;
u16 datalen;
u16 ctrl;
/*
* E bit UB bit
* 0 0 : The BD is free
* 1 1 : The BD is in used, waiting for transfer
* 0 1 : The BD is in used, waiting for completion
* 1 0 : Should not append
*/
spin_lock_irqsave(&chan->rx_lock, flags);
bd = chan->rxbd_done;
ctrl = qmc_read16(&bd->cbd_sc);
while (!(ctrl & QMC_BD_RX_E)) {
if (!(ctrl & QMC_BD_RX_UB))
goto end;
xfer_desc = &chan->rx_desc[bd - chan->rxbds];
complete = xfer_desc->rx_complete;
context = xfer_desc->context;
xfer_desc->rx_complete = NULL;
xfer_desc->context = NULL;
datalen = qmc_read16(&bd->cbd_datlen);
qmc_write16(&bd->cbd_sc, ctrl & ~QMC_BD_RX_UB);
if (ctrl & QMC_BD_RX_W)
chan->rxbd_done = chan->rxbds;
else
chan->rxbd_done++;
chan->rx_pending--;
if (complete) {
spin_unlock_irqrestore(&chan->rx_lock, flags);
/*
* Avoid conversion between internal hardware flags and
* the software API flags.
* -> Be sure that the software API flags are consistent
* with the hardware flags
*/
BUILD_BUG_ON(QMC_RX_FLAG_HDLC_LAST != QMC_BD_RX_L);
BUILD_BUG_ON(QMC_RX_FLAG_HDLC_FIRST != QMC_BD_RX_F);
BUILD_BUG_ON(QMC_RX_FLAG_HDLC_OVF != QMC_BD_RX_LG);
BUILD_BUG_ON(QMC_RX_FLAG_HDLC_UNA != QMC_BD_RX_NO);
BUILD_BUG_ON(QMC_RX_FLAG_HDLC_ABORT != QMC_BD_RX_AB);
BUILD_BUG_ON(QMC_RX_FLAG_HDLC_CRC != QMC_BD_RX_CR);
complete(context, datalen,
ctrl & (QMC_BD_RX_L | QMC_BD_RX_F | QMC_BD_RX_LG |
QMC_BD_RX_NO | QMC_BD_RX_AB | QMC_BD_RX_CR));
spin_lock_irqsave(&chan->rx_lock, flags);
}
bd = chan->rxbd_done;
ctrl = qmc_read16(&bd->cbd_sc);
}
end:
spin_unlock_irqrestore(&chan->rx_lock, flags);
}
static int qmc_chan_setup_tsa_64rxtx(struct qmc_chan *chan, const struct tsa_serial_info *info,
bool enable)
{
unsigned int i;
u16 curr;
u16 val;
/*
* Use a common Tx/Rx 64 entries table.
* Tx and Rx related stuffs must be identical
*/
if (chan->tx_ts_mask != chan->rx_ts_mask) {
dev_err(chan->qmc->dev, "chan %u uses different Rx and Tx TS\n", chan->id);
return -EINVAL;
}
val = QMC_TSA_VALID | QMC_TSA_MASK_8BIT | QMC_TSA_CHANNEL(chan->id);
/* Check entries based on Rx stuff*/
for (i = 0; i < info->nb_rx_ts; i++) {
if (!(chan->rx_ts_mask & (((u64)1) << i)))
continue;
curr = qmc_read16(chan->qmc->scc_pram + QMC_GBL_TSATRX + (i * 2));
if (curr & QMC_TSA_VALID && (curr & ~QMC_TSA_WRAP) != val) {
dev_err(chan->qmc->dev, "chan %u TxRx entry %d already used\n",
chan->id, i);
return -EBUSY;
}
}
/* Set entries based on Rx stuff*/
for (i = 0; i < info->nb_rx_ts; i++) {
if (!(chan->rx_ts_mask & (((u64)1) << i)))
continue;
qmc_clrsetbits16(chan->qmc->scc_pram + QMC_GBL_TSATRX + (i * 2),
(u16)~QMC_TSA_WRAP, enable ? val : 0x0000);
}
return 0;
}
static int qmc_chan_setup_tsa_32rx(struct qmc_chan *chan, const struct tsa_serial_info *info,
bool enable)
{
unsigned int i;
u16 curr;
u16 val;
/* Use a Rx 32 entries table */
val = QMC_TSA_VALID | QMC_TSA_MASK_8BIT | QMC_TSA_CHANNEL(chan->id);
/* Check entries based on Rx stuff */
for (i = 0; i < info->nb_rx_ts; i++) {
if (!(chan->rx_ts_mask & (((u64)1) << i)))
continue;
curr = qmc_read16(chan->qmc->scc_pram + QMC_GBL_TSATRX + (i * 2));
if (curr & QMC_TSA_VALID && (curr & ~QMC_TSA_WRAP) != val) {
dev_err(chan->qmc->dev, "chan %u Rx entry %d already used\n",
chan->id, i);
return -EBUSY;
}
}
/* Set entries based on Rx stuff */
for (i = 0; i < info->nb_rx_ts; i++) {
if (!(chan->rx_ts_mask & (((u64)1) << i)))
continue;
qmc_clrsetbits16(chan->qmc->scc_pram + QMC_GBL_TSATRX + (i * 2),
(u16)~QMC_TSA_WRAP, enable ? val : 0x0000);
}
return 0;
}
static int qmc_chan_setup_tsa_32tx(struct qmc_chan *chan, const struct tsa_serial_info *info,
bool enable)
{
unsigned int i;
u16 curr;
u16 val;
/* Use a Tx 32 entries table */
val = QMC_TSA_VALID | QMC_TSA_MASK_8BIT | QMC_TSA_CHANNEL(chan->id);
/* Check entries based on Tx stuff */
for (i = 0; i < info->nb_tx_ts; i++) {
if (!(chan->tx_ts_mask & (((u64)1) << i)))
continue;
curr = qmc_read16(chan->qmc->scc_pram + QMC_GBL_TSATTX + (i * 2));
if (curr & QMC_TSA_VALID && (curr & ~QMC_TSA_WRAP) != val) {
dev_err(chan->qmc->dev, "chan %u Tx entry %d already used\n",
chan->id, i);
return -EBUSY;
}
}
/* Set entries based on Tx stuff */
for (i = 0; i < info->nb_tx_ts; i++) {
if (!(chan->tx_ts_mask & (((u64)1) << i)))
continue;
qmc_clrsetbits16(chan->qmc->scc_pram + QMC_GBL_TSATTX + (i * 2),
(u16)~QMC_TSA_WRAP, enable ? val : 0x0000);
}
return 0;
}
static int qmc_chan_setup_tsa_tx(struct qmc_chan *chan, bool enable)
{
struct tsa_serial_info info;
int ret;
/* Retrieve info from the TSA related serial */
ret = tsa_serial_get_info(chan->qmc->tsa_serial, &info);
if (ret)
return ret;
/* Setup entries */
if (chan->qmc->is_tsa_64rxtx)
return qmc_chan_setup_tsa_64rxtx(chan, &info, enable);
return qmc_chan_setup_tsa_32tx(chan, &info, enable);
}
static int qmc_chan_setup_tsa_rx(struct qmc_chan *chan, bool enable)
{
struct tsa_serial_info info;
int ret;
/* Retrieve info from the TSA related serial */
ret = tsa_serial_get_info(chan->qmc->tsa_serial, &info);
if (ret)
return ret;
/* Setup entries */
if (chan->qmc->is_tsa_64rxtx)
return qmc_chan_setup_tsa_64rxtx(chan, &info, enable);
return qmc_chan_setup_tsa_32rx(chan, &info, enable);
}
static int qmc_chan_cpm1_command(struct qmc_chan *chan, u8 qmc_opcode)
{
return cpm_command(chan->id << 2, (qmc_opcode << 4) | 0x0E);
}
static int qmc_chan_qe_command(struct qmc_chan *chan, u32 cmd)
{
if (!qe_issue_cmd(cmd, chan->qmc->qe_subblock, chan->id, 0))
return -EIO;
return 0;
}
static int qmc_chan_stop_rx(struct qmc_chan *chan)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&chan->rx_lock, flags);
if (chan->is_rx_stopped) {
/* The channel is already stopped -> simply return ok */
ret = 0;
goto end;
}
/* Send STOP RECEIVE command */
ret = qmc_is_qe(chan->qmc) ?
qmc_chan_qe_command(chan, QE_QMC_STOP_RX) :
qmc_chan_cpm1_command(chan, 0x0);
if (ret) {
dev_err(chan->qmc->dev, "chan %u: Send STOP RECEIVE failed (%d)\n",
chan->id, ret);
goto end;
}
chan->is_rx_stopped = true;
if (!chan->qmc->is_tsa_64rxtx || chan->is_tx_stopped) {
ret = qmc_chan_setup_tsa_rx(chan, false);
if (ret) {
dev_err(chan->qmc->dev, "chan %u: Disable tsa entries failed (%d)\n",
chan->id, ret);
goto end;
}
}
end:
spin_unlock_irqrestore(&chan->rx_lock, flags);
return ret;
}
static int qmc_chan_stop_tx(struct qmc_chan *chan)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&chan->tx_lock, flags);
if (chan->is_tx_stopped) {
/* The channel is already stopped -> simply return ok */
ret = 0;
goto end;
}
/* Send STOP TRANSMIT command */
ret = qmc_is_qe(chan->qmc) ?
qmc_chan_qe_command(chan, QE_QMC_STOP_TX) :
qmc_chan_cpm1_command(chan, 0x1);
if (ret) {
dev_err(chan->qmc->dev, "chan %u: Send STOP TRANSMIT failed (%d)\n",
chan->id, ret);
goto end;
}
chan->is_tx_stopped = true;
if (!chan->qmc->is_tsa_64rxtx || chan->is_rx_stopped) {
ret = qmc_chan_setup_tsa_tx(chan, false);
if (ret) {
dev_err(chan->qmc->dev, "chan %u: Disable tsa entries failed (%d)\n",
chan->id, ret);
goto end;
}
}
end:
spin_unlock_irqrestore(&chan->tx_lock, flags);
return ret;
}
static int qmc_chan_start_rx(struct qmc_chan *chan);
int qmc_chan_stop(struct qmc_chan *chan, int direction)
{
bool is_rx_rollback_needed = false;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&chan->ts_lock, flags);
if (direction & QMC_CHAN_READ) {
is_rx_rollback_needed = !chan->is_rx_stopped;
ret = qmc_chan_stop_rx(chan);
if (ret)
goto end;
}
if (direction & QMC_CHAN_WRITE) {
ret = qmc_chan_stop_tx(chan);
if (ret) {
/* Restart rx if needed */
if (is_rx_rollback_needed)
qmc_chan_start_rx(chan);
goto end;
}
}
end:
spin_unlock_irqrestore(&chan->ts_lock, flags);
return ret;
}
EXPORT_SYMBOL(qmc_chan_stop);
static int qmc_setup_chan_trnsync(struct qmc *qmc, struct qmc_chan *chan)
{
struct tsa_serial_info info;
unsigned int w_rx, w_tx;
u16 first_rx, last_tx;
u16 trnsync;
int ret;
/* Retrieve info from the TSA related serial */
ret = tsa_serial_get_info(chan->qmc->tsa_serial, &info);
if (ret)
return ret;
w_rx = hweight64(chan->rx_ts_mask);
w_tx = hweight64(chan->tx_ts_mask);
if (w_rx <= 1 && w_tx <= 1) {
dev_dbg(qmc->dev, "only one or zero ts -> disable trnsync\n");
qmc_clrbits16(chan->s_param + QMC_SPE_CHAMR, QMC_SPE_CHAMR_TRANSP_SYNC);
return 0;
}
/* Find the first Rx TS allocated to the channel */
first_rx = chan->rx_ts_mask ? __ffs64(chan->rx_ts_mask) + 1 : 0;
/* Find the last Tx TS allocated to the channel */
last_tx = fls64(chan->tx_ts_mask);
trnsync = 0;
if (info.nb_rx_ts)
trnsync |= QMC_SPE_TRNSYNC_RX((first_rx % info.nb_rx_ts) * 2);
if (info.nb_tx_ts)
trnsync |= QMC_SPE_TRNSYNC_TX((last_tx % info.nb_tx_ts) * 2);
qmc_write16(chan->s_param + QMC_SPE_TRNSYNC, trnsync);
qmc_setbits16(chan->s_param + QMC_SPE_CHAMR, QMC_SPE_CHAMR_TRANSP_SYNC);
dev_dbg(qmc->dev, "chan %u: trnsync=0x%04x, rx %u/%u 0x%llx, tx %u/%u 0x%llx\n",
chan->id, trnsync,
first_rx, info.nb_rx_ts, chan->rx_ts_mask,
last_tx, info.nb_tx_ts, chan->tx_ts_mask);
return 0;
}
static int qmc_chan_start_rx(struct qmc_chan *chan)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&chan->rx_lock, flags);
if (!chan->is_rx_stopped) {
/* The channel is already started -> simply return ok */
ret = 0;
goto end;
}
ret = qmc_chan_setup_tsa_rx(chan, true);
if (ret) {
dev_err(chan->qmc->dev, "chan %u: Enable tsa entries failed (%d)\n",
chan->id, ret);
goto end;
}
if (chan->mode == QMC_TRANSPARENT) {
ret = qmc_setup_chan_trnsync(chan->qmc, chan);
if (ret) {
dev_err(chan->qmc->dev, "chan %u: setup TRNSYNC failed (%d)\n",
chan->id, ret);
goto end;
}
}
/* Restart the receiver */
qmc_write32(chan->s_param + QMC_SPE_RPACK, chan->qmc->data->rpack);
qmc_write32(chan->s_param + QMC_SPE_ZDSTATE,
chan->mode == QMC_TRANSPARENT ?
chan->qmc->data->zdstate_transp :
chan->qmc->data->zdstate_hdlc);
qmc_write32(chan->s_param + QMC_SPE_RSTATE, chan->qmc->data->rstate);
chan->is_rx_halted = false;
chan->is_rx_stopped = false;
end:
spin_unlock_irqrestore(&chan->rx_lock, flags);
return ret;
}
static int qmc_chan_start_tx(struct qmc_chan *chan)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&chan->tx_lock, flags);
if (!chan->is_tx_stopped) {
/* The channel is already started -> simply return ok */
ret = 0;
goto end;
}
ret = qmc_chan_setup_tsa_tx(chan, true);
if (ret) {
dev_err(chan->qmc->dev, "chan %u: Enable tsa entries failed (%d)\n",
chan->id, ret);
goto end;
}
if (chan->mode == QMC_TRANSPARENT) {
ret = qmc_setup_chan_trnsync(chan->qmc, chan);
if (ret) {
dev_err(chan->qmc->dev, "chan %u: setup TRNSYNC failed (%d)\n",
chan->id, ret);
goto end;
}
}
/*
* Enable channel transmitter as it could be disabled if
* qmc_chan_reset() was called.
*/
qmc_setbits16(chan->s_param + QMC_SPE_CHAMR, QMC_SPE_CHAMR_ENT);
/* Set the POL bit in the channel mode register */
qmc_setbits16(chan->s_param + QMC_SPE_CHAMR, QMC_SPE_CHAMR_POL);
chan->is_tx_stopped = false;
end:
spin_unlock_irqrestore(&chan->tx_lock, flags);
return ret;
}
int qmc_chan_start(struct qmc_chan *chan, int direction)
{
bool is_rx_rollback_needed = false;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&chan->ts_lock, flags);
if (direction & QMC_CHAN_READ) {
is_rx_rollback_needed = chan->is_rx_stopped;
ret = qmc_chan_start_rx(chan);
if (ret)
goto end;
}
if (direction & QMC_CHAN_WRITE) {
ret = qmc_chan_start_tx(chan);
if (ret) {
/* Restop rx if needed */
if (is_rx_rollback_needed)
qmc_chan_stop_rx(chan);
goto end;
}
}
end:
spin_unlock_irqrestore(&chan->ts_lock, flags);
return ret;
}
EXPORT_SYMBOL(qmc_chan_start);
static void qmc_chan_reset_rx(struct qmc_chan *chan)
{
struct qmc_xfer_desc *xfer_desc;
unsigned long flags;
cbd_t __iomem *bd;
u16 ctrl;
spin_lock_irqsave(&chan->rx_lock, flags);
bd = chan->rxbds;
do {
ctrl = qmc_read16(&bd->cbd_sc);
qmc_write16(&bd->cbd_sc, ctrl & ~(QMC_BD_RX_UB | QMC_BD_RX_E));
xfer_desc = &chan->rx_desc[bd - chan->rxbds];
xfer_desc->rx_complete = NULL;
xfer_desc->context = NULL;
bd++;
} while (!(ctrl & QMC_BD_RX_W));
chan->rxbd_free = chan->rxbds;
chan->rxbd_done = chan->rxbds;
qmc_write16(chan->s_param + QMC_SPE_RBPTR,
qmc_read16(chan->s_param + QMC_SPE_RBASE));
chan->rx_pending = 0;
spin_unlock_irqrestore(&chan->rx_lock, flags);
}
static void qmc_chan_reset_tx(struct qmc_chan *chan)
{
struct qmc_xfer_desc *xfer_desc;
unsigned long flags;
cbd_t __iomem *bd;
u16 ctrl;
spin_lock_irqsave(&chan->tx_lock, flags);
/* Disable transmitter. It will be re-enable on qmc_chan_start() */
qmc_clrbits16(chan->s_param + QMC_SPE_CHAMR, QMC_SPE_CHAMR_ENT);
bd = chan->txbds;
do {
ctrl = qmc_read16(&bd->cbd_sc);
qmc_write16(&bd->cbd_sc, ctrl & ~(QMC_BD_TX_UB | QMC_BD_TX_R));
xfer_desc = &chan->tx_desc[bd - chan->txbds];
xfer_desc->tx_complete = NULL;
xfer_desc->context = NULL;
bd++;
} while (!(ctrl & QMC_BD_TX_W));
chan->txbd_free = chan->txbds;
chan->txbd_done = chan->txbds;
qmc_write16(chan->s_param + QMC_SPE_TBPTR,
qmc_read16(chan->s_param + QMC_SPE_TBASE));
/* Reset TSTATE and ZISTATE to their initial value */
qmc_write32(chan->s_param + QMC_SPE_TSTATE, chan->qmc->data->tstate);
qmc_write32(chan->s_param + QMC_SPE_ZISTATE, chan->qmc->data->zistate);
spin_unlock_irqrestore(&chan->tx_lock, flags);
}
int qmc_chan_reset(struct qmc_chan *chan, int direction)
{
if (direction & QMC_CHAN_READ)
qmc_chan_reset_rx(chan);
if (direction & QMC_CHAN_WRITE)
qmc_chan_reset_tx(chan);
return 0;
}
EXPORT_SYMBOL(qmc_chan_reset);
static int qmc_check_chans(struct qmc *qmc)
{
struct tsa_serial_info info;
struct qmc_chan *chan;
u64 tx_ts_assigned_mask;
u64 rx_ts_assigned_mask;
int ret;
/* Retrieve info from the TSA related serial */
ret = tsa_serial_get_info(qmc->tsa_serial, &info);
if (ret)
return ret;
if (info.nb_tx_ts > 64 || info.nb_rx_ts > 64) {
dev_err(qmc->dev, "Number of TSA Tx/Rx TS assigned not supported\n");
return -EINVAL;
}
/*
* If more than 32 TS are assigned to this serial, one common table is
* used for Tx and Rx and so masks must be equal for all channels.
*/
if (info.nb_tx_ts > 32 || info.nb_rx_ts > 32) {
if (info.nb_tx_ts != info.nb_rx_ts) {
dev_err(qmc->dev, "Number of TSA Tx/Rx TS assigned are not equal\n");
return -EINVAL;
}
}
tx_ts_assigned_mask = info.nb_tx_ts == 64 ? U64_MAX : (((u64)1) << info.nb_tx_ts) - 1;
rx_ts_assigned_mask = info.nb_rx_ts == 64 ? U64_MAX : (((u64)1) << info.nb_rx_ts) - 1;
list_for_each_entry(chan, &qmc->chan_head, list) {
if (chan->tx_ts_mask_avail > tx_ts_assigned_mask) {
dev_err(qmc->dev, "chan %u can use TSA unassigned Tx TS\n", chan->id);
return -EINVAL;
}
if (chan->rx_ts_mask_avail > rx_ts_assigned_mask) {
dev_err(qmc->dev, "chan %u can use TSA unassigned Rx TS\n", chan->id);
return -EINVAL;
}
}
return 0;
}
static unsigned int qmc_nb_chans(struct qmc *qmc)
{
unsigned int count = 0;
struct qmc_chan *chan;
list_for_each_entry(chan, &qmc->chan_head, list)
count++;
return count;
}
static int qmc_of_parse_chans(struct qmc *qmc, struct device_node *np)
{
struct device_node *chan_np;
struct qmc_chan *chan;
const char *mode;
u32 chan_id;
u64 ts_mask;
int ret;
for_each_available_child_of_node(np, chan_np) {
ret = of_property_read_u32(chan_np, "reg", &chan_id);
if (ret) {
dev_err(qmc->dev, "%pOF: failed to read reg\n", chan_np);
of_node_put(chan_np);
return ret;
}
if (chan_id > 63) {
dev_err(qmc->dev, "%pOF: Invalid chan_id\n", chan_np);
of_node_put(chan_np);
return -EINVAL;
}
chan = devm_kzalloc(qmc->dev, sizeof(*chan), GFP_KERNEL);
if (!chan) {
of_node_put(chan_np);
return -ENOMEM;
}
chan->id = chan_id;
spin_lock_init(&chan->ts_lock);
spin_lock_init(&chan->rx_lock);
spin_lock_init(&chan->tx_lock);
ret = of_property_read_u64(chan_np, "fsl,tx-ts-mask", &ts_mask);
if (ret) {
dev_err(qmc->dev, "%pOF: failed to read fsl,tx-ts-mask\n",
chan_np);
of_node_put(chan_np);
return ret;
}
chan->tx_ts_mask_avail = ts_mask;
chan->tx_ts_mask = chan->tx_ts_mask_avail;
ret = of_property_read_u64(chan_np, "fsl,rx-ts-mask", &ts_mask);
if (ret) {
dev_err(qmc->dev, "%pOF: failed to read fsl,rx-ts-mask\n",
chan_np);
of_node_put(chan_np);
return ret;
}
chan->rx_ts_mask_avail = ts_mask;
chan->rx_ts_mask = chan->rx_ts_mask_avail;
mode = "transparent";
ret = of_property_read_string(chan_np, "fsl,operational-mode", &mode);
if (ret && ret != -EINVAL) {
dev_err(qmc->dev, "%pOF: failed to read fsl,operational-mode\n",
chan_np);
of_node_put(chan_np);
return ret;
}
if (!strcmp(mode, "transparent")) {
chan->mode = QMC_TRANSPARENT;
} else if (!strcmp(mode, "hdlc")) {
chan->mode = QMC_HDLC;
} else {
dev_err(qmc->dev, "%pOF: Invalid fsl,operational-mode (%s)\n",
chan_np, mode);
of_node_put(chan_np);
return -EINVAL;
}
chan->is_reverse_data = of_property_read_bool(chan_np,
"fsl,reverse-data");
list_add_tail(&chan->list, &qmc->chan_head);
qmc->chans[chan->id] = chan;
}
return qmc_check_chans(qmc);
}
static int qmc_init_tsa_64rxtx(struct qmc *qmc, const struct tsa_serial_info *info)
{
unsigned int i;
u16 val;
/*
* Use a common Tx/Rx 64 entries table.
* Everything was previously checked, Tx and Rx related stuffs are
* identical -> Used Rx related stuff to build the table
*/
qmc->is_tsa_64rxtx = true;
/* Invalidate all entries */
for (i = 0; i < 64; i++)
qmc_write16(qmc->scc_pram + QMC_GBL_TSATRX + (i * 2), 0x0000);
/* Set Wrap bit on last entry */
qmc_setbits16(qmc->scc_pram + QMC_GBL_TSATRX + ((info->nb_rx_ts - 1) * 2),
QMC_TSA_WRAP);
/* Init pointers to the table */
val = qmc->scc_pram_offset + QMC_GBL_TSATRX;
qmc_write16(qmc->scc_pram + QMC_GBL_RX_S_PTR, val);
qmc_write16(qmc->scc_pram + QMC_GBL_RXPTR, val);
qmc_write16(qmc->scc_pram + QMC_GBL_TX_S_PTR, val);
qmc_write16(qmc->scc_pram + QMC_GBL_TXPTR, val);
return 0;
}
static int qmc_init_tsa_32rx_32tx(struct qmc *qmc, const struct tsa_serial_info *info)
{
unsigned int i;
u16 val;
/*
* Use a Tx 32 entries table and a Rx 32 entries table.
* Everything was previously checked.
*/
qmc->is_tsa_64rxtx = false;
/* Invalidate all entries */
for (i = 0; i < 32; i++) {
qmc_write16(qmc->scc_pram + QMC_GBL_TSATRX + (i * 2), 0x0000);
qmc_write16(qmc->scc_pram + QMC_GBL_TSATTX + (i * 2), 0x0000);
}
/* Set Wrap bit on last entries */
qmc_setbits16(qmc->scc_pram + QMC_GBL_TSATRX + ((info->nb_rx_ts - 1) * 2),
QMC_TSA_WRAP);
qmc_setbits16(qmc->scc_pram + QMC_GBL_TSATTX + ((info->nb_tx_ts - 1) * 2),
QMC_TSA_WRAP);
/* Init Rx pointers ...*/
val = qmc->scc_pram_offset + QMC_GBL_TSATRX;
qmc_write16(qmc->scc_pram + QMC_GBL_RX_S_PTR, val);
qmc_write16(qmc->scc_pram + QMC_GBL_RXPTR, val);
/* ... and Tx pointers */
val = qmc->scc_pram_offset + QMC_GBL_TSATTX;
qmc_write16(qmc->scc_pram + QMC_GBL_TX_S_PTR, val);
qmc_write16(qmc->scc_pram + QMC_GBL_TXPTR, val);
return 0;
}
static int qmc_init_tsa(struct qmc *qmc)
{
struct tsa_serial_info info;
int ret;
/* Retrieve info from the TSA related serial */
ret = tsa_serial_get_info(qmc->tsa_serial, &info);
if (ret)
return ret;
/*
* Initialize one common 64 entries table or two 32 entries (one for Tx
* and one for Tx) according to assigned TS numbers.
*/
return ((info.nb_tx_ts > 32) || (info.nb_rx_ts > 32)) ?
qmc_init_tsa_64rxtx(qmc, &info) :
qmc_init_tsa_32rx_32tx(qmc, &info);
}
static int qmc_setup_chan(struct qmc *qmc, struct qmc_chan *chan)
{
unsigned int i;
cbd_t __iomem *bd;
int ret;
u16 val;
chan->qmc = qmc;
/* Set channel specific parameter base address */
chan->s_param = qmc->dpram + (chan->id * 64);
/* 16 bd per channel (8 rx and 8 tx) */
chan->txbds = qmc->bd_table + (chan->id * (QMC_NB_TXBDS + QMC_NB_RXBDS));
chan->rxbds = qmc->bd_table + (chan->id * (QMC_NB_TXBDS + QMC_NB_RXBDS)) + QMC_NB_TXBDS;
chan->txbd_free = chan->txbds;
chan->txbd_done = chan->txbds;
chan->rxbd_free = chan->rxbds;
chan->rxbd_done = chan->rxbds;
/* TBASE and TBPTR*/
val = chan->id * (QMC_NB_TXBDS + QMC_NB_RXBDS) * sizeof(cbd_t);
qmc_write16(chan->s_param + QMC_SPE_TBASE, val);
qmc_write16(chan->s_param + QMC_SPE_TBPTR, val);
/* RBASE and RBPTR*/
val = ((chan->id * (QMC_NB_TXBDS + QMC_NB_RXBDS)) + QMC_NB_TXBDS) * sizeof(cbd_t);
qmc_write16(chan->s_param + QMC_SPE_RBASE, val);
qmc_write16(chan->s_param + QMC_SPE_RBPTR, val);
qmc_write32(chan->s_param + QMC_SPE_TSTATE, chan->qmc->data->tstate);
qmc_write32(chan->s_param + QMC_SPE_RSTATE, chan->qmc->data->rstate);
qmc_write32(chan->s_param + QMC_SPE_ZISTATE, chan->qmc->data->zistate);
qmc_write32(chan->s_param + QMC_SPE_RPACK, chan->qmc->data->rpack);
if (chan->mode == QMC_TRANSPARENT) {
qmc_write32(chan->s_param + QMC_SPE_ZDSTATE, chan->qmc->data->zdstate_transp);
qmc_write16(chan->s_param + QMC_SPE_TMRBLR, 60);
val = QMC_SPE_CHAMR_MODE_TRANSP;
if (chan->is_reverse_data)
val |= QMC_SPE_CHAMR_TRANSP_RD;
qmc_write16(chan->s_param + QMC_SPE_CHAMR, val);
ret = qmc_setup_chan_trnsync(qmc, chan);
if (ret)
return ret;
} else {
qmc_write32(chan->s_param + QMC_SPE_ZDSTATE, chan->qmc->data->zdstate_hdlc);
qmc_write16(chan->s_param + QMC_SPE_MFLR, 60);
qmc_write16(chan->s_param + QMC_SPE_CHAMR,
QMC_SPE_CHAMR_MODE_HDLC | QMC_SPE_CHAMR_HDLC_IDLM);
}
/* Do not enable interrupts now. They will be enabled later */
qmc_write16(chan->s_param + QMC_SPE_INTMSK, 0x0000);
/* Init Rx BDs and set Wrap bit on last descriptor */
BUILD_BUG_ON(QMC_NB_RXBDS == 0);
val = QMC_BD_RX_I;
for (i = 0; i < QMC_NB_RXBDS; i++) {
bd = chan->rxbds + i;
qmc_write16(&bd->cbd_sc, val);
}
bd = chan->rxbds + QMC_NB_RXBDS - 1;
qmc_write16(&bd->cbd_sc, val | QMC_BD_RX_W);
/* Init Tx BDs and set Wrap bit on last descriptor */
BUILD_BUG_ON(QMC_NB_TXBDS == 0);
val = QMC_BD_TX_I;
if (chan->mode == QMC_HDLC)
val |= QMC_BD_TX_L | QMC_BD_TX_TC;
for (i = 0; i < QMC_NB_TXBDS; i++) {
bd = chan->txbds + i;
qmc_write16(&bd->cbd_sc, val);
}
bd = chan->txbds + QMC_NB_TXBDS - 1;
qmc_write16(&bd->cbd_sc, val | QMC_BD_TX_W);
return 0;
}
static int qmc_setup_chans(struct qmc *qmc)
{
struct qmc_chan *chan;
int ret;
list_for_each_entry(chan, &qmc->chan_head, list) {
ret = qmc_setup_chan(qmc, chan);
if (ret)
return ret;
}
return 0;
}
static int qmc_finalize_chans(struct qmc *qmc)
{
struct qmc_chan *chan;
int ret;
list_for_each_entry(chan, &qmc->chan_head, list) {
/* Unmask channel interrupts */
if (chan->mode == QMC_HDLC) {
qmc_write16(chan->s_param + QMC_SPE_INTMSK,
QMC_INT_NID | QMC_INT_IDL | QMC_INT_MRF |
QMC_INT_UN | QMC_INT_RXF | QMC_INT_BSY |
QMC_INT_TXB | QMC_INT_RXB);
} else {
qmc_write16(chan->s_param + QMC_SPE_INTMSK,
QMC_INT_UN | QMC_INT_BSY |
QMC_INT_TXB | QMC_INT_RXB);
}
/* Forced stop the channel */
ret = qmc_chan_stop(chan, QMC_CHAN_ALL);
if (ret)
return ret;
}
return 0;
}
static int qmc_setup_ints(struct qmc *qmc)
{
unsigned int i;
u16 __iomem *last;
/* Raz all entries */
for (i = 0; i < (qmc->int_size / sizeof(u16)); i++)
qmc_write16(qmc->int_table + i, 0x0000);
/* Set Wrap bit on last entry */
if (qmc->int_size >= sizeof(u16)) {
last = qmc->int_table + (qmc->int_size / sizeof(u16)) - 1;
qmc_write16(last, QMC_INT_W);
}
return 0;
}
static void qmc_irq_gint(struct qmc *qmc)
{
struct qmc_chan *chan;
unsigned int chan_id;
unsigned long flags;
u16 int_entry;
int_entry = qmc_read16(qmc->int_curr);
while (int_entry & QMC_INT_V) {
/* Clear all but the Wrap bit */
qmc_write16(qmc->int_curr, int_entry & QMC_INT_W);
chan_id = QMC_INT_GET_CHANNEL(int_entry);
chan = qmc->chans[chan_id];
if (!chan) {
dev_err(qmc->dev, "interrupt on invalid chan %u\n", chan_id);
goto int_next;
}
if (int_entry & QMC_INT_TXB)
qmc_chan_write_done(chan);
if (int_entry & QMC_INT_UN) {
dev_info(qmc->dev, "intr chan %u, 0x%04x (UN)\n", chan_id,
int_entry);
chan->nb_tx_underrun++;
}
if (int_entry & QMC_INT_BSY) {
dev_info(qmc->dev, "intr chan %u, 0x%04x (BSY)\n", chan_id,
int_entry);
chan->nb_rx_busy++;
/* Restart the receiver if needed */
spin_lock_irqsave(&chan->rx_lock, flags);
if (chan->rx_pending && !chan->is_rx_stopped) {
qmc_write32(chan->s_param + QMC_SPE_RPACK,
chan->qmc->data->rpack);
qmc_write32(chan->s_param + QMC_SPE_ZDSTATE,
chan->mode == QMC_TRANSPARENT ?
chan->qmc->data->zdstate_transp :
chan->qmc->data->zdstate_hdlc);
qmc_write32(chan->s_param + QMC_SPE_RSTATE,
chan->qmc->data->rstate);
chan->is_rx_halted = false;
} else {
chan->is_rx_halted = true;
}
spin_unlock_irqrestore(&chan->rx_lock, flags);
}
if (int_entry & QMC_INT_RXB)
qmc_chan_read_done(chan);
int_next:
if (int_entry & QMC_INT_W)
qmc->int_curr = qmc->int_table;
else
qmc->int_curr++;
int_entry = qmc_read16(qmc->int_curr);
}
}
static irqreturn_t qmc_irq_handler(int irq, void *priv)
{
struct qmc *qmc = (struct qmc *)priv;
u16 scce;
scce = qmc_read16(qmc->scc_regs + SCC_SCCE);
qmc_write16(qmc->scc_regs + SCC_SCCE, scce);
if (unlikely(scce & SCC_SCCE_IQOV))
dev_info(qmc->dev, "IRQ queue overflow\n");
if (unlikely(scce & SCC_SCCE_GUN))
dev_err(qmc->dev, "Global transmitter underrun\n");
if (unlikely(scce & SCC_SCCE_GOV))
dev_err(qmc->dev, "Global receiver overrun\n");
/* normal interrupt */
if (likely(scce & SCC_SCCE_GINT))
qmc_irq_gint(qmc);
return IRQ_HANDLED;
}
static int qmc_qe_soft_qmc_init(struct qmc *qmc, struct device_node *np)
{
struct qe_firmware_info *qe_fw_info;
const struct qe_firmware *qe_fw;
const struct firmware *fw;
const char *filename;
int ret;
ret = of_property_read_string(np, "fsl,soft-qmc", &filename);
switch (ret) {
case 0:
break;
case -EINVAL:
/* fsl,soft-qmc property not set -> Simply do nothing */
return 0;
default:
dev_err(qmc->dev, "%pOF: failed to read fsl,soft-qmc\n",
np);
return ret;
}
qe_fw_info = qe_get_firmware_info();
if (qe_fw_info) {
if (!strstr(qe_fw_info->id, "Soft-QMC")) {
dev_err(qmc->dev, "Another Firmware is already loaded\n");
return -EALREADY;
}
dev_info(qmc->dev, "Firmware already loaded\n");
return 0;
}
dev_info(qmc->dev, "Using firmware %s\n", filename);
ret = request_firmware(&fw, filename, qmc->dev);
if (ret) {
dev_err(qmc->dev, "Failed to request firmware %s\n", filename);
return ret;
}
qe_fw = (const struct qe_firmware *)fw->data;
if (fw->size < sizeof(qe_fw->header) ||
be32_to_cpu(qe_fw->header.length) != fw->size) {
dev_err(qmc->dev, "Invalid firmware %s\n", filename);
ret = -EINVAL;
goto end;
}
ret = qe_upload_firmware(qe_fw);
if (ret) {
dev_err(qmc->dev, "Failed to load firmware %s\n", filename);
goto end;
}
ret = 0;
end:
release_firmware(fw);
return ret;
}
static int qmc_cpm1_init_resources(struct qmc *qmc, struct platform_device *pdev)
{
struct resource *res;
qmc->scc_regs = devm_platform_ioremap_resource_byname(pdev, "scc_regs");
if (IS_ERR(qmc->scc_regs))
return PTR_ERR(qmc->scc_regs);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "scc_pram");
if (!res)
return -EINVAL;
qmc->scc_pram_offset = res->start - get_immrbase();
qmc->scc_pram = devm_ioremap_resource(qmc->dev, res);
if (IS_ERR(qmc->scc_pram))
return PTR_ERR(qmc->scc_pram);
qmc->dpram = devm_platform_ioremap_resource_byname(pdev, "dpram");
if (IS_ERR(qmc->dpram))
return PTR_ERR(qmc->dpram);
return 0;
}
static int qmc_qe_init_resources(struct qmc *qmc, struct platform_device *pdev)
{
struct resource *res;
int ucc_num;
s32 info;
qmc->scc_regs = devm_platform_ioremap_resource_byname(pdev, "ucc_regs");
if (IS_ERR(qmc->scc_regs))
return PTR_ERR(qmc->scc_regs);
ucc_num = tsa_serial_get_num(qmc->tsa_serial);
if (ucc_num < 0)
return dev_err_probe(qmc->dev, ucc_num, "Failed to get UCC num\n");
qmc->qe_subblock = ucc_slow_get_qe_cr_subblock(ucc_num);
if (qmc->qe_subblock == QE_CR_SUBBLOCK_INVALID) {
dev_err(qmc->dev, "Unsupported ucc num %u\n", ucc_num);
return -EINVAL;
}
/* Allocate the 'Global Multichannel Parameters' and the
* 'Framer parameters' areas. The 'Framer parameters' area
* is located right after the 'Global Multichannel Parameters'.
* The 'Framer parameters' need 1 byte per receive and transmit
* channel. The maximum number of receive or transmit channel
* is 64. So reserve 2 * 64 bytes for the 'Framer parameters'.
*/
info = devm_qe_muram_alloc(qmc->dev, UCC_SLOW_PRAM_SIZE + 2 * 64,
ALIGNMENT_OF_UCC_SLOW_PRAM);
if (IS_ERR_VALUE(info)) {
dev_err(qmc->dev, "cannot allocate MURAM for PRAM");
return -ENOMEM;
}
if (!qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, qmc->qe_subblock,
QE_CR_PROTOCOL_UNSPECIFIED, info)) {
dev_err(qmc->dev, "QE_ASSIGN_PAGE_TO_DEVICE cmd failed");
return -EIO;
}
qmc->scc_pram = qe_muram_addr(info);
qmc->scc_pram_offset = info;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dpram");
if (!res)
return -EINVAL;
qmc->dpram_offset = res->start - qe_muram_dma(qe_muram_addr(0));
qmc->dpram = devm_ioremap_resource(qmc->dev, res);
if (IS_ERR(qmc->scc_pram))
return PTR_ERR(qmc->scc_pram);
return 0;
}
static int qmc_init_resources(struct qmc *qmc, struct platform_device *pdev)
{
return qmc_is_qe(qmc) ?
qmc_qe_init_resources(qmc, pdev) :
qmc_cpm1_init_resources(qmc, pdev);
}
static int qmc_cpm1_init_scc(struct qmc *qmc)
{
u32 val;
int ret;
/* Connect the serial (SCC) to TSA */
ret = tsa_serial_connect(qmc->tsa_serial);
if (ret)
return dev_err_probe(qmc->dev, ret, "Failed to connect TSA serial\n");
/* Init GMSR_H and GMSR_L registers */
val = SCC_GSMRH_CDS | SCC_GSMRH_CTSS | SCC_GSMRH_CDP | SCC_GSMRH_CTSP;
qmc_write32(qmc->scc_regs + SCC_GSMRH, val);
/* enable QMC mode */
qmc_write32(qmc->scc_regs + SCC_GSMRL, SCC_CPM1_GSMRL_MODE_QMC);
/* Disable and clear interrupts */
qmc_write16(qmc->scc_regs + SCC_SCCM, 0x0000);
qmc_write16(qmc->scc_regs + SCC_SCCE, 0x000F);
return 0;
}
static int qmc_qe_init_ucc(struct qmc *qmc)
{
u32 val;
int ret;
/* Set the UCC in slow mode */
qmc_write8(qmc->scc_regs + SCC_QE_UCC_GUEMR,
UCC_GUEMR_SET_RESERVED3 | UCC_GUEMR_MODE_SLOW_RX | UCC_GUEMR_MODE_SLOW_TX);
/* Connect the serial (UCC) to TSA */
ret = tsa_serial_connect(qmc->tsa_serial);
if (ret)
return dev_err_probe(qmc->dev, ret, "Failed to connect TSA serial\n");
/* Initialize the QMC tx startup addresses */
if (!qe_issue_cmd(QE_PUSHSCHED, qmc->qe_subblock,
QE_CR_PROTOCOL_UNSPECIFIED, 0x80)) {
dev_err(qmc->dev, "QE_CMD_PUSH_SCHED tx cmd failed");
ret = -EIO;
goto err_tsa_serial_disconnect;
}
/* Initialize the QMC rx startup addresses */
if (!qe_issue_cmd(QE_PUSHSCHED, qmc->qe_subblock | 0x00020000,
QE_CR_PROTOCOL_UNSPECIFIED, 0x82)) {
dev_err(qmc->dev, "QE_CMD_PUSH_SCHED rx cmd failed");
ret = -EIO;
goto err_tsa_serial_disconnect;
}
/* Re-init RXPTR and TXPTR with the content of RX_S_PTR and
* TX_S_PTR (RX_S_PTR and TX_S_PTR are initialized during
* qmc_setup_tsa() call
*/
val = qmc_read16(qmc->scc_pram + QMC_GBL_RX_S_PTR);
qmc_write16(qmc->scc_pram + QMC_GBL_RXPTR, val);
val = qmc_read16(qmc->scc_pram + QMC_GBL_TX_S_PTR);
qmc_write16(qmc->scc_pram + QMC_GBL_TXPTR, val);
/* Init GUMR_H and GUMR_L registers (SCC GSMR_H and GSMR_L) */
val = SCC_GSMRH_CDS | SCC_GSMRH_CTSS | SCC_GSMRH_CDP | SCC_GSMRH_CTSP |
SCC_GSMRH_TRX | SCC_GSMRH_TTX;
qmc_write32(qmc->scc_regs + SCC_GSMRH, val);
/* enable QMC mode */
qmc_write32(qmc->scc_regs + SCC_GSMRL, SCC_QE_GSMRL_MODE_QMC);
/* Disable and clear interrupts */
qmc_write16(qmc->scc_regs + SCC_SCCM, 0x0000);
qmc_write16(qmc->scc_regs + SCC_SCCE, 0x000F);
return 0;
err_tsa_serial_disconnect:
tsa_serial_disconnect(qmc->tsa_serial);
return ret;
}
static int qmc_init_xcc(struct qmc *qmc)
{
return qmc_is_qe(qmc) ?
qmc_qe_init_ucc(qmc) :
qmc_cpm1_init_scc(qmc);
}
static void qmc_exit_xcc(struct qmc *qmc)
{
/* Disconnect the serial from TSA */
tsa_serial_disconnect(qmc->tsa_serial);
}
static int qmc_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
unsigned int nb_chans;
struct qmc *qmc;
int irq;
int ret;
qmc = devm_kzalloc(&pdev->dev, sizeof(*qmc), GFP_KERNEL);
if (!qmc)
return -ENOMEM;
qmc->dev = &pdev->dev;
qmc->data = of_device_get_match_data(&pdev->dev);
if (!qmc->data) {
dev_err(qmc->dev, "Missing match data\n");
return -EINVAL;
}
INIT_LIST_HEAD(&qmc->chan_head);
qmc->tsa_serial = devm_tsa_serial_get_byphandle(qmc->dev, np, "fsl,tsa-serial");
if (IS_ERR(qmc->tsa_serial)) {
return dev_err_probe(qmc->dev, PTR_ERR(qmc->tsa_serial),
"Failed to get TSA serial\n");
}
ret = qmc_init_resources(qmc, pdev);
if (ret)
return ret;
if (qmc_is_qe(qmc)) {
ret = qmc_qe_soft_qmc_init(qmc, np);
if (ret)
return ret;
}
/* Parse channels informationss */
ret = qmc_of_parse_chans(qmc, np);
if (ret)
return ret;
nb_chans = qmc_nb_chans(qmc);
/*
* Allocate the buffer descriptor table
* 8 rx and 8 tx descriptors per channel
*/
qmc->bd_size = (nb_chans * (QMC_NB_TXBDS + QMC_NB_RXBDS)) * sizeof(cbd_t);
qmc->bd_table = dmam_alloc_coherent(qmc->dev, qmc->bd_size,
&qmc->bd_dma_addr, GFP_KERNEL);
if (!qmc->bd_table) {
dev_err(qmc->dev, "Failed to allocate bd table\n");
return -ENOMEM;
}
memset(qmc->bd_table, 0, qmc->bd_size);
qmc_write32(qmc->scc_pram + QMC_GBL_MCBASE, qmc->bd_dma_addr);
/* Allocate the interrupt table */
qmc->int_size = QMC_NB_INTS * sizeof(u16);
qmc->int_table = dmam_alloc_coherent(qmc->dev, qmc->int_size,
&qmc->int_dma_addr, GFP_KERNEL);
if (!qmc->int_table) {
dev_err(qmc->dev, "Failed to allocate interrupt table\n");
return -ENOMEM;
}
memset(qmc->int_table, 0, qmc->int_size);
qmc->int_curr = qmc->int_table;
qmc_write32(qmc->scc_pram + QMC_GBL_INTBASE, qmc->int_dma_addr);
qmc_write32(qmc->scc_pram + QMC_GBL_INTPTR, qmc->int_dma_addr);
/* Set MRBLR (valid for HDLC only) max MRU + max CRC */
qmc_write16(qmc->scc_pram + QMC_GBL_MRBLR, HDLC_MAX_MRU + 4);
qmc_write16(qmc->scc_pram + QMC_GBL_GRFTHR, 1);
qmc_write16(qmc->scc_pram + QMC_GBL_GRFCNT, 1);
qmc_write32(qmc->scc_pram + QMC_GBL_C_MASK32, 0xDEBB20E3);
qmc_write16(qmc->scc_pram + QMC_GBL_C_MASK16, 0xF0B8);
if (qmc_is_qe(qmc)) {
/* Zeroed the reserved area */
memset_io(qmc->scc_pram + QMC_QE_GBL_RSV_B0_START, 0,
QMC_QE_GBL_RSV_B0_SIZE);
qmc_write32(qmc->scc_pram + QMC_QE_GBL_GCSBASE, qmc->dpram_offset);
/* Init 'framer parameters' area and set the base addresses */
memset_io(qmc->scc_pram + UCC_SLOW_PRAM_SIZE, 0x01, 64);
memset_io(qmc->scc_pram + UCC_SLOW_PRAM_SIZE + 64, 0x01, 64);
qmc_write16(qmc->scc_pram + QMC_QE_GBL_RX_FRM_BASE,
qmc->scc_pram_offset + UCC_SLOW_PRAM_SIZE);
qmc_write16(qmc->scc_pram + QMC_QE_GBL_TX_FRM_BASE,
qmc->scc_pram_offset + UCC_SLOW_PRAM_SIZE + 64);
}
ret = qmc_init_tsa(qmc);
if (ret)
return ret;
qmc_write16(qmc->scc_pram + QMC_GBL_QMCSTATE, 0x8000);
ret = qmc_setup_chans(qmc);
if (ret)
return ret;
/* Init interrupts table */
ret = qmc_setup_ints(qmc);
if (ret)
return ret;
/* Init SCC (CPM1) or UCC (QE) */
ret = qmc_init_xcc(qmc);
if (ret)
return ret;
/* Set the irq handler */
irq = platform_get_irq(pdev, 0);
if (irq < 0)
goto err_exit_xcc;
ret = devm_request_irq(qmc->dev, irq, qmc_irq_handler, 0, "qmc", qmc);
if (ret < 0)
goto err_exit_xcc;
/* Enable interrupts */
qmc_write16(qmc->scc_regs + SCC_SCCM,
SCC_SCCE_IQOV | SCC_SCCE_GINT | SCC_SCCE_GUN | SCC_SCCE_GOV);
ret = qmc_finalize_chans(qmc);
if (ret < 0)
goto err_disable_intr;
/* Enable transmitter and receiver */
qmc_setbits32(qmc->scc_regs + SCC_GSMRL, SCC_GSMRL_ENR | SCC_GSMRL_ENT);
platform_set_drvdata(pdev, qmc);
/* Populate channel related devices */
ret = devm_of_platform_populate(qmc->dev);
if (ret)
goto err_disable_txrx;
return 0;
err_disable_txrx:
qmc_setbits32(qmc->scc_regs + SCC_GSMRL, 0);
err_disable_intr:
qmc_write16(qmc->scc_regs + SCC_SCCM, 0);
err_exit_xcc:
qmc_exit_xcc(qmc);
return ret;
}
static void qmc_remove(struct platform_device *pdev)
{
struct qmc *qmc = platform_get_drvdata(pdev);
/* Disable transmitter and receiver */
qmc_setbits32(qmc->scc_regs + SCC_GSMRL, 0);
/* Disable interrupts */
qmc_write16(qmc->scc_regs + SCC_SCCM, 0);
/* Exit SCC (CPM1) or UCC (QE) */
qmc_exit_xcc(qmc);
}
static const struct qmc_data qmc_data_cpm1 = {
.version = QMC_CPM1,
.tstate = 0x30000000,
.rstate = 0x31000000,
.zistate = 0x00000100,
.zdstate_hdlc = 0x00000080,
.zdstate_transp = 0x18000080,
.rpack = 0x00000000,
};
static const struct qmc_data qmc_data_qe = {
.version = QMC_QE,
.tstate = 0x30000000,
.rstate = 0x30000000,
.zistate = 0x00000200,
.zdstate_hdlc = 0x80FFFFE0,
.zdstate_transp = 0x003FFFE2,
.rpack = 0x80000000,
};
static const struct of_device_id qmc_id_table[] = {
#if IS_ENABLED(CONFIG_CPM1)
{ .compatible = "fsl,cpm1-scc-qmc", .data = &qmc_data_cpm1 },
#endif
#if IS_ENABLED(CONFIG_QUICC_ENGINE)
{ .compatible = "fsl,qe-ucc-qmc", .data = &qmc_data_qe },
#endif
{} /* sentinel */
};
MODULE_DEVICE_TABLE(of, qmc_id_table);
static struct platform_driver qmc_driver = {
.driver = {
.name = "fsl-qmc",
.of_match_table = of_match_ptr(qmc_id_table),
},
.probe = qmc_probe,
.remove_new = qmc_remove,
};
module_platform_driver(qmc_driver);
static struct qmc_chan *qmc_chan_get_from_qmc(struct device_node *qmc_np, unsigned int chan_index)
{
struct platform_device *pdev;
struct qmc_chan *qmc_chan;
struct qmc *qmc;
if (!of_match_node(qmc_driver.driver.of_match_table, qmc_np))
return ERR_PTR(-EINVAL);
pdev = of_find_device_by_node(qmc_np);
if (!pdev)
return ERR_PTR(-ENODEV);
qmc = platform_get_drvdata(pdev);
if (!qmc) {
platform_device_put(pdev);
return ERR_PTR(-EPROBE_DEFER);
}
if (chan_index >= ARRAY_SIZE(qmc->chans)) {
platform_device_put(pdev);
return ERR_PTR(-EINVAL);
}
qmc_chan = qmc->chans[chan_index];
if (!qmc_chan) {
platform_device_put(pdev);
return ERR_PTR(-ENOENT);
}
return qmc_chan;
}
int qmc_chan_count_phandles(struct device_node *np, const char *phandles_name)
{
int count;
/* phandles are fixed args phandles with one arg */
count = of_count_phandle_with_args(np, phandles_name, NULL);
if (count < 0)
return count;
return count / 2;
}
EXPORT_SYMBOL(qmc_chan_count_phandles);
struct qmc_chan *qmc_chan_get_byphandles_index(struct device_node *np,
const char *phandles_name,
int index)
{
struct of_phandle_args out_args;
struct qmc_chan *qmc_chan;
int ret;
ret = of_parse_phandle_with_fixed_args(np, phandles_name, 1, index,
&out_args);
if (ret < 0)
return ERR_PTR(ret);
if (out_args.args_count != 1) {
of_node_put(out_args.np);
return ERR_PTR(-EINVAL);
}
qmc_chan = qmc_chan_get_from_qmc(out_args.np, out_args.args[0]);
of_node_put(out_args.np);
return qmc_chan;
}
EXPORT_SYMBOL(qmc_chan_get_byphandles_index);
struct qmc_chan *qmc_chan_get_bychild(struct device_node *np)
{
struct device_node *qmc_np;
u32 chan_index;
int ret;
qmc_np = np->parent;
ret = of_property_read_u32(np, "reg", &chan_index);
if (ret)
return ERR_PTR(-EINVAL);
return qmc_chan_get_from_qmc(qmc_np, chan_index);
}
EXPORT_SYMBOL(qmc_chan_get_bychild);
void qmc_chan_put(struct qmc_chan *chan)
{
put_device(chan->qmc->dev);
}
EXPORT_SYMBOL(qmc_chan_put);
static void devm_qmc_chan_release(struct device *dev, void *res)
{
struct qmc_chan **qmc_chan = res;
qmc_chan_put(*qmc_chan);
}
struct qmc_chan *devm_qmc_chan_get_byphandles_index(struct device *dev,
struct device_node *np,
const char *phandles_name,
int index)
{
struct qmc_chan *qmc_chan;
struct qmc_chan **dr;
dr = devres_alloc(devm_qmc_chan_release, sizeof(*dr), GFP_KERNEL);
if (!dr)
return ERR_PTR(-ENOMEM);
qmc_chan = qmc_chan_get_byphandles_index(np, phandles_name, index);
if (!IS_ERR(qmc_chan)) {
*dr = qmc_chan;
devres_add(dev, dr);
} else {
devres_free(dr);
}
return qmc_chan;
}
EXPORT_SYMBOL(devm_qmc_chan_get_byphandles_index);
struct qmc_chan *devm_qmc_chan_get_bychild(struct device *dev,
struct device_node *np)
{
struct qmc_chan *qmc_chan;
struct qmc_chan **dr;
dr = devres_alloc(devm_qmc_chan_release, sizeof(*dr), GFP_KERNEL);
if (!dr)
return ERR_PTR(-ENOMEM);
qmc_chan = qmc_chan_get_bychild(np);
if (!IS_ERR(qmc_chan)) {
*dr = qmc_chan;
devres_add(dev, dr);
} else {
devres_free(dr);
}
return qmc_chan;
}
EXPORT_SYMBOL(devm_qmc_chan_get_bychild);
MODULE_AUTHOR("Herve Codina <[email protected]>");
MODULE_DESCRIPTION("CPM/QE QMC driver");
MODULE_LICENSE("GPL");