// SPDX-License-Identifier: GPL-2.0
/*
* TSA driver
*
* Copyright 2022 CS GROUP France
*
* Author: Herve Codina <[email protected]>
*/
#include "tsa.h"
#include <dt-bindings/soc/cpm1-fsl,tsa.h>
#include <dt-bindings/soc/qe-fsl,tsa.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <soc/fsl/qe/ucc.h>
/* TSA SI RAM routing tables entry (CPM1) */
#define TSA_CPM1_SIRAM_ENTRY_LAST BIT(16)
#define TSA_CPM1_SIRAM_ENTRY_BYTE BIT(17)
#define TSA_CPM1_SIRAM_ENTRY_CNT_MASK GENMASK(21, 18)
#define TSA_CPM1_SIRAM_ENTRY_CNT(x) FIELD_PREP(TSA_CPM1_SIRAM_ENTRY_CNT_MASK, x)
#define TSA_CPM1_SIRAM_ENTRY_CSEL_MASK GENMASK(24, 22)
#define TSA_CPM1_SIRAM_ENTRY_CSEL_NU FIELD_PREP_CONST(TSA_CPM1_SIRAM_ENTRY_CSEL_MASK, 0x0)
#define TSA_CPM1_SIRAM_ENTRY_CSEL_SCC2 FIELD_PREP_CONST(TSA_CPM1_SIRAM_ENTRY_CSEL_MASK, 0x2)
#define TSA_CPM1_SIRAM_ENTRY_CSEL_SCC3 FIELD_PREP_CONST(TSA_CPM1_SIRAM_ENTRY_CSEL_MASK, 0x3)
#define TSA_CPM1_SIRAM_ENTRY_CSEL_SCC4 FIELD_PREP_CONST(TSA_CPM1_SIRAM_ENTRY_CSEL_MASK, 0x4)
#define TSA_CPM1_SIRAM_ENTRY_CSEL_SMC1 FIELD_PREP_CONST(TSA_CPM1_SIRAM_ENTRY_CSEL_MASK, 0x5)
#define TSA_CPM1_SIRAM_ENTRY_CSEL_SMC2 FIELD_PREP_CONST(TSA_CPM1_SIRAM_ENTRY_CSEL_MASK, 0x6)
/* TSA SI RAM routing tables entry (QE) */
#define TSA_QE_SIRAM_ENTRY_LAST BIT(0)
#define TSA_QE_SIRAM_ENTRY_BYTE BIT(1)
#define TSA_QE_SIRAM_ENTRY_CNT_MASK GENMASK(4, 2)
#define TSA_QE_SIRAM_ENTRY_CNT(x) FIELD_PREP(TSA_QE_SIRAM_ENTRY_CNT_MASK, x)
#define TSA_QE_SIRAM_ENTRY_CSEL_MASK GENMASK(8, 5)
#define TSA_QE_SIRAM_ENTRY_CSEL_NU FIELD_PREP_CONST(TSA_QE_SIRAM_ENTRY_CSEL_MASK, 0x0)
#define TSA_QE_SIRAM_ENTRY_CSEL_UCC5 FIELD_PREP_CONST(TSA_QE_SIRAM_ENTRY_CSEL_MASK, 0x1)
#define TSA_QE_SIRAM_ENTRY_CSEL_UCC1 FIELD_PREP_CONST(TSA_QE_SIRAM_ENTRY_CSEL_MASK, 0x9)
#define TSA_QE_SIRAM_ENTRY_CSEL_UCC2 FIELD_PREP_CONST(TSA_QE_SIRAM_ENTRY_CSEL_MASK, 0xa)
#define TSA_QE_SIRAM_ENTRY_CSEL_UCC3 FIELD_PREP_CONST(TSA_QE_SIRAM_ENTRY_CSEL_MASK, 0xb)
#define TSA_QE_SIRAM_ENTRY_CSEL_UCC4 FIELD_PREP_CONST(TSA_QE_SIRAM_ENTRY_CSEL_MASK, 0xc)
/*
* SI mode register :
* - CPM1: 32bit register split in 2*16bit (16bit TDM)
* - QE: 4x16bit registers, one per TDM
*/
#define TSA_CPM1_SIMODE 0x00
#define TSA_QE_SIAMR 0x00
#define TSA_QE_SIBMR 0x02
#define TSA_QE_SICMR 0x04
#define TSA_QE_SIDMR 0x06
#define TSA_CPM1_SIMODE_SMC2 BIT(31)
#define TSA_CPM1_SIMODE_SMC1 BIT(15)
#define TSA_CPM1_SIMODE_TDMA_MASK GENMASK(11, 0)
#define TSA_CPM1_SIMODE_TDMA(x) FIELD_PREP(TSA_CPM1_SIMODE_TDMA_MASK, x)
#define TSA_CPM1_SIMODE_TDMB_MASK GENMASK(27, 16)
#define TSA_CPM1_SIMODE_TDMB(x) FIELD_PREP(TSA_CPM1_SIMODE_TDMB_MASK, x)
#define TSA_QE_SIMODE_TDM_SAD_MASK GENMASK(15, 12)
#define TSA_QE_SIMODE_TDM_SAD(x) FIELD_PREP(TSA_QE_SIMODE_TDM_SAD_MASK, x)
#define TSA_CPM1_SIMODE_TDM_MASK GENMASK(11, 0)
#define TSA_SIMODE_TDM_SDM_MASK GENMASK(11, 10)
#define TSA_SIMODE_TDM_SDM_NORM FIELD_PREP_CONST(TSA_SIMODE_TDM_SDM_MASK, 0x0)
#define TSA_SIMODE_TDM_SDM_ECHO FIELD_PREP_CONST(TSA_SIMODE_TDM_SDM_MASK, 0x1)
#define TSA_SIMODE_TDM_SDM_INTL_LOOP FIELD_PREP_CONST(TSA_SIMODE_TDM_SDM_MASK, 0x2)
#define TSA_SIMODE_TDM_SDM_LOOP_CTRL FIELD_PREP_CONST(TSA_SIMODE_TDM_SDM_MASK, 0x3)
#define TSA_SIMODE_TDM_RFSD_MASK GENMASK(9, 8)
#define TSA_SIMODE_TDM_RFSD(x) FIELD_PREP(TSA_SIMODE_TDM_RFSD_MASK, x)
#define TSA_SIMODE_TDM_DSC BIT(7)
#define TSA_SIMODE_TDM_CRT BIT(6)
#define TSA_CPM1_SIMODE_TDM_STZ BIT(5) /* bit 5: STZ in CPM1 */
#define TSA_QE_SIMODE_TDM_SL BIT(5) /* bit 5: SL in QE */
#define TSA_SIMODE_TDM_CE BIT(4)
#define TSA_SIMODE_TDM_FE BIT(3)
#define TSA_SIMODE_TDM_GM BIT(2)
#define TSA_SIMODE_TDM_TFSD_MASK GENMASK(1, 0)
#define TSA_SIMODE_TDM_TFSD(x) FIELD_PREP(TSA_SIMODE_TDM_TFSD_MASK, x)
/* CPM SI global mode register (8 bits) */
#define TSA_CPM1_SIGMR 0x04
#define TSA_CPM1_SIGMR_ENB BIT(3)
#define TSA_CPM1_SIGMR_ENA BIT(2)
#define TSA_CPM1_SIGMR_RDM_MASK GENMASK(1, 0)
#define TSA_CPM1_SIGMR_RDM_STATIC_TDMA FIELD_PREP_CONST(TSA_CPM1_SIGMR_RDM_MASK, 0x0)
#define TSA_CPM1_SIGMR_RDM_DYN_TDMA FIELD_PREP_CONST(TSA_CPM1_SIGMR_RDM_MASK, 0x1)
#define TSA_CPM1_SIGMR_RDM_STATIC_TDMAB FIELD_PREP_CONST(TSA_CPM1_SIGMR_RDM_MASK, 0x2)
#define TSA_CPM1_SIGMR_RDM_DYN_TDMAB FIELD_PREP_CONST(TSA_CPM1_SIGMR_RDM_MASK, 0x3)
/* QE SI global mode register high (8 bits) */
#define TSA_QE_SIGLMRH 0x08
#define TSA_QE_SIGLMRH_END BIT(3)
#define TSA_QE_SIGLMRH_ENC BIT(2)
#define TSA_QE_SIGLMRH_ENB BIT(1)
#define TSA_QE_SIGLMRH_ENA BIT(0)
/* SI clock route register (32 bits) */
#define TSA_CPM1_SICR 0x0C
#define TSA_CPM1_SICR_SCC2_MASK GENMASK(15, 8)
#define TSA_CPM1_SICR_SCC2(x) FIELD_PREP(TSA_CPM1_SICR_SCC2_MASK, x)
#define TSA_CPM1_SICR_SCC3_MASK GENMASK(23, 16)
#define TSA_CPM1_SICR_SCC3(x) FIELD_PREP(TSA_CPM1_SICR_SCC3_MASK, x)
#define TSA_CPM1_SICR_SCC4_MASK GENMASK(31, 24)
#define TSA_CPM1_SICR_SCC4(x) FIELD_PREP(TSA_CPM1_SICR_SCC4_MASK, x)
#define TSA_CPM1_SICR_SCC_MASK GENMASK(7, 0)
#define TSA_CPM1_SICR_SCC_GRX BIT(7)
#define TSA_CPM1_SICR_SCC_SCX_TSA BIT(6)
#define TSA_CPM1_SICR_SCC_RXCS_MASK GENMASK(5, 3)
#define TSA_CPM1_SICR_SCC_RXCS_BRG1 FIELD_PREP_CONST(TSA_CPM1_SICR_SCC_RXCS_MASK, 0x0)
#define TSA_CPM1_SICR_SCC_RXCS_BRG2 FIELD_PREP_CONST(TSA_CPM1_SICR_SCC_RXCS_MASK, 0x1)
#define TSA_CPM1_SICR_SCC_RXCS_BRG3 FIELD_PREP_CONST(TSA_CPM1_SICR_SCC_RXCS_MASK, 0x2)
#define TSA_CPM1_SICR_SCC_RXCS_BRG4 FIELD_PREP_CONST(TSA_CPM1_SICR_SCC_RXCS_MASK, 0x3)
#define TSA_CPM1_SICR_SCC_RXCS_CLK15 FIELD_PREP_CONST(TSA_CPM1_SICR_SCC_RXCS_MASK, 0x4)
#define TSA_CPM1_SICR_SCC_RXCS_CLK26 FIELD_PREP_CONST(TSA_CPM1_SICR_SCC_RXCS_MASK, 0x5)
#define TSA_CPM1_SICR_SCC_RXCS_CLK37 FIELD_PREP_CONST(TSA_CPM1_SICR_SCC_RXCS_MASK, 0x6)
#define TSA_CPM1_SICR_SCC_RXCS_CLK48 FIELD_PREP_CONST(TSA_CPM1_SICR_SCC_RXCS_MASK, 0x7)
#define TSA_CPM1_SICR_SCC_TXCS_MASK GENMASK(2, 0)
#define TSA_CPM1_SICR_SCC_TXCS_BRG1 FIELD_PREP_CONST(TSA_CPM1_SICR_SCC_TXCS_MASK, 0x0)
#define TSA_CPM1_SICR_SCC_TXCS_BRG2 FIELD_PREP_CONST(TSA_CPM1_SICR_SCC_TXCS_MASK, 0x1)
#define TSA_CPM1_SICR_SCC_TXCS_BRG3 FIELD_PREP_CONST(TSA_CPM1_SICR_SCC_TXCS_MASK, 0x2)
#define TSA_CPM1_SICR_SCC_TXCS_BRG4 FIELD_PREP_CONST(TSA_CPM1_SICR_SCC_TXCS_MASK, 0x3)
#define TSA_CPM1_SICR_SCC_TXCS_CLK15 FIELD_PREP_CONST(TSA_CPM1_SICR_SCC_TXCS_MASK, 0x4)
#define TSA_CPM1_SICR_SCC_TXCS_CLK26 FIELD_PREP_CONST(TSA_CPM1_SICR_SCC_TXCS_MASK, 0x5)
#define TSA_CPM1_SICR_SCC_TXCS_CLK37 FIELD_PREP_CONST(TSA_CPM1_SICR_SCC_TXCS_MASK, 0x6)
#define TSA_CPM1_SICR_SCC_TXCS_CLK48 FIELD_PREP_CONST(TSA_CPM1_SICR_SCC_TXCS_MASK, 0x7)
struct tsa_entries_area {
void __iomem *entries_start;
void __iomem *entries_next;
void __iomem *last_entry;
};
struct tsa_tdm {
bool is_enable;
struct clk *l1rclk_clk;
struct clk *l1rsync_clk;
struct clk *l1tclk_clk;
struct clk *l1tsync_clk;
u32 simode_tdm;
};
#define TSA_TDMA 0
#define TSA_TDMB 1
#define TSA_TDMC 2 /* QE implementation only */
#define TSA_TDMD 3 /* QE implementation only */
enum tsa_version {
TSA_CPM1 = 1, /* Avoid 0 value */
TSA_QE,
};
struct tsa {
struct device *dev;
void __iomem *si_regs;
void __iomem *si_ram;
resource_size_t si_ram_sz;
spinlock_t lock; /* Lock for read/modify/write sequence */
enum tsa_version version;
int tdms; /* TSA_TDMx ORed */
#if IS_ENABLED(CONFIG_QUICC_ENGINE)
struct tsa_tdm tdm[4]; /* TDMa, TDMb, TDMc and TDMd */
#else
struct tsa_tdm tdm[2]; /* TDMa and TDMb */
#endif
/* Same number of serials for CPM1 and QE:
* CPM1: NU, 3 SCCs and 2 SMCs
* QE: NU and 5 UCCs
*/
struct tsa_serial {
unsigned int id;
struct tsa_serial_info info;
} serials[6];
};
static inline struct tsa *tsa_serial_get_tsa(struct tsa_serial *tsa_serial)
{
/* The serials table is indexed by the serial id */
return container_of(tsa_serial, struct tsa, serials[tsa_serial->id]);
}
static inline void tsa_write32(void __iomem *addr, u32 val)
{
iowrite32be(val, addr);
}
static inline void tsa_write16(void __iomem *addr, u16 val)
{
iowrite16be(val, addr);
}
static inline void tsa_write8(void __iomem *addr, u8 val)
{
iowrite8(val, addr);
}
static inline u32 tsa_read32(void __iomem *addr)
{
return ioread32be(addr);
}
static inline u16 tsa_read16(void __iomem *addr)
{
return ioread16be(addr);
}
static inline void tsa_clrbits32(void __iomem *addr, u32 clr)
{
tsa_write32(addr, tsa_read32(addr) & ~clr);
}
static inline void tsa_clrbits16(void __iomem *addr, u16 clr)
{
tsa_write16(addr, tsa_read16(addr) & ~clr);
}
static inline void tsa_clrsetbits32(void __iomem *addr, u32 clr, u32 set)
{
tsa_write32(addr, (tsa_read32(addr) & ~clr) | set);
}
static bool tsa_is_qe(const struct tsa *tsa)
{
if (IS_ENABLED(CONFIG_QUICC_ENGINE) && IS_ENABLED(CONFIG_CPM))
return tsa->version == TSA_QE;
return IS_ENABLED(CONFIG_QUICC_ENGINE);
}
static int tsa_qe_serial_get_num(struct tsa_serial *tsa_serial)
{
struct tsa *tsa = tsa_serial_get_tsa(tsa_serial);
switch (tsa_serial->id) {
case FSL_QE_TSA_UCC1: return 0;
case FSL_QE_TSA_UCC2: return 1;
case FSL_QE_TSA_UCC3: return 2;
case FSL_QE_TSA_UCC4: return 3;
case FSL_QE_TSA_UCC5: return 4;
default:
break;
}
dev_err(tsa->dev, "Unsupported serial id %u\n", tsa_serial->id);
return -EINVAL;
}
int tsa_serial_get_num(struct tsa_serial *tsa_serial)
{
struct tsa *tsa = tsa_serial_get_tsa(tsa_serial);
/*
* There is no need to get the serial num out of the TSA driver in the
* CPM case.
* Further more, in CPM, we can have 2 types of serial SCCs and FCCs.
* What kind of numbering to use that can be global to both SCCs and
* FCCs ?
*/
return tsa_is_qe(tsa) ? tsa_qe_serial_get_num(tsa_serial) : -EOPNOTSUPP;
}
EXPORT_SYMBOL(tsa_serial_get_num);
static int tsa_cpm1_serial_connect(struct tsa_serial *tsa_serial, bool connect)
{
struct tsa *tsa = tsa_serial_get_tsa(tsa_serial);
unsigned long flags;
u32 clear;
u32 set;
switch (tsa_serial->id) {
case FSL_CPM_TSA_SCC2:
clear = TSA_CPM1_SICR_SCC2(TSA_CPM1_SICR_SCC_MASK);
set = TSA_CPM1_SICR_SCC2(TSA_CPM1_SICR_SCC_SCX_TSA);
break;
case FSL_CPM_TSA_SCC3:
clear = TSA_CPM1_SICR_SCC3(TSA_CPM1_SICR_SCC_MASK);
set = TSA_CPM1_SICR_SCC3(TSA_CPM1_SICR_SCC_SCX_TSA);
break;
case FSL_CPM_TSA_SCC4:
clear = TSA_CPM1_SICR_SCC4(TSA_CPM1_SICR_SCC_MASK);
set = TSA_CPM1_SICR_SCC4(TSA_CPM1_SICR_SCC_SCX_TSA);
break;
default:
dev_err(tsa->dev, "Unsupported serial id %u\n", tsa_serial->id);
return -EINVAL;
}
spin_lock_irqsave(&tsa->lock, flags);
tsa_clrsetbits32(tsa->si_regs + TSA_CPM1_SICR, clear,
connect ? set : 0);
spin_unlock_irqrestore(&tsa->lock, flags);
return 0;
}
static int tsa_qe_serial_connect(struct tsa_serial *tsa_serial, bool connect)
{
struct tsa *tsa = tsa_serial_get_tsa(tsa_serial);
unsigned long flags;
int ucc_num;
int ret;
ucc_num = tsa_qe_serial_get_num(tsa_serial);
if (ucc_num < 0)
return ucc_num;
spin_lock_irqsave(&tsa->lock, flags);
ret = ucc_set_qe_mux_tsa(ucc_num, connect);
spin_unlock_irqrestore(&tsa->lock, flags);
if (ret) {
dev_err(tsa->dev, "Connect serial id %u to TSA failed (%d)\n",
tsa_serial->id, ret);
return ret;
}
return 0;
}
int tsa_serial_connect(struct tsa_serial *tsa_serial)
{
struct tsa *tsa = tsa_serial_get_tsa(tsa_serial);
return tsa_is_qe(tsa) ?
tsa_qe_serial_connect(tsa_serial, true) :
tsa_cpm1_serial_connect(tsa_serial, true);
}
EXPORT_SYMBOL(tsa_serial_connect);
int tsa_serial_disconnect(struct tsa_serial *tsa_serial)
{
struct tsa *tsa = tsa_serial_get_tsa(tsa_serial);
return tsa_is_qe(tsa) ?
tsa_qe_serial_connect(tsa_serial, false) :
tsa_cpm1_serial_connect(tsa_serial, false);
}
EXPORT_SYMBOL(tsa_serial_disconnect);
int tsa_serial_get_info(struct tsa_serial *tsa_serial, struct tsa_serial_info *info)
{
memcpy(info, &tsa_serial->info, sizeof(*info));
return 0;
}
EXPORT_SYMBOL(tsa_serial_get_info);
static void tsa_cpm1_init_entries_area(struct tsa *tsa, struct tsa_entries_area *area,
u32 tdms, u32 tdm_id, bool is_rx)
{
resource_size_t quarter;
resource_size_t half;
quarter = tsa->si_ram_sz / 4;
half = tsa->si_ram_sz / 2;
if (tdms == BIT(TSA_TDMA)) {
/* Only TDMA */
if (is_rx) {
/* First half of si_ram */
area->entries_start = tsa->si_ram;
area->entries_next = area->entries_start + half;
area->last_entry = NULL;
} else {
/* Second half of si_ram */
area->entries_start = tsa->si_ram + half;
area->entries_next = area->entries_start + half;
area->last_entry = NULL;
}
} else {
/* Only TDMB or both TDMs */
if (tdm_id == TSA_TDMA) {
if (is_rx) {
/* First half of first half of si_ram */
area->entries_start = tsa->si_ram;
area->entries_next = area->entries_start + quarter;
area->last_entry = NULL;
} else {
/* First half of second half of si_ram */
area->entries_start = tsa->si_ram + (2 * quarter);
area->entries_next = area->entries_start + quarter;
area->last_entry = NULL;
}
} else {
if (is_rx) {
/* Second half of first half of si_ram */
area->entries_start = tsa->si_ram + quarter;
area->entries_next = area->entries_start + quarter;
area->last_entry = NULL;
} else {
/* Second half of second half of si_ram */
area->entries_start = tsa->si_ram + (3 * quarter);
area->entries_next = area->entries_start + quarter;
area->last_entry = NULL;
}
}
}
}
static void tsa_qe_init_entries_area(struct tsa *tsa, struct tsa_entries_area *area,
u32 tdms, u32 tdm_id, bool is_rx)
{
resource_size_t eighth;
resource_size_t half;
eighth = tsa->si_ram_sz / 8;
half = tsa->si_ram_sz / 2;
/*
* One half of the SI RAM used for Tx, the other one for Rx.
* In each half, 1/4 of the area is assigned to each TDM.
*/
if (is_rx) {
/* Rx: Second half of si_ram */
area->entries_start = tsa->si_ram + half + (eighth * tdm_id);
area->entries_next = area->entries_start + eighth;
area->last_entry = NULL;
} else {
/* Tx: First half of si_ram */
area->entries_start = tsa->si_ram + (eighth * tdm_id);
area->entries_next = area->entries_start + eighth;
area->last_entry = NULL;
}
}
static void tsa_init_entries_area(struct tsa *tsa, struct tsa_entries_area *area,
u32 tdms, u32 tdm_id, bool is_rx)
{
if (tsa_is_qe(tsa))
tsa_qe_init_entries_area(tsa, area, tdms, tdm_id, is_rx);
else
tsa_cpm1_init_entries_area(tsa, area, tdms, tdm_id, is_rx);
}
static const char *tsa_cpm1_serial_id2name(struct tsa *tsa, u32 serial_id)
{
switch (serial_id) {
case FSL_CPM_TSA_NU: return "Not used";
case FSL_CPM_TSA_SCC2: return "SCC2";
case FSL_CPM_TSA_SCC3: return "SCC3";
case FSL_CPM_TSA_SCC4: return "SCC4";
case FSL_CPM_TSA_SMC1: return "SMC1";
case FSL_CPM_TSA_SMC2: return "SMC2";
default:
break;
}
return NULL;
}
static const char *tsa_qe_serial_id2name(struct tsa *tsa, u32 serial_id)
{
switch (serial_id) {
case FSL_QE_TSA_NU: return "Not used";
case FSL_QE_TSA_UCC1: return "UCC1";
case FSL_QE_TSA_UCC2: return "UCC2";
case FSL_QE_TSA_UCC3: return "UCC3";
case FSL_QE_TSA_UCC4: return "UCC4";
case FSL_QE_TSA_UCC5: return "UCC5";
default:
break;
}
return NULL;
}
static const char *tsa_serial_id2name(struct tsa *tsa, u32 serial_id)
{
return tsa_is_qe(tsa) ?
tsa_qe_serial_id2name(tsa, serial_id) :
tsa_cpm1_serial_id2name(tsa, serial_id);
}
static u32 tsa_cpm1_serial_id2csel(struct tsa *tsa, u32 serial_id)
{
switch (serial_id) {
case FSL_CPM_TSA_SCC2: return TSA_CPM1_SIRAM_ENTRY_CSEL_SCC2;
case FSL_CPM_TSA_SCC3: return TSA_CPM1_SIRAM_ENTRY_CSEL_SCC3;
case FSL_CPM_TSA_SCC4: return TSA_CPM1_SIRAM_ENTRY_CSEL_SCC4;
case FSL_CPM_TSA_SMC1: return TSA_CPM1_SIRAM_ENTRY_CSEL_SMC1;
case FSL_CPM_TSA_SMC2: return TSA_CPM1_SIRAM_ENTRY_CSEL_SMC2;
default:
break;
}
return TSA_CPM1_SIRAM_ENTRY_CSEL_NU;
}
static int tsa_cpm1_add_entry(struct tsa *tsa, struct tsa_entries_area *area,
u32 count, u32 serial_id)
{
void __iomem *addr;
u32 left;
u32 val;
u32 cnt;
u32 nb;
addr = area->last_entry ? area->last_entry + 4 : area->entries_start;
nb = DIV_ROUND_UP(count, 8);
if ((addr + (nb * 4)) > area->entries_next) {
dev_err(tsa->dev, "si ram area full\n");
return -ENOSPC;
}
if (area->last_entry) {
/* Clear last flag */
tsa_clrbits32(area->last_entry, TSA_CPM1_SIRAM_ENTRY_LAST);
}
left = count;
while (left) {
val = TSA_CPM1_SIRAM_ENTRY_BYTE | tsa_cpm1_serial_id2csel(tsa, serial_id);
if (left > 16) {
cnt = 16;
} else {
cnt = left;
val |= TSA_CPM1_SIRAM_ENTRY_LAST;
area->last_entry = addr;
}
val |= TSA_CPM1_SIRAM_ENTRY_CNT(cnt - 1);
tsa_write32(addr, val);
addr += 4;
left -= cnt;
}
return 0;
}
static u32 tsa_qe_serial_id2csel(struct tsa *tsa, u32 serial_id)
{
switch (serial_id) {
case FSL_QE_TSA_UCC1: return TSA_QE_SIRAM_ENTRY_CSEL_UCC1;
case FSL_QE_TSA_UCC2: return TSA_QE_SIRAM_ENTRY_CSEL_UCC2;
case FSL_QE_TSA_UCC3: return TSA_QE_SIRAM_ENTRY_CSEL_UCC3;
case FSL_QE_TSA_UCC4: return TSA_QE_SIRAM_ENTRY_CSEL_UCC4;
case FSL_QE_TSA_UCC5: return TSA_QE_SIRAM_ENTRY_CSEL_UCC5;
default:
break;
}
return TSA_QE_SIRAM_ENTRY_CSEL_NU;
}
static int tsa_qe_add_entry(struct tsa *tsa, struct tsa_entries_area *area,
u32 count, u32 serial_id)
{
void __iomem *addr;
u32 left;
u32 val;
u32 cnt;
u32 nb;
addr = area->last_entry ? area->last_entry + 2 : area->entries_start;
nb = DIV_ROUND_UP(count, 8);
if ((addr + (nb * 2)) > area->entries_next) {
dev_err(tsa->dev, "si ram area full\n");
return -ENOSPC;
}
if (area->last_entry) {
/* Clear last flag */
tsa_clrbits16(area->last_entry, TSA_QE_SIRAM_ENTRY_LAST);
}
left = count;
while (left) {
val = TSA_QE_SIRAM_ENTRY_BYTE | tsa_qe_serial_id2csel(tsa, serial_id);
if (left > 8) {
cnt = 8;
} else {
cnt = left;
val |= TSA_QE_SIRAM_ENTRY_LAST;
area->last_entry = addr;
}
val |= TSA_QE_SIRAM_ENTRY_CNT(cnt - 1);
tsa_write16(addr, val);
addr += 2;
left -= cnt;
}
return 0;
}
static int tsa_add_entry(struct tsa *tsa, struct tsa_entries_area *area,
u32 count, u32 serial_id)
{
return tsa_is_qe(tsa) ?
tsa_qe_add_entry(tsa, area, count, serial_id) :
tsa_cpm1_add_entry(tsa, area, count, serial_id);
}
static int tsa_of_parse_tdm_route(struct tsa *tsa, struct device_node *tdm_np,
u32 tdms, u32 tdm_id, bool is_rx)
{
struct tsa_entries_area area;
const char *route_name;
u32 serial_id;
int len, i;
u32 count;
const char *serial_name;
struct tsa_serial_info *serial_info;
struct tsa_tdm *tdm;
int ret;
u32 ts;
route_name = is_rx ? "fsl,rx-ts-routes" : "fsl,tx-ts-routes";
len = of_property_count_u32_elems(tdm_np, route_name);
if (len < 0) {
dev_err(tsa->dev, "%pOF: failed to read %s\n", tdm_np, route_name);
return len;
}
if (len % 2 != 0) {
dev_err(tsa->dev, "%pOF: wrong %s format\n", tdm_np, route_name);
return -EINVAL;
}
tsa_init_entries_area(tsa, &area, tdms, tdm_id, is_rx);
ts = 0;
for (i = 0; i < len; i += 2) {
of_property_read_u32_index(tdm_np, route_name, i, &count);
of_property_read_u32_index(tdm_np, route_name, i + 1, &serial_id);
if (serial_id >= ARRAY_SIZE(tsa->serials)) {
dev_err(tsa->dev, "%pOF: invalid serial id (%u)\n",
tdm_np, serial_id);
return -EINVAL;
}
serial_name = tsa_serial_id2name(tsa, serial_id);
if (!serial_name) {
dev_err(tsa->dev, "%pOF: unsupported serial id (%u)\n",
tdm_np, serial_id);
return -EINVAL;
}
dev_dbg(tsa->dev, "tdm_id=%u, %s ts %u..%u -> %s\n",
tdm_id, route_name, ts, ts + count - 1, serial_name);
ts += count;
ret = tsa_add_entry(tsa, &area, count, serial_id);
if (ret)
return ret;
serial_info = &tsa->serials[serial_id].info;
tdm = &tsa->tdm[tdm_id];
if (is_rx) {
serial_info->rx_fs_rate = clk_get_rate(tdm->l1rsync_clk);
serial_info->rx_bit_rate = clk_get_rate(tdm->l1rclk_clk);
serial_info->nb_rx_ts += count;
} else {
serial_info->tx_fs_rate = tdm->l1tsync_clk ?
clk_get_rate(tdm->l1tsync_clk) :
clk_get_rate(tdm->l1rsync_clk);
serial_info->tx_bit_rate = tdm->l1tclk_clk ?
clk_get_rate(tdm->l1tclk_clk) :
clk_get_rate(tdm->l1rclk_clk);
serial_info->nb_tx_ts += count;
}
}
return 0;
}
static inline int tsa_of_parse_tdm_rx_route(struct tsa *tsa,
struct device_node *tdm_np,
u32 tdms, u32 tdm_id)
{
return tsa_of_parse_tdm_route(tsa, tdm_np, tdms, tdm_id, true);
}
static inline int tsa_of_parse_tdm_tx_route(struct tsa *tsa,
struct device_node *tdm_np,
u32 tdms, u32 tdm_id)
{
return tsa_of_parse_tdm_route(tsa, tdm_np, tdms, tdm_id, false);
}
static int tsa_of_parse_tdms(struct tsa *tsa, struct device_node *np)
{
struct device_node *tdm_np;
struct tsa_tdm *tdm;
struct clk *clk;
u32 tdm_id, val;
int ret;
int i;
tsa->tdms = 0;
for (i = 0; i < ARRAY_SIZE(tsa->tdm); i++)
tsa->tdm[i].is_enable = false;
for_each_available_child_of_node(np, tdm_np) {
ret = of_property_read_u32(tdm_np, "reg", &tdm_id);
if (ret) {
dev_err(tsa->dev, "%pOF: failed to read reg\n", tdm_np);
of_node_put(tdm_np);
return ret;
}
switch (tdm_id) {
case 0:
tsa->tdms |= BIT(TSA_TDMA);
break;
case 1:
tsa->tdms |= BIT(TSA_TDMB);
break;
case 2:
if (!tsa_is_qe(tsa))
goto invalid_tdm; /* Not available on CPM1 */
tsa->tdms |= BIT(TSA_TDMC);
break;
case 3:
if (!tsa_is_qe(tsa))
goto invalid_tdm; /* Not available on CPM1 */
tsa->tdms |= BIT(TSA_TDMD);
break;
default:
invalid_tdm:
dev_err(tsa->dev, "%pOF: Invalid tdm_id (%u)\n", tdm_np,
tdm_id);
of_node_put(tdm_np);
return -EINVAL;
}
}
for_each_available_child_of_node(np, tdm_np) {
ret = of_property_read_u32(tdm_np, "reg", &tdm_id);
if (ret) {
dev_err(tsa->dev, "%pOF: failed to read reg\n", tdm_np);
of_node_put(tdm_np);
return ret;
}
tdm = &tsa->tdm[tdm_id];
tdm->simode_tdm = TSA_SIMODE_TDM_SDM_NORM;
val = 0;
ret = of_property_read_u32(tdm_np, "fsl,rx-frame-sync-delay-bits",
&val);
if (ret && ret != -EINVAL) {
dev_err(tsa->dev,
"%pOF: failed to read fsl,rx-frame-sync-delay-bits\n",
tdm_np);
of_node_put(tdm_np);
return ret;
}
if (val > 3) {
dev_err(tsa->dev,
"%pOF: Invalid fsl,rx-frame-sync-delay-bits (%u)\n",
tdm_np, val);
of_node_put(tdm_np);
return -EINVAL;
}
tdm->simode_tdm |= TSA_SIMODE_TDM_RFSD(val);
val = 0;
ret = of_property_read_u32(tdm_np, "fsl,tx-frame-sync-delay-bits",
&val);
if (ret && ret != -EINVAL) {
dev_err(tsa->dev,
"%pOF: failed to read fsl,tx-frame-sync-delay-bits\n",
tdm_np);
of_node_put(tdm_np);
return ret;
}
if (val > 3) {
dev_err(tsa->dev,
"%pOF: Invalid fsl,tx-frame-sync-delay-bits (%u)\n",
tdm_np, val);
of_node_put(tdm_np);
return -EINVAL;
}
tdm->simode_tdm |= TSA_SIMODE_TDM_TFSD(val);
if (of_property_read_bool(tdm_np, "fsl,common-rxtx-pins"))
tdm->simode_tdm |= TSA_SIMODE_TDM_CRT;
if (of_property_read_bool(tdm_np, "fsl,clock-falling-edge"))
tdm->simode_tdm |= TSA_SIMODE_TDM_CE;
if (of_property_read_bool(tdm_np, "fsl,fsync-rising-edge"))
tdm->simode_tdm |= TSA_SIMODE_TDM_FE;
if (tsa_is_qe(tsa) &&
of_property_read_bool(tdm_np, "fsl,fsync-active-low"))
tdm->simode_tdm |= TSA_QE_SIMODE_TDM_SL;
if (of_property_read_bool(tdm_np, "fsl,double-speed-clock"))
tdm->simode_tdm |= TSA_SIMODE_TDM_DSC;
clk = of_clk_get_by_name(tdm_np, tsa_is_qe(tsa) ? "rsync" : "l1rsync");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
of_node_put(tdm_np);
goto err;
}
ret = clk_prepare_enable(clk);
if (ret) {
clk_put(clk);
of_node_put(tdm_np);
goto err;
}
tdm->l1rsync_clk = clk;
clk = of_clk_get_by_name(tdm_np, tsa_is_qe(tsa) ? "rclk" : "l1rclk");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
of_node_put(tdm_np);
goto err;
}
ret = clk_prepare_enable(clk);
if (ret) {
clk_put(clk);
of_node_put(tdm_np);
goto err;
}
tdm->l1rclk_clk = clk;
if (!(tdm->simode_tdm & TSA_SIMODE_TDM_CRT)) {
clk = of_clk_get_by_name(tdm_np, tsa_is_qe(tsa) ? "tsync" : "l1tsync");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
of_node_put(tdm_np);
goto err;
}
ret = clk_prepare_enable(clk);
if (ret) {
clk_put(clk);
of_node_put(tdm_np);
goto err;
}
tdm->l1tsync_clk = clk;
clk = of_clk_get_by_name(tdm_np, tsa_is_qe(tsa) ? "tclk" : "l1tclk");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
of_node_put(tdm_np);
goto err;
}
ret = clk_prepare_enable(clk);
if (ret) {
clk_put(clk);
of_node_put(tdm_np);
goto err;
}
tdm->l1tclk_clk = clk;
}
if (tsa_is_qe(tsa)) {
/*
* The starting address for TSA table must be set.
* 512 entries for Tx and 512 entries for Rx are
* available for 4 TDMs.
* We assign entries equally -> 128 Rx/Tx entries per
* TDM. In other words, 4 blocks of 32 entries per TDM.
*/
tdm->simode_tdm |= TSA_QE_SIMODE_TDM_SAD(4 * tdm_id);
}
ret = tsa_of_parse_tdm_rx_route(tsa, tdm_np, tsa->tdms, tdm_id);
if (ret) {
of_node_put(tdm_np);
goto err;
}
ret = tsa_of_parse_tdm_tx_route(tsa, tdm_np, tsa->tdms, tdm_id);
if (ret) {
of_node_put(tdm_np);
goto err;
}
tdm->is_enable = true;
}
return 0;
err:
for (i = 0; i < ARRAY_SIZE(tsa->tdm); i++) {
if (tsa->tdm[i].l1rsync_clk) {
clk_disable_unprepare(tsa->tdm[i].l1rsync_clk);
clk_put(tsa->tdm[i].l1rsync_clk);
}
if (tsa->tdm[i].l1rclk_clk) {
clk_disable_unprepare(tsa->tdm[i].l1rclk_clk);
clk_put(tsa->tdm[i].l1rclk_clk);
}
if (tsa->tdm[i].l1tsync_clk) {
clk_disable_unprepare(tsa->tdm[i].l1rsync_clk);
clk_put(tsa->tdm[i].l1rsync_clk);
}
if (tsa->tdm[i].l1tclk_clk) {
clk_disable_unprepare(tsa->tdm[i].l1rclk_clk);
clk_put(tsa->tdm[i].l1rclk_clk);
}
}
return ret;
}
static void tsa_init_si_ram(struct tsa *tsa)
{
resource_size_t i;
/* Fill all entries as the last one */
if (tsa_is_qe(tsa)) {
for (i = 0; i < tsa->si_ram_sz; i += 2)
tsa_write16(tsa->si_ram + i, TSA_QE_SIRAM_ENTRY_LAST);
} else {
for (i = 0; i < tsa->si_ram_sz; i += 4)
tsa_write32(tsa->si_ram + i, TSA_CPM1_SIRAM_ENTRY_LAST);
}
}
static int tsa_cpm1_setup(struct tsa *tsa)
{
u32 val;
/* Set SIMODE */
val = 0;
if (tsa->tdm[0].is_enable)
val |= TSA_CPM1_SIMODE_TDMA(tsa->tdm[0].simode_tdm);
if (tsa->tdm[1].is_enable)
val |= TSA_CPM1_SIMODE_TDMB(tsa->tdm[1].simode_tdm);
tsa_clrsetbits32(tsa->si_regs + TSA_CPM1_SIMODE,
TSA_CPM1_SIMODE_TDMA(TSA_CPM1_SIMODE_TDM_MASK) |
TSA_CPM1_SIMODE_TDMB(TSA_CPM1_SIMODE_TDM_MASK),
val);
/* Set SIGMR */
val = (tsa->tdms == BIT(TSA_TDMA)) ?
TSA_CPM1_SIGMR_RDM_STATIC_TDMA : TSA_CPM1_SIGMR_RDM_STATIC_TDMAB;
if (tsa->tdms & BIT(TSA_TDMA))
val |= TSA_CPM1_SIGMR_ENA;
if (tsa->tdms & BIT(TSA_TDMB))
val |= TSA_CPM1_SIGMR_ENB;
tsa_write8(tsa->si_regs + TSA_CPM1_SIGMR, val);
return 0;
}
static int tsa_qe_setup(struct tsa *tsa)
{
unsigned int sixmr;
u8 siglmrh = 0;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(tsa->tdm); i++) {
if (!tsa->tdm[i].is_enable)
continue;
switch (i) {
case 0:
sixmr = TSA_QE_SIAMR;
siglmrh |= TSA_QE_SIGLMRH_ENA;
break;
case 1:
sixmr = TSA_QE_SIBMR;
siglmrh |= TSA_QE_SIGLMRH_ENB;
break;
case 2:
sixmr = TSA_QE_SICMR;
siglmrh |= TSA_QE_SIGLMRH_ENC;
break;
case 3:
sixmr = TSA_QE_SIDMR;
siglmrh |= TSA_QE_SIGLMRH_END;
break;
default:
return -EINVAL;
}
/* Set SI mode register */
tsa_write16(tsa->si_regs + sixmr, tsa->tdm[i].simode_tdm);
}
/* Enable TDMs */
tsa_write8(tsa->si_regs + TSA_QE_SIGLMRH, siglmrh);
return 0;
}
static int tsa_setup(struct tsa *tsa)
{
return tsa_is_qe(tsa) ? tsa_qe_setup(tsa) : tsa_cpm1_setup(tsa);
}
static int tsa_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct resource *res;
struct tsa *tsa;
unsigned int i;
int ret;
tsa = devm_kzalloc(&pdev->dev, sizeof(*tsa), GFP_KERNEL);
if (!tsa)
return -ENOMEM;
tsa->dev = &pdev->dev;
tsa->version = (enum tsa_version)(uintptr_t)of_device_get_match_data(&pdev->dev);
switch (tsa->version) {
case TSA_CPM1:
dev_info(tsa->dev, "CPM1 version\n");
break;
case TSA_QE:
dev_info(tsa->dev, "QE version\n");
break;
default:
dev_err(tsa->dev, "Unknown version (%d)\n", tsa->version);
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(tsa->serials); i++)
tsa->serials[i].id = i;
spin_lock_init(&tsa->lock);
tsa->si_regs = devm_platform_ioremap_resource_byname(pdev, "si_regs");
if (IS_ERR(tsa->si_regs))
return PTR_ERR(tsa->si_regs);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "si_ram");
if (!res) {
dev_err(tsa->dev, "si_ram resource missing\n");
return -EINVAL;
}
tsa->si_ram_sz = resource_size(res);
tsa->si_ram = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tsa->si_ram))
return PTR_ERR(tsa->si_ram);
tsa_init_si_ram(tsa);
ret = tsa_of_parse_tdms(tsa, np);
if (ret)
return ret;
ret = tsa_setup(tsa);
if (ret)
return ret;
platform_set_drvdata(pdev, tsa);
return 0;
}
static void tsa_remove(struct platform_device *pdev)
{
struct tsa *tsa = platform_get_drvdata(pdev);
int i;
for (i = 0; i < ARRAY_SIZE(tsa->tdm); i++) {
if (tsa->tdm[i].l1rsync_clk) {
clk_disable_unprepare(tsa->tdm[i].l1rsync_clk);
clk_put(tsa->tdm[i].l1rsync_clk);
}
if (tsa->tdm[i].l1rclk_clk) {
clk_disable_unprepare(tsa->tdm[i].l1rclk_clk);
clk_put(tsa->tdm[i].l1rclk_clk);
}
if (tsa->tdm[i].l1tsync_clk) {
clk_disable_unprepare(tsa->tdm[i].l1rsync_clk);
clk_put(tsa->tdm[i].l1rsync_clk);
}
if (tsa->tdm[i].l1tclk_clk) {
clk_disable_unprepare(tsa->tdm[i].l1rclk_clk);
clk_put(tsa->tdm[i].l1rclk_clk);
}
}
}
static const struct of_device_id tsa_id_table[] = {
#if IS_ENABLED(CONFIG_CPM1)
{ .compatible = "fsl,cpm1-tsa", .data = (void *)TSA_CPM1 },
#endif
#if IS_ENABLED(CONFIG_QUICC_ENGINE)
{ .compatible = "fsl,qe-tsa", .data = (void *)TSA_QE },
#endif
{} /* sentinel */
};
MODULE_DEVICE_TABLE(of, tsa_id_table);
static struct platform_driver tsa_driver = {
.driver = {
.name = "fsl-tsa",
.of_match_table = of_match_ptr(tsa_id_table),
},
.probe = tsa_probe,
.remove_new = tsa_remove,
};
module_platform_driver(tsa_driver);
struct tsa_serial *tsa_serial_get_byphandle(struct device_node *np,
const char *phandle_name)
{
struct of_phandle_args out_args;
struct platform_device *pdev;
struct tsa_serial *tsa_serial;
struct tsa *tsa;
int ret;
ret = of_parse_phandle_with_fixed_args(np, phandle_name, 1, 0, &out_args);
if (ret < 0)
return ERR_PTR(ret);
if (!of_match_node(tsa_driver.driver.of_match_table, out_args.np)) {
of_node_put(out_args.np);
return ERR_PTR(-EINVAL);
}
pdev = of_find_device_by_node(out_args.np);
of_node_put(out_args.np);
if (!pdev)
return ERR_PTR(-ENODEV);
tsa = platform_get_drvdata(pdev);
if (!tsa) {
platform_device_put(pdev);
return ERR_PTR(-EPROBE_DEFER);
}
if (out_args.args_count != 1) {
platform_device_put(pdev);
return ERR_PTR(-EINVAL);
}
if (out_args.args[0] >= ARRAY_SIZE(tsa->serials)) {
platform_device_put(pdev);
return ERR_PTR(-EINVAL);
}
tsa_serial = &tsa->serials[out_args.args[0]];
/*
* Be sure that the serial id matches the phandle arg.
* The tsa_serials table is indexed by serial ids. The serial id is set
* during the probe() call and needs to be coherent.
*/
if (WARN_ON(tsa_serial->id != out_args.args[0])) {
platform_device_put(pdev);
return ERR_PTR(-EINVAL);
}
return tsa_serial;
}
EXPORT_SYMBOL(tsa_serial_get_byphandle);
void tsa_serial_put(struct tsa_serial *tsa_serial)
{
struct tsa *tsa = tsa_serial_get_tsa(tsa_serial);
put_device(tsa->dev);
}
EXPORT_SYMBOL(tsa_serial_put);
static void devm_tsa_serial_release(struct device *dev, void *res)
{
struct tsa_serial **tsa_serial = res;
tsa_serial_put(*tsa_serial);
}
struct tsa_serial *devm_tsa_serial_get_byphandle(struct device *dev,
struct device_node *np,
const char *phandle_name)
{
struct tsa_serial *tsa_serial;
struct tsa_serial **dr;
dr = devres_alloc(devm_tsa_serial_release, sizeof(*dr), GFP_KERNEL);
if (!dr)
return ERR_PTR(-ENOMEM);
tsa_serial = tsa_serial_get_byphandle(np, phandle_name);
if (!IS_ERR(tsa_serial)) {
*dr = tsa_serial;
devres_add(dev, dr);
} else {
devres_free(dr);
}
return tsa_serial;
}
EXPORT_SYMBOL(devm_tsa_serial_get_byphandle);
MODULE_AUTHOR("Herve Codina <[email protected]>");
MODULE_DESCRIPTION("CPM/QE TSA driver");
MODULE_LICENSE("GPL");