// SPDX-License-Identifier: GPL-2.0-only
/*
* SHA-512 routines supporting the Power 7+ Nest Accelerators driver
*
* Copyright (C) 2011-2012 International Business Machines Inc.
*
* Author: Kent Yoder <[email protected]>
*/
#include <crypto/internal/hash.h>
#include <crypto/sha2.h>
#include <linux/module.h>
#include <asm/vio.h>
#include "nx_csbcpb.h"
#include "nx.h"
struct sha512_state_be {
__be64 state[SHA512_DIGEST_SIZE / 8];
u64 count[2];
u8 buf[SHA512_BLOCK_SIZE];
};
static int nx_crypto_ctx_sha512_init(struct crypto_tfm *tfm)
{
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
int err;
err = nx_crypto_ctx_sha_init(tfm);
if (err)
return err;
nx_ctx_init(nx_ctx, HCOP_FC_SHA);
nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA512];
NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA512);
return 0;
}
static int nx_sha512_init(struct shash_desc *desc)
{
struct sha512_state_be *sctx = shash_desc_ctx(desc);
memset(sctx, 0, sizeof *sctx);
sctx->state[0] = __cpu_to_be64(SHA512_H0);
sctx->state[1] = __cpu_to_be64(SHA512_H1);
sctx->state[2] = __cpu_to_be64(SHA512_H2);
sctx->state[3] = __cpu_to_be64(SHA512_H3);
sctx->state[4] = __cpu_to_be64(SHA512_H4);
sctx->state[5] = __cpu_to_be64(SHA512_H5);
sctx->state[6] = __cpu_to_be64(SHA512_H6);
sctx->state[7] = __cpu_to_be64(SHA512_H7);
sctx->count[0] = 0;
return 0;
}
static int nx_sha512_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
struct sha512_state_be *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *out_sg;
u64 to_process, leftover = 0, total;
unsigned long irq_flags;
int rc = 0;
int data_len;
u32 max_sg_len;
u64 buf_len = (sctx->count[0] % SHA512_BLOCK_SIZE);
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
/* 2 cases for total data len:
* 1: < SHA512_BLOCK_SIZE: copy into state, return 0
* 2: >= SHA512_BLOCK_SIZE: process X blocks, copy in leftover
*/
total = (sctx->count[0] % SHA512_BLOCK_SIZE) + len;
if (total < SHA512_BLOCK_SIZE) {
memcpy(sctx->buf + buf_len, data, len);
sctx->count[0] += len;
goto out;
}
memcpy(csbcpb->cpb.sha512.message_digest, sctx->state, SHA512_DIGEST_SIZE);
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
max_sg_len = min_t(u64, nx_ctx->ap->sglen,
nx_driver.of.max_sg_len/sizeof(struct nx_sg));
max_sg_len = min_t(u64, max_sg_len,
nx_ctx->ap->databytelen/NX_PAGE_SIZE);
data_len = SHA512_DIGEST_SIZE;
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
&data_len, max_sg_len);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
if (data_len != SHA512_DIGEST_SIZE) {
rc = -EINVAL;
goto out;
}
do {
int used_sgs = 0;
struct nx_sg *in_sg = nx_ctx->in_sg;
if (buf_len) {
data_len = buf_len;
in_sg = nx_build_sg_list(in_sg,
(u8 *) sctx->buf,
&data_len, max_sg_len);
if (data_len != buf_len) {
rc = -EINVAL;
goto out;
}
used_sgs = in_sg - nx_ctx->in_sg;
}
/* to_process: SHA512_BLOCK_SIZE aligned chunk to be
* processed in this iteration. This value is restricted
* by sg list limits and number of sgs we already used
* for leftover data. (see above)
* In ideal case, we could allow NX_PAGE_SIZE * max_sg_len,
* but because data may not be aligned, we need to account
* for that too. */
to_process = min_t(u64, total,
(max_sg_len - 1 - used_sgs) * NX_PAGE_SIZE);
to_process = to_process & ~(SHA512_BLOCK_SIZE - 1);
data_len = to_process - buf_len;
in_sg = nx_build_sg_list(in_sg, (u8 *) data,
&data_len, max_sg_len);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
if (data_len != (to_process - buf_len)) {
rc = -EINVAL;
goto out;
}
to_process = data_len + buf_len;
leftover = total - to_process;
/*
* we've hit the nx chip previously and we're updating
* again, so copy over the partial digest.
*/
memcpy(csbcpb->cpb.sha512.input_partial_digest,
csbcpb->cpb.sha512.message_digest,
SHA512_DIGEST_SIZE);
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->sha512_ops));
total -= to_process;
data += to_process - buf_len;
buf_len = 0;
} while (leftover >= SHA512_BLOCK_SIZE);
/* copy the leftover back into the state struct */
if (leftover)
memcpy(sctx->buf, data, leftover);
sctx->count[0] += len;
memcpy(sctx->state, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
static int nx_sha512_final(struct shash_desc *desc, u8 *out)
{
struct sha512_state_be *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *in_sg, *out_sg;
u32 max_sg_len;
u64 count0;
unsigned long irq_flags;
int rc = 0;
int len;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
max_sg_len = min_t(u64, nx_ctx->ap->sglen,
nx_driver.of.max_sg_len/sizeof(struct nx_sg));
max_sg_len = min_t(u64, max_sg_len,
nx_ctx->ap->databytelen/NX_PAGE_SIZE);
/* final is represented by continuing the operation and indicating that
* this is not an intermediate operation */
if (sctx->count[0] >= SHA512_BLOCK_SIZE) {
/* we've hit the nx chip previously, now we're finalizing,
* so copy over the partial digest */
memcpy(csbcpb->cpb.sha512.input_partial_digest, sctx->state,
SHA512_DIGEST_SIZE);
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
} else {
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
}
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
count0 = sctx->count[0] * 8;
csbcpb->cpb.sha512.message_bit_length_lo = count0;
len = sctx->count[0] & (SHA512_BLOCK_SIZE - 1);
in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buf, &len,
max_sg_len);
if (len != (sctx->count[0] & (SHA512_BLOCK_SIZE - 1))) {
rc = -EINVAL;
goto out;
}
len = SHA512_DIGEST_SIZE;
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
max_sg_len);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
if (!nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->sha512_ops));
atomic64_add(sctx->count[0], &(nx_ctx->stats->sha512_bytes));
memcpy(out, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
static int nx_sha512_export(struct shash_desc *desc, void *out)
{
struct sha512_state_be *sctx = shash_desc_ctx(desc);
memcpy(out, sctx, sizeof(*sctx));
return 0;
}
static int nx_sha512_import(struct shash_desc *desc, const void *in)
{
struct sha512_state_be *sctx = shash_desc_ctx(desc);
memcpy(sctx, in, sizeof(*sctx));
return 0;
}
struct shash_alg nx_shash_sha512_alg = {
.digestsize = SHA512_DIGEST_SIZE,
.init = nx_sha512_init,
.update = nx_sha512_update,
.final = nx_sha512_final,
.export = nx_sha512_export,
.import = nx_sha512_import,
.descsize = sizeof(struct sha512_state_be),
.statesize = sizeof(struct sha512_state_be),
.base = {
.cra_name = "sha512",
.cra_driver_name = "sha512-nx",
.cra_priority = 300,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct nx_crypto_ctx),
.cra_init = nx_crypto_ctx_sha512_init,
.cra_exit = nx_crypto_ctx_exit,
}
};