// SPDX-License-Identifier: GPL-2.0-only
/*
* This file is part of STM32 Crypto driver for Linux.
*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author(s): Lionel DEBIEVE <[email protected]> for STMicroelectronics.
*/
#include <crypto/engine.h>
#include <crypto/internal/hash.h>
#include <crypto/md5.h>
#include <crypto/scatterwalk.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <crypto/sha3.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/string.h>
#define HASH_CR 0x00
#define HASH_DIN 0x04
#define HASH_STR 0x08
#define HASH_UX500_HREG(x) (0x0c + ((x) * 0x04))
#define HASH_IMR 0x20
#define HASH_SR 0x24
#define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
#define HASH_HREG(x) (0x310 + ((x) * 0x04))
#define HASH_HWCFGR 0x3F0
#define HASH_VER 0x3F4
#define HASH_ID 0x3F8
/* Control Register */
#define HASH_CR_INIT BIT(2)
#define HASH_CR_DMAE BIT(3)
#define HASH_CR_DATATYPE_POS 4
#define HASH_CR_MODE BIT(6)
#define HASH_CR_ALGO_POS 7
#define HASH_CR_MDMAT BIT(13)
#define HASH_CR_DMAA BIT(14)
#define HASH_CR_LKEY BIT(16)
/* Interrupt */
#define HASH_DINIE BIT(0)
#define HASH_DCIE BIT(1)
/* Interrupt Mask */
#define HASH_MASK_CALC_COMPLETION BIT(0)
#define HASH_MASK_DATA_INPUT BIT(1)
/* Status Flags */
#define HASH_SR_DATA_INPUT_READY BIT(0)
#define HASH_SR_OUTPUT_READY BIT(1)
#define HASH_SR_DMA_ACTIVE BIT(2)
#define HASH_SR_BUSY BIT(3)
/* STR Register */
#define HASH_STR_NBLW_MASK GENMASK(4, 0)
#define HASH_STR_DCAL BIT(8)
/* HWCFGR Register */
#define HASH_HWCFG_DMA_MASK GENMASK(3, 0)
/* Context swap register */
#define HASH_CSR_NB_SHA256_HMAC 54
#define HASH_CSR_NB_SHA256 38
#define HASH_CSR_NB_SHA512_HMAC 103
#define HASH_CSR_NB_SHA512 91
#define HASH_CSR_NB_SHA3_HMAC 88
#define HASH_CSR_NB_SHA3 72
#define HASH_CSR_NB_MAX HASH_CSR_NB_SHA512_HMAC
#define HASH_FLAGS_INIT BIT(0)
#define HASH_FLAGS_OUTPUT_READY BIT(1)
#define HASH_FLAGS_CPU BIT(2)
#define HASH_FLAGS_DMA_ACTIVE BIT(3)
#define HASH_FLAGS_HMAC_INIT BIT(4)
#define HASH_FLAGS_HMAC_FINAL BIT(5)
#define HASH_FLAGS_HMAC_KEY BIT(6)
#define HASH_FLAGS_SHA3_MODE BIT(7)
#define HASH_FLAGS_FINAL BIT(15)
#define HASH_FLAGS_FINUP BIT(16)
#define HASH_FLAGS_ALGO_MASK GENMASK(20, 17)
#define HASH_FLAGS_ALGO_SHIFT 17
#define HASH_FLAGS_ERRORS BIT(21)
#define HASH_FLAGS_EMPTY BIT(22)
#define HASH_FLAGS_HMAC BIT(23)
#define HASH_FLAGS_SGS_COPIED BIT(24)
#define HASH_OP_UPDATE 1
#define HASH_OP_FINAL 2
#define HASH_BURST_LEVEL 4
enum stm32_hash_data_format {
HASH_DATA_32_BITS = 0x0,
HASH_DATA_16_BITS = 0x1,
HASH_DATA_8_BITS = 0x2,
HASH_DATA_1_BIT = 0x3
};
#define HASH_BUFLEN (SHA3_224_BLOCK_SIZE + 4)
#define HASH_MAX_KEY_SIZE (SHA512_BLOCK_SIZE * 8)
enum stm32_hash_algo {
HASH_SHA1 = 0,
HASH_MD5 = 1,
HASH_SHA224 = 2,
HASH_SHA256 = 3,
HASH_SHA3_224 = 4,
HASH_SHA3_256 = 5,
HASH_SHA3_384 = 6,
HASH_SHA3_512 = 7,
HASH_SHA384 = 12,
HASH_SHA512 = 15,
};
enum ux500_hash_algo {
HASH_SHA256_UX500 = 0,
HASH_SHA1_UX500 = 1,
};
#define HASH_AUTOSUSPEND_DELAY 50
struct stm32_hash_ctx {
struct stm32_hash_dev *hdev;
struct crypto_shash *xtfm;
unsigned long flags;
u8 key[HASH_MAX_KEY_SIZE];
int keylen;
};
struct stm32_hash_state {
u32 flags;
u16 bufcnt;
u16 blocklen;
u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
/* hash state */
u32 hw_context[3 + HASH_CSR_NB_MAX];
};
struct stm32_hash_request_ctx {
struct stm32_hash_dev *hdev;
unsigned long op;
u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
size_t digcnt;
struct scatterlist *sg;
struct scatterlist sgl[2]; /* scatterlist used to realize alignment */
unsigned int offset;
unsigned int total;
struct scatterlist sg_key;
dma_addr_t dma_addr;
size_t dma_ct;
int nents;
u8 data_type;
struct stm32_hash_state state;
};
struct stm32_hash_algs_info {
struct ahash_engine_alg *algs_list;
size_t size;
};
struct stm32_hash_pdata {
const int alg_shift;
const struct stm32_hash_algs_info *algs_info;
size_t algs_info_size;
bool has_sr;
bool has_mdmat;
bool context_secured;
bool broken_emptymsg;
bool ux500;
};
struct stm32_hash_dev {
struct list_head list;
struct device *dev;
struct clk *clk;
struct reset_control *rst;
void __iomem *io_base;
phys_addr_t phys_base;
u8 xmit_buf[HASH_BUFLEN] __aligned(sizeof(u32));
u32 dma_mode;
bool polled;
struct ahash_request *req;
struct crypto_engine *engine;
unsigned long flags;
struct dma_chan *dma_lch;
struct completion dma_completion;
const struct stm32_hash_pdata *pdata;
};
struct stm32_hash_drv {
struct list_head dev_list;
spinlock_t lock; /* List protection access */
};
static struct stm32_hash_drv stm32_hash = {
.dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
};
static void stm32_hash_dma_callback(void *param);
static int stm32_hash_prepare_request(struct ahash_request *req);
static void stm32_hash_unprepare_request(struct ahash_request *req);
static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
{
return readl_relaxed(hdev->io_base + offset);
}
static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
u32 offset, u32 value)
{
writel_relaxed(value, hdev->io_base + offset);
}
/**
* stm32_hash_wait_busy - wait until hash processor is available. It return an
* error if the hash core is processing a block of data for more than 10 ms.
* @hdev: the stm32_hash_dev device.
*/
static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
{
u32 status;
/* The Ux500 lacks the special status register, we poll the DCAL bit instead */
if (!hdev->pdata->has_sr)
return readl_relaxed_poll_timeout(hdev->io_base + HASH_STR, status,
!(status & HASH_STR_DCAL), 10, 10000);
return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
!(status & HASH_SR_BUSY), 10, 10000);
}
/**
* stm32_hash_set_nblw - set the number of valid bytes in the last word.
* @hdev: the stm32_hash_dev device.
* @length: the length of the final word.
*/
static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
{
u32 reg;
reg = stm32_hash_read(hdev, HASH_STR);
reg &= ~(HASH_STR_NBLW_MASK);
reg |= (8U * ((length) % 4U));
stm32_hash_write(hdev, HASH_STR, reg);
}
static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
u32 reg;
int keylen = ctx->keylen;
void *key = ctx->key;
if (keylen) {
stm32_hash_set_nblw(hdev, keylen);
while (keylen > 0) {
stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
keylen -= 4;
key += 4;
}
reg = stm32_hash_read(hdev, HASH_STR);
reg |= HASH_STR_DCAL;
stm32_hash_write(hdev, HASH_STR, reg);
return -EINPROGRESS;
}
return 0;
}
/**
* stm32_hash_write_ctrl - Initialize the hash processor, only if
* HASH_FLAGS_INIT is set.
* @hdev: the stm32_hash_dev device
*/
static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct stm32_hash_state *state = &rctx->state;
u32 alg = (state->flags & HASH_FLAGS_ALGO_MASK) >> HASH_FLAGS_ALGO_SHIFT;
u32 reg = HASH_CR_INIT;
if (!(hdev->flags & HASH_FLAGS_INIT)) {
if (hdev->pdata->ux500) {
reg |= ((alg & BIT(0)) << HASH_CR_ALGO_POS);
} else {
if (hdev->pdata->alg_shift == HASH_CR_ALGO_POS)
reg |= ((alg & BIT(1)) << 17) |
((alg & BIT(0)) << HASH_CR_ALGO_POS);
else
reg |= alg << hdev->pdata->alg_shift;
}
reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
if (state->flags & HASH_FLAGS_HMAC) {
hdev->flags |= HASH_FLAGS_HMAC;
reg |= HASH_CR_MODE;
if (ctx->keylen > crypto_ahash_blocksize(tfm))
reg |= HASH_CR_LKEY;
}
if (!hdev->polled)
stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
stm32_hash_write(hdev, HASH_CR, reg);
hdev->flags |= HASH_FLAGS_INIT;
/*
* After first block + 1 words are fill up,
* we only need to fill 1 block to start partial computation
*/
rctx->state.blocklen -= sizeof(u32);
dev_dbg(hdev->dev, "Write Control %x\n", reg);
}
}
static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
{
struct stm32_hash_state *state = &rctx->state;
size_t count;
while ((state->bufcnt < state->blocklen) && rctx->total) {
count = min(rctx->sg->length - rctx->offset, rctx->total);
count = min_t(size_t, count, state->blocklen - state->bufcnt);
if (count <= 0) {
if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
rctx->sg = sg_next(rctx->sg);
continue;
} else {
break;
}
}
scatterwalk_map_and_copy(state->buffer + state->bufcnt,
rctx->sg, rctx->offset, count, 0);
state->bufcnt += count;
rctx->offset += count;
rctx->total -= count;
if (rctx->offset == rctx->sg->length) {
rctx->sg = sg_next(rctx->sg);
if (rctx->sg)
rctx->offset = 0;
else
rctx->total = 0;
}
}
}
static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
const u8 *buf, size_t length, int final)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
struct stm32_hash_state *state = &rctx->state;
unsigned int count, len32;
const u32 *buffer = (const u32 *)buf;
u32 reg;
if (final) {
hdev->flags |= HASH_FLAGS_FINAL;
/* Do not process empty messages if hw is buggy. */
if (!(hdev->flags & HASH_FLAGS_INIT) && !length &&
hdev->pdata->broken_emptymsg) {
state->flags |= HASH_FLAGS_EMPTY;
return 0;
}
}
len32 = DIV_ROUND_UP(length, sizeof(u32));
dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
__func__, length, final, len32);
hdev->flags |= HASH_FLAGS_CPU;
stm32_hash_write_ctrl(hdev);
if (stm32_hash_wait_busy(hdev))
return -ETIMEDOUT;
if ((hdev->flags & HASH_FLAGS_HMAC) &&
(!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
hdev->flags |= HASH_FLAGS_HMAC_KEY;
stm32_hash_write_key(hdev);
if (stm32_hash_wait_busy(hdev))
return -ETIMEDOUT;
}
for (count = 0; count < len32; count++)
stm32_hash_write(hdev, HASH_DIN, buffer[count]);
if (final) {
if (stm32_hash_wait_busy(hdev))
return -ETIMEDOUT;
stm32_hash_set_nblw(hdev, length);
reg = stm32_hash_read(hdev, HASH_STR);
reg |= HASH_STR_DCAL;
stm32_hash_write(hdev, HASH_STR, reg);
if (hdev->flags & HASH_FLAGS_HMAC) {
if (stm32_hash_wait_busy(hdev))
return -ETIMEDOUT;
stm32_hash_write_key(hdev);
}
return -EINPROGRESS;
}
return 0;
}
static int hash_swap_reg(struct stm32_hash_request_ctx *rctx)
{
struct stm32_hash_state *state = &rctx->state;
switch ((state->flags & HASH_FLAGS_ALGO_MASK) >>
HASH_FLAGS_ALGO_SHIFT) {
case HASH_MD5:
case HASH_SHA1:
case HASH_SHA224:
case HASH_SHA256:
if (state->flags & HASH_FLAGS_HMAC)
return HASH_CSR_NB_SHA256_HMAC;
else
return HASH_CSR_NB_SHA256;
break;
case HASH_SHA384:
case HASH_SHA512:
if (state->flags & HASH_FLAGS_HMAC)
return HASH_CSR_NB_SHA512_HMAC;
else
return HASH_CSR_NB_SHA512;
break;
case HASH_SHA3_224:
case HASH_SHA3_256:
case HASH_SHA3_384:
case HASH_SHA3_512:
if (state->flags & HASH_FLAGS_HMAC)
return HASH_CSR_NB_SHA3_HMAC;
else
return HASH_CSR_NB_SHA3;
break;
default:
return -EINVAL;
}
}
static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
struct stm32_hash_state *state = &rctx->state;
int bufcnt, err = 0, final;
dev_dbg(hdev->dev, "%s flags %x\n", __func__, state->flags);
final = state->flags & HASH_FLAGS_FINAL;
while ((rctx->total >= state->blocklen) ||
(state->bufcnt + rctx->total >= state->blocklen)) {
stm32_hash_append_sg(rctx);
bufcnt = state->bufcnt;
state->bufcnt = 0;
err = stm32_hash_xmit_cpu(hdev, state->buffer, bufcnt, 0);
if (err)
return err;
}
stm32_hash_append_sg(rctx);
if (final) {
bufcnt = state->bufcnt;
state->bufcnt = 0;
return stm32_hash_xmit_cpu(hdev, state->buffer, bufcnt, 1);
}
return err;
}
static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
struct scatterlist *sg, int length, int mdmat)
{
struct dma_async_tx_descriptor *in_desc;
dma_cookie_t cookie;
u32 reg;
int err;
dev_dbg(hdev->dev, "%s mdmat: %x length: %d\n", __func__, mdmat, length);
/* do not use dma if there is no data to send */
if (length <= 0)
return 0;
in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
DMA_CTRL_ACK);
if (!in_desc) {
dev_err(hdev->dev, "dmaengine_prep_slave error\n");
return -ENOMEM;
}
reinit_completion(&hdev->dma_completion);
in_desc->callback = stm32_hash_dma_callback;
in_desc->callback_param = hdev;
hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
reg = stm32_hash_read(hdev, HASH_CR);
if (hdev->pdata->has_mdmat) {
if (mdmat)
reg |= HASH_CR_MDMAT;
else
reg &= ~HASH_CR_MDMAT;
}
reg |= HASH_CR_DMAE;
stm32_hash_write(hdev, HASH_CR, reg);
cookie = dmaengine_submit(in_desc);
err = dma_submit_error(cookie);
if (err)
return -ENOMEM;
dma_async_issue_pending(hdev->dma_lch);
if (!wait_for_completion_timeout(&hdev->dma_completion,
msecs_to_jiffies(100)))
err = -ETIMEDOUT;
if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
NULL, NULL) != DMA_COMPLETE)
err = -ETIMEDOUT;
if (err) {
dev_err(hdev->dev, "DMA Error %i\n", err);
dmaengine_terminate_all(hdev->dma_lch);
return err;
}
return -EINPROGRESS;
}
static void stm32_hash_dma_callback(void *param)
{
struct stm32_hash_dev *hdev = param;
complete(&hdev->dma_completion);
}
static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
int err;
if (ctx->keylen < rctx->state.blocklen || hdev->dma_mode > 0) {
err = stm32_hash_write_key(hdev);
if (stm32_hash_wait_busy(hdev))
return -ETIMEDOUT;
} else {
if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
sg_init_one(&rctx->sg_key, ctx->key,
ALIGN(ctx->keylen, sizeof(u32)));
rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
DMA_TO_DEVICE);
if (rctx->dma_ct == 0) {
dev_err(hdev->dev, "dma_map_sg error\n");
return -ENOMEM;
}
err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
}
return err;
}
static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
{
struct dma_slave_config dma_conf;
struct dma_chan *chan;
int err;
memset(&dma_conf, 0, sizeof(dma_conf));
dma_conf.direction = DMA_MEM_TO_DEV;
dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_conf.src_maxburst = HASH_BURST_LEVEL;
dma_conf.dst_maxburst = HASH_BURST_LEVEL;
dma_conf.device_fc = false;
chan = dma_request_chan(hdev->dev, "in");
if (IS_ERR(chan))
return PTR_ERR(chan);
hdev->dma_lch = chan;
err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
if (err) {
dma_release_channel(hdev->dma_lch);
hdev->dma_lch = NULL;
dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
return err;
}
init_completion(&hdev->dma_completion);
return 0;
}
static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
u32 *buffer = (void *)rctx->state.buffer;
struct scatterlist sg[1], *tsg;
int err = 0, reg, ncp = 0;
unsigned int i, len = 0, bufcnt = 0;
bool final = hdev->flags & HASH_FLAGS_FINAL;
bool is_last = false;
u32 last_word;
dev_dbg(hdev->dev, "%s total: %d bufcnt: %d final: %d\n",
__func__, rctx->total, rctx->state.bufcnt, final);
if (rctx->nents < 0)
return -EINVAL;
stm32_hash_write_ctrl(hdev);
if (hdev->flags & HASH_FLAGS_HMAC && (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
hdev->flags |= HASH_FLAGS_HMAC_KEY;
err = stm32_hash_hmac_dma_send(hdev);
if (err != -EINPROGRESS)
return err;
}
for_each_sg(rctx->sg, tsg, rctx->nents, i) {
sg[0] = *tsg;
len = sg->length;
if (sg_is_last(sg) || (bufcnt + sg[0].length) >= rctx->total) {
if (!final) {
/* Always manually put the last word of a non-final transfer. */
len -= sizeof(u32);
sg_pcopy_to_buffer(rctx->sg, rctx->nents, &last_word, 4, len);
sg->length -= sizeof(u32);
} else {
/*
* In Multiple DMA mode, DMA must be aborted before the final
* transfer.
*/
sg->length = rctx->total - bufcnt;
if (hdev->dma_mode > 0) {
len = (ALIGN(sg->length, 16) - 16);
ncp = sg_pcopy_to_buffer(rctx->sg, rctx->nents,
rctx->state.buffer,
sg->length - len,
rctx->total - sg->length + len);
if (!len)
break;
sg->length = len;
} else {
is_last = true;
if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
len = sg->length;
sg->length = ALIGN(sg->length,
sizeof(u32));
}
}
}
}
rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
DMA_TO_DEVICE);
if (rctx->dma_ct == 0) {
dev_err(hdev->dev, "dma_map_sg error\n");
return -ENOMEM;
}
err = stm32_hash_xmit_dma(hdev, sg, len, !is_last);
/* The last word of a non final transfer is sent manually. */
if (!final) {
stm32_hash_write(hdev, HASH_DIN, last_word);
len += sizeof(u32);
}
rctx->total -= len;
bufcnt += sg[0].length;
dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
if (err == -ENOMEM || err == -ETIMEDOUT)
return err;
if (is_last)
break;
}
/*
* When the second last block transfer of 4 words is performed by the DMA,
* the software must set the DMA Abort bit (DMAA) to 1 before completing the
* last transfer of 4 words or less.
*/
if (final) {
if (hdev->dma_mode > 0) {
if (stm32_hash_wait_busy(hdev))
return -ETIMEDOUT;
reg = stm32_hash_read(hdev, HASH_CR);
reg &= ~HASH_CR_DMAE;
reg |= HASH_CR_DMAA;
stm32_hash_write(hdev, HASH_CR, reg);
if (ncp) {
memset(buffer + ncp, 0, 4 - DIV_ROUND_UP(ncp, sizeof(u32)));
writesl(hdev->io_base + HASH_DIN, buffer,
DIV_ROUND_UP(ncp, sizeof(u32)));
}
stm32_hash_set_nblw(hdev, ncp);
reg = stm32_hash_read(hdev, HASH_STR);
reg |= HASH_STR_DCAL;
stm32_hash_write(hdev, HASH_STR, reg);
err = -EINPROGRESS;
}
/*
* The hash processor needs the key to be loaded a second time in order
* to process the HMAC.
*/
if (hdev->flags & HASH_FLAGS_HMAC) {
if (stm32_hash_wait_busy(hdev))
return -ETIMEDOUT;
err = stm32_hash_hmac_dma_send(hdev);
}
return err;
}
if (err != -EINPROGRESS)
return err;
return 0;
}
static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
{
struct stm32_hash_dev *hdev = NULL, *tmp;
spin_lock_bh(&stm32_hash.lock);
if (!ctx->hdev) {
list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
hdev = tmp;
break;
}
ctx->hdev = hdev;
} else {
hdev = ctx->hdev;
}
spin_unlock_bh(&stm32_hash.lock);
return hdev;
}
static int stm32_hash_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
struct stm32_hash_state *state = &rctx->state;
bool sha3_mode = ctx->flags & HASH_FLAGS_SHA3_MODE;
rctx->hdev = hdev;
state->flags = 0;
if (!(hdev->dma_lch && hdev->pdata->has_mdmat))
state->flags |= HASH_FLAGS_CPU;
if (sha3_mode)
state->flags |= HASH_FLAGS_SHA3_MODE;
rctx->digcnt = crypto_ahash_digestsize(tfm);
switch (rctx->digcnt) {
case MD5_DIGEST_SIZE:
state->flags |= HASH_MD5 << HASH_FLAGS_ALGO_SHIFT;
break;
case SHA1_DIGEST_SIZE:
if (hdev->pdata->ux500)
state->flags |= HASH_SHA1_UX500 << HASH_FLAGS_ALGO_SHIFT;
else
state->flags |= HASH_SHA1 << HASH_FLAGS_ALGO_SHIFT;
break;
case SHA224_DIGEST_SIZE:
if (sha3_mode)
state->flags |= HASH_SHA3_224 << HASH_FLAGS_ALGO_SHIFT;
else
state->flags |= HASH_SHA224 << HASH_FLAGS_ALGO_SHIFT;
break;
case SHA256_DIGEST_SIZE:
if (sha3_mode) {
state->flags |= HASH_SHA3_256 << HASH_FLAGS_ALGO_SHIFT;
} else {
if (hdev->pdata->ux500)
state->flags |= HASH_SHA256_UX500 << HASH_FLAGS_ALGO_SHIFT;
else
state->flags |= HASH_SHA256 << HASH_FLAGS_ALGO_SHIFT;
}
break;
case SHA384_DIGEST_SIZE:
if (sha3_mode)
state->flags |= HASH_SHA3_384 << HASH_FLAGS_ALGO_SHIFT;
else
state->flags |= HASH_SHA384 << HASH_FLAGS_ALGO_SHIFT;
break;
case SHA512_DIGEST_SIZE:
if (sha3_mode)
state->flags |= HASH_SHA3_512 << HASH_FLAGS_ALGO_SHIFT;
else
state->flags |= HASH_SHA512 << HASH_FLAGS_ALGO_SHIFT;
break;
default:
return -EINVAL;
}
rctx->state.bufcnt = 0;
rctx->state.blocklen = crypto_ahash_blocksize(tfm) + sizeof(u32);
if (rctx->state.blocklen > HASH_BUFLEN) {
dev_err(hdev->dev, "Error, block too large");
return -EINVAL;
}
rctx->nents = 0;
rctx->total = 0;
rctx->offset = 0;
rctx->data_type = HASH_DATA_8_BITS;
if (ctx->flags & HASH_FLAGS_HMAC)
state->flags |= HASH_FLAGS_HMAC;
dev_dbg(hdev->dev, "%s Flags %x\n", __func__, state->flags);
return 0;
}
static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
struct stm32_hash_state *state = &rctx->state;
dev_dbg(hdev->dev, "update_req: total: %u, digcnt: %zd, final: 0",
rctx->total, rctx->digcnt);
if (!(state->flags & HASH_FLAGS_CPU))
return stm32_hash_dma_send(hdev);
return stm32_hash_update_cpu(hdev);
}
static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
{
struct ahash_request *req = hdev->req;
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_state *state = &rctx->state;
int buflen = state->bufcnt;
if (!(state->flags & HASH_FLAGS_CPU)) {
hdev->flags |= HASH_FLAGS_FINAL;
return stm32_hash_dma_send(hdev);
}
if (state->flags & HASH_FLAGS_FINUP)
return stm32_hash_update_req(hdev);
state->bufcnt = 0;
return stm32_hash_xmit_cpu(hdev, state->buffer, buflen, 1);
}
static void stm32_hash_emptymsg_fallback(struct ahash_request *req)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_dev *hdev = rctx->hdev;
int ret;
dev_dbg(hdev->dev, "use fallback message size 0 key size %d\n",
ctx->keylen);
if (!ctx->xtfm) {
dev_err(hdev->dev, "no fallback engine\n");
return;
}
if (ctx->keylen) {
ret = crypto_shash_setkey(ctx->xtfm, ctx->key, ctx->keylen);
if (ret) {
dev_err(hdev->dev, "failed to set key ret=%d\n", ret);
return;
}
}
ret = crypto_shash_tfm_digest(ctx->xtfm, NULL, 0, rctx->digest);
if (ret)
dev_err(hdev->dev, "shash digest error\n");
}
static void stm32_hash_copy_hash(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_state *state = &rctx->state;
struct stm32_hash_dev *hdev = rctx->hdev;
__be32 *hash = (void *)rctx->digest;
unsigned int i, hashsize;
if (hdev->pdata->broken_emptymsg && (state->flags & HASH_FLAGS_EMPTY))
return stm32_hash_emptymsg_fallback(req);
hashsize = crypto_ahash_digestsize(tfm);
for (i = 0; i < hashsize / sizeof(u32); i++) {
if (hdev->pdata->ux500)
hash[i] = cpu_to_be32(stm32_hash_read(hdev,
HASH_UX500_HREG(i)));
else
hash[i] = cpu_to_be32(stm32_hash_read(hdev,
HASH_HREG(i)));
}
}
static int stm32_hash_finish(struct ahash_request *req)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
u32 reg;
reg = stm32_hash_read(rctx->hdev, HASH_SR);
reg &= ~HASH_SR_OUTPUT_READY;
stm32_hash_write(rctx->hdev, HASH_SR, reg);
if (!req->result)
return -EINVAL;
memcpy(req->result, rctx->digest, rctx->digcnt);
return 0;
}
static void stm32_hash_finish_req(struct ahash_request *req, int err)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_state *state = &rctx->state;
struct stm32_hash_dev *hdev = rctx->hdev;
if (hdev->flags & HASH_FLAGS_DMA_ACTIVE)
state->flags |= HASH_FLAGS_DMA_ACTIVE;
else
state->flags &= ~HASH_FLAGS_DMA_ACTIVE;
if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
stm32_hash_copy_hash(req);
err = stm32_hash_finish(req);
}
/* Finalized request mist be unprepared here */
stm32_hash_unprepare_request(req);
crypto_finalize_hash_request(hdev->engine, req, err);
}
static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
struct ahash_request *req)
{
return crypto_transfer_hash_request_to_engine(hdev->engine, req);
}
static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
{
struct ahash_request *req = container_of(areq, struct ahash_request,
base);
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
struct stm32_hash_state *state = &rctx->state;
int swap_reg;
int err = 0;
if (!hdev)
return -ENODEV;
dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
rctx->op, req->nbytes);
pm_runtime_get_sync(hdev->dev);
err = stm32_hash_prepare_request(req);
if (err)
return err;
hdev->req = req;
hdev->flags = 0;
swap_reg = hash_swap_reg(rctx);
if (state->flags & HASH_FLAGS_INIT) {
u32 *preg = rctx->state.hw_context;
u32 reg;
int i;
if (!hdev->pdata->ux500)
stm32_hash_write(hdev, HASH_IMR, *preg++);
stm32_hash_write(hdev, HASH_STR, *preg++);
stm32_hash_write(hdev, HASH_CR, *preg);
reg = *preg++ | HASH_CR_INIT;
stm32_hash_write(hdev, HASH_CR, reg);
for (i = 0; i < swap_reg; i++)
stm32_hash_write(hdev, HASH_CSR(i), *preg++);
hdev->flags |= HASH_FLAGS_INIT;
if (state->flags & HASH_FLAGS_HMAC)
hdev->flags |= HASH_FLAGS_HMAC |
HASH_FLAGS_HMAC_KEY;
if (state->flags & HASH_FLAGS_CPU)
hdev->flags |= HASH_FLAGS_CPU;
if (state->flags & HASH_FLAGS_DMA_ACTIVE)
hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
}
if (rctx->op == HASH_OP_UPDATE)
err = stm32_hash_update_req(hdev);
else if (rctx->op == HASH_OP_FINAL)
err = stm32_hash_final_req(hdev);
/* If we have an IRQ, wait for that, else poll for completion */
if (err == -EINPROGRESS && hdev->polled) {
if (stm32_hash_wait_busy(hdev))
err = -ETIMEDOUT;
else {
hdev->flags |= HASH_FLAGS_OUTPUT_READY;
err = 0;
}
}
if (err != -EINPROGRESS)
/* done task will not finish it, so do it here */
stm32_hash_finish_req(req, err);
return 0;
}
static int stm32_hash_copy_sgs(struct stm32_hash_request_ctx *rctx,
struct scatterlist *sg, int bs,
unsigned int new_len)
{
struct stm32_hash_state *state = &rctx->state;
int pages;
void *buf;
pages = get_order(new_len);
buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
if (!buf) {
pr_err("Couldn't allocate pages for unaligned cases.\n");
return -ENOMEM;
}
if (state->bufcnt)
memcpy(buf, rctx->hdev->xmit_buf, state->bufcnt);
scatterwalk_map_and_copy(buf + state->bufcnt, sg, rctx->offset,
min(new_len, rctx->total) - state->bufcnt, 0);
sg_init_table(rctx->sgl, 1);
sg_set_buf(rctx->sgl, buf, new_len);
rctx->sg = rctx->sgl;
state->flags |= HASH_FLAGS_SGS_COPIED;
rctx->nents = 1;
rctx->offset += new_len - state->bufcnt;
state->bufcnt = 0;
rctx->total = new_len;
return 0;
}
static int stm32_hash_align_sgs(struct scatterlist *sg,
int nbytes, int bs, bool init, bool final,
struct stm32_hash_request_ctx *rctx)
{
struct stm32_hash_state *state = &rctx->state;
struct stm32_hash_dev *hdev = rctx->hdev;
struct scatterlist *sg_tmp = sg;
int offset = rctx->offset;
int new_len;
int n = 0;
int bufcnt = state->bufcnt;
bool secure_ctx = hdev->pdata->context_secured;
bool aligned = true;
if (!sg || !sg->length || !nbytes) {
if (bufcnt) {
bufcnt = DIV_ROUND_UP(bufcnt, bs) * bs;
sg_init_table(rctx->sgl, 1);
sg_set_buf(rctx->sgl, rctx->hdev->xmit_buf, bufcnt);
rctx->sg = rctx->sgl;
rctx->nents = 1;
}
return 0;
}
new_len = nbytes;
if (offset)
aligned = false;
if (final) {
new_len = DIV_ROUND_UP(new_len, bs) * bs;
} else {
new_len = (new_len - 1) / bs * bs; // return n block - 1 block
/*
* Context save in some version of HASH IP can only be done when the
* FIFO is ready to get a new block. This implies to send n block plus a
* 32 bit word in the first DMA send.
*/
if (init && secure_ctx) {
new_len += sizeof(u32);
if (unlikely(new_len > nbytes))
new_len -= bs;
}
}
if (!new_len)
return 0;
if (nbytes != new_len)
aligned = false;
while (nbytes > 0 && sg_tmp) {
n++;
if (bufcnt) {
if (!IS_ALIGNED(bufcnt, bs)) {
aligned = false;
break;
}
nbytes -= bufcnt;
bufcnt = 0;
if (!nbytes)
aligned = false;
continue;
}
if (offset < sg_tmp->length) {
if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) {
aligned = false;
break;
}
if (!IS_ALIGNED(sg_tmp->length - offset, bs)) {
aligned = false;
break;
}
}
if (offset) {
offset -= sg_tmp->length;
if (offset < 0) {
nbytes += offset;
offset = 0;
}
} else {
nbytes -= sg_tmp->length;
}
sg_tmp = sg_next(sg_tmp);
if (nbytes < 0) {
aligned = false;
break;
}
}
if (!aligned)
return stm32_hash_copy_sgs(rctx, sg, bs, new_len);
rctx->total = new_len;
rctx->offset += new_len;
rctx->nents = n;
if (state->bufcnt) {
sg_init_table(rctx->sgl, 2);
sg_set_buf(rctx->sgl, rctx->hdev->xmit_buf, state->bufcnt);
sg_chain(rctx->sgl, 2, sg);
rctx->sg = rctx->sgl;
} else {
rctx->sg = sg;
}
return 0;
}
static int stm32_hash_prepare_request(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
struct stm32_hash_state *state = &rctx->state;
unsigned int nbytes;
int ret, hash_later, bs;
bool update = rctx->op & HASH_OP_UPDATE;
bool init = !(state->flags & HASH_FLAGS_INIT);
bool finup = state->flags & HASH_FLAGS_FINUP;
bool final = state->flags & HASH_FLAGS_FINAL;
if (!hdev->dma_lch || state->flags & HASH_FLAGS_CPU)
return 0;
bs = crypto_ahash_blocksize(tfm);
nbytes = state->bufcnt;
/*
* In case of update request nbytes must correspond to the content of the
* buffer + the offset minus the content of the request already in the
* buffer.
*/
if (update || finup)
nbytes += req->nbytes - rctx->offset;
dev_dbg(hdev->dev,
"%s: nbytes=%d, bs=%d, total=%d, offset=%d, bufcnt=%d\n",
__func__, nbytes, bs, rctx->total, rctx->offset, state->bufcnt);
if (!nbytes)
return 0;
rctx->total = nbytes;
if (update && req->nbytes && (!IS_ALIGNED(state->bufcnt, bs))) {
int len = bs - state->bufcnt % bs;
if (len > req->nbytes)
len = req->nbytes;
scatterwalk_map_and_copy(state->buffer + state->bufcnt, req->src,
0, len, 0);
state->bufcnt += len;
rctx->offset = len;
}
/* copy buffer in a temporary one that is used for sg alignment */
if (state->bufcnt)
memcpy(hdev->xmit_buf, state->buffer, state->bufcnt);
ret = stm32_hash_align_sgs(req->src, nbytes, bs, init, final, rctx);
if (ret)
return ret;
hash_later = nbytes - rctx->total;
if (hash_later < 0)
hash_later = 0;
if (hash_later && hash_later <= state->blocklen) {
scatterwalk_map_and_copy(state->buffer,
req->src,
req->nbytes - hash_later,
hash_later, 0);
state->bufcnt = hash_later;
} else {
state->bufcnt = 0;
}
if (hash_later > state->blocklen) {
/* FIXME: add support of this case */
pr_err("Buffer contains more than one block.\n");
return -ENOMEM;
}
rctx->total = min(nbytes, rctx->total);
return 0;
}
static void stm32_hash_unprepare_request(struct ahash_request *req)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_state *state = &rctx->state;
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
u32 *preg = state->hw_context;
int swap_reg, i;
if (hdev->dma_lch)
dmaengine_terminate_sync(hdev->dma_lch);
if (state->flags & HASH_FLAGS_SGS_COPIED)
free_pages((unsigned long)sg_virt(rctx->sg), get_order(rctx->sg->length));
rctx->sg = NULL;
rctx->offset = 0;
state->flags &= ~(HASH_FLAGS_SGS_COPIED);
if (!(hdev->flags & HASH_FLAGS_INIT))
goto pm_runtime;
state->flags |= HASH_FLAGS_INIT;
if (stm32_hash_wait_busy(hdev)) {
dev_warn(hdev->dev, "Wait busy failed.");
return;
}
swap_reg = hash_swap_reg(rctx);
if (!hdev->pdata->ux500)
*preg++ = stm32_hash_read(hdev, HASH_IMR);
*preg++ = stm32_hash_read(hdev, HASH_STR);
*preg++ = stm32_hash_read(hdev, HASH_CR);
for (i = 0; i < swap_reg; i++)
*preg++ = stm32_hash_read(hdev, HASH_CSR(i));
pm_runtime:
pm_runtime_mark_last_busy(hdev->dev);
pm_runtime_put_autosuspend(hdev->dev);
}
static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct stm32_hash_dev *hdev = ctx->hdev;
rctx->op = op;
return stm32_hash_handle_queue(hdev, req);
}
static int stm32_hash_update(struct ahash_request *req)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_state *state = &rctx->state;
if (!req->nbytes)
return 0;
if (state->flags & HASH_FLAGS_CPU) {
rctx->total = req->nbytes;
rctx->sg = req->src;
rctx->offset = 0;
if ((state->bufcnt + rctx->total < state->blocklen)) {
stm32_hash_append_sg(rctx);
return 0;
}
} else { /* DMA mode */
if (state->bufcnt + req->nbytes <= state->blocklen) {
scatterwalk_map_and_copy(state->buffer + state->bufcnt, req->src,
0, req->nbytes, 0);
state->bufcnt += req->nbytes;
return 0;
}
}
return stm32_hash_enqueue(req, HASH_OP_UPDATE);
}
static int stm32_hash_final(struct ahash_request *req)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_state *state = &rctx->state;
state->flags |= HASH_FLAGS_FINAL;
return stm32_hash_enqueue(req, HASH_OP_FINAL);
}
static int stm32_hash_finup(struct ahash_request *req)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
struct stm32_hash_state *state = &rctx->state;
if (!req->nbytes)
goto out;
state->flags |= HASH_FLAGS_FINUP;
if ((state->flags & HASH_FLAGS_CPU)) {
rctx->total = req->nbytes;
rctx->sg = req->src;
rctx->offset = 0;
}
out:
return stm32_hash_final(req);
}
static int stm32_hash_digest(struct ahash_request *req)
{
return stm32_hash_init(req) ?: stm32_hash_finup(req);
}
static int stm32_hash_export(struct ahash_request *req, void *out)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
memcpy(out, &rctx->state, sizeof(rctx->state));
return 0;
}
static int stm32_hash_import(struct ahash_request *req, const void *in)
{
struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
stm32_hash_init(req);
memcpy(&rctx->state, in, sizeof(rctx->state));
return 0;
}
static int stm32_hash_setkey(struct crypto_ahash *tfm,
const u8 *key, unsigned int keylen)
{
struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
if (keylen <= HASH_MAX_KEY_SIZE) {
memcpy(ctx->key, key, keylen);
ctx->keylen = keylen;
} else {
return -ENOMEM;
}
return 0;
}
static int stm32_hash_init_fallback(struct crypto_tfm *tfm)
{
struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
const char *name = crypto_tfm_alg_name(tfm);
struct crypto_shash *xtfm;
/* The fallback is only needed on Ux500 */
if (!hdev->pdata->ux500)
return 0;
xtfm = crypto_alloc_shash(name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(xtfm)) {
dev_err(hdev->dev, "failed to allocate %s fallback\n",
name);
return PTR_ERR(xtfm);
}
dev_info(hdev->dev, "allocated %s fallback\n", name);
ctx->xtfm = xtfm;
return 0;
}
static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm, u32 algs_flags)
{
struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct stm32_hash_request_ctx));
ctx->keylen = 0;
if (algs_flags)
ctx->flags |= algs_flags;
return stm32_hash_init_fallback(tfm);
}
static int stm32_hash_cra_init(struct crypto_tfm *tfm)
{
return stm32_hash_cra_init_algs(tfm, 0);
}
static int stm32_hash_cra_hmac_init(struct crypto_tfm *tfm)
{
return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_HMAC);
}
static int stm32_hash_cra_sha3_init(struct crypto_tfm *tfm)
{
return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_SHA3_MODE);
}
static int stm32_hash_cra_sha3_hmac_init(struct crypto_tfm *tfm)
{
return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_SHA3_MODE |
HASH_FLAGS_HMAC);
}
static void stm32_hash_cra_exit(struct crypto_tfm *tfm)
{
struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
if (ctx->xtfm)
crypto_free_shash(ctx->xtfm);
}
static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
{
struct stm32_hash_dev *hdev = dev_id;
if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
goto finish;
}
return IRQ_HANDLED;
finish:
/* Finish current request */
stm32_hash_finish_req(hdev->req, 0);
return IRQ_HANDLED;
}
static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
{
struct stm32_hash_dev *hdev = dev_id;
u32 reg;
reg = stm32_hash_read(hdev, HASH_SR);
if (reg & HASH_SR_OUTPUT_READY) {
hdev->flags |= HASH_FLAGS_OUTPUT_READY;
/* Disable IT*/
stm32_hash_write(hdev, HASH_IMR, 0);
return IRQ_WAKE_THREAD;
}
return IRQ_NONE;
}
static struct ahash_engine_alg algs_md5[] = {
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "md5",
.cra_driver_name = "stm32-md5",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.setkey = stm32_hash_setkey,
.base.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "hmac(md5)",
.cra_driver_name = "stm32-hmac-md5",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_hmac_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
}
};
static struct ahash_engine_alg algs_sha1[] = {
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "stm32-sha1",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.setkey = stm32_hash_setkey,
.base.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "stm32-hmac-sha1",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_hmac_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
};
static struct ahash_engine_alg algs_sha224[] = {
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "sha224",
.cra_driver_name = "stm32-sha224",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.setkey = stm32_hash_setkey,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "hmac(sha224)",
.cra_driver_name = "stm32-hmac-sha224",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_hmac_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
};
static struct ahash_engine_alg algs_sha256[] = {
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "stm32-sha256",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.setkey = stm32_hash_setkey,
.base.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "stm32-hmac-sha256",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_hmac_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
};
static struct ahash_engine_alg algs_sha384_sha512[] = {
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.halg = {
.digestsize = SHA384_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "sha384",
.cra_driver_name = "stm32-sha384",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.setkey = stm32_hash_setkey,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.halg = {
.digestsize = SHA384_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "hmac(sha384)",
.cra_driver_name = "stm32-hmac-sha384",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_hmac_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.halg = {
.digestsize = SHA512_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "sha512",
.cra_driver_name = "stm32-sha512",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.setkey = stm32_hash_setkey,
.base.halg = {
.digestsize = SHA512_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "hmac(sha512)",
.cra_driver_name = "stm32-hmac-sha512",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_hmac_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
};
static struct ahash_engine_alg algs_sha3[] = {
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.halg = {
.digestsize = SHA3_224_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "sha3-224",
.cra_driver_name = "stm32-sha3-224",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA3_224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_sha3_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.setkey = stm32_hash_setkey,
.base.halg = {
.digestsize = SHA3_224_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "hmac(sha3-224)",
.cra_driver_name = "stm32-hmac-sha3-224",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA3_224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_sha3_hmac_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.halg = {
.digestsize = SHA3_256_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "sha3-256",
.cra_driver_name = "stm32-sha3-256",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA3_256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_sha3_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.setkey = stm32_hash_setkey,
.base.halg = {
.digestsize = SHA3_256_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "hmac(sha3-256)",
.cra_driver_name = "stm32-hmac-sha3-256",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA3_256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_sha3_hmac_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.halg = {
.digestsize = SHA3_384_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "sha3-384",
.cra_driver_name = "stm32-sha3-384",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA3_384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_sha3_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.setkey = stm32_hash_setkey,
.base.halg = {
.digestsize = SHA3_384_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "hmac(sha3-384)",
.cra_driver_name = "stm32-hmac-sha3-384",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA3_384_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_sha3_hmac_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.halg = {
.digestsize = SHA3_512_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "sha3-512",
.cra_driver_name = "stm32-sha3-512",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA3_512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_sha3_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
},
{
.base.init = stm32_hash_init,
.base.update = stm32_hash_update,
.base.final = stm32_hash_final,
.base.finup = stm32_hash_finup,
.base.digest = stm32_hash_digest,
.base.export = stm32_hash_export,
.base.import = stm32_hash_import,
.base.setkey = stm32_hash_setkey,
.base.halg = {
.digestsize = SHA3_512_DIGEST_SIZE,
.statesize = sizeof(struct stm32_hash_state),
.base = {
.cra_name = "hmac(sha3-512)",
.cra_driver_name = "stm32-hmac-sha3-512",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA3_512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct stm32_hash_ctx),
.cra_init = stm32_hash_cra_sha3_hmac_init,
.cra_exit = stm32_hash_cra_exit,
.cra_module = THIS_MODULE,
}
},
.op = {
.do_one_request = stm32_hash_one_request,
},
}
};
static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
{
unsigned int i, j;
int err;
for (i = 0; i < hdev->pdata->algs_info_size; i++) {
for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
err = crypto_engine_register_ahash(
&hdev->pdata->algs_info[i].algs_list[j]);
if (err)
goto err_algs;
}
}
return 0;
err_algs:
dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
for (; i--; ) {
for (; j--;)
crypto_engine_unregister_ahash(
&hdev->pdata->algs_info[i].algs_list[j]);
}
return err;
}
static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
{
unsigned int i, j;
for (i = 0; i < hdev->pdata->algs_info_size; i++) {
for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
crypto_engine_unregister_ahash(
&hdev->pdata->algs_info[i].algs_list[j]);
}
return 0;
}
static struct stm32_hash_algs_info stm32_hash_algs_info_ux500[] = {
{
.algs_list = algs_sha1,
.size = ARRAY_SIZE(algs_sha1),
},
{
.algs_list = algs_sha256,
.size = ARRAY_SIZE(algs_sha256),
},
};
static const struct stm32_hash_pdata stm32_hash_pdata_ux500 = {
.alg_shift = 7,
.algs_info = stm32_hash_algs_info_ux500,
.algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_ux500),
.broken_emptymsg = true,
.ux500 = true,
};
static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
{
.algs_list = algs_md5,
.size = ARRAY_SIZE(algs_md5),
},
{
.algs_list = algs_sha1,
.size = ARRAY_SIZE(algs_sha1),
},
};
static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
.alg_shift = 7,
.algs_info = stm32_hash_algs_info_stm32f4,
.algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
.has_sr = true,
.has_mdmat = true,
};
static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
{
.algs_list = algs_md5,
.size = ARRAY_SIZE(algs_md5),
},
{
.algs_list = algs_sha1,
.size = ARRAY_SIZE(algs_sha1),
},
{
.algs_list = algs_sha224,
.size = ARRAY_SIZE(algs_sha224),
},
{
.algs_list = algs_sha256,
.size = ARRAY_SIZE(algs_sha256),
},
};
static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
.alg_shift = 7,
.algs_info = stm32_hash_algs_info_stm32f7,
.algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
.has_sr = true,
.has_mdmat = true,
};
static struct stm32_hash_algs_info stm32_hash_algs_info_stm32mp13[] = {
{
.algs_list = algs_sha1,
.size = ARRAY_SIZE(algs_sha1),
},
{
.algs_list = algs_sha224,
.size = ARRAY_SIZE(algs_sha224),
},
{
.algs_list = algs_sha256,
.size = ARRAY_SIZE(algs_sha256),
},
{
.algs_list = algs_sha384_sha512,
.size = ARRAY_SIZE(algs_sha384_sha512),
},
{
.algs_list = algs_sha3,
.size = ARRAY_SIZE(algs_sha3),
},
};
static const struct stm32_hash_pdata stm32_hash_pdata_stm32mp13 = {
.alg_shift = 17,
.algs_info = stm32_hash_algs_info_stm32mp13,
.algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32mp13),
.has_sr = true,
.has_mdmat = true,
.context_secured = true,
};
static const struct of_device_id stm32_hash_of_match[] = {
{ .compatible = "stericsson,ux500-hash", .data = &stm32_hash_pdata_ux500 },
{ .compatible = "st,stm32f456-hash", .data = &stm32_hash_pdata_stm32f4 },
{ .compatible = "st,stm32f756-hash", .data = &stm32_hash_pdata_stm32f7 },
{ .compatible = "st,stm32mp13-hash", .data = &stm32_hash_pdata_stm32mp13 },
{},
};
MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
struct device *dev)
{
hdev->pdata = of_device_get_match_data(dev);
if (!hdev->pdata) {
dev_err(dev, "no compatible OF match\n");
return -EINVAL;
}
return 0;
}
static int stm32_hash_probe(struct platform_device *pdev)
{
struct stm32_hash_dev *hdev;
struct device *dev = &pdev->dev;
struct resource *res;
int ret, irq;
hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
if (!hdev)
return -ENOMEM;
hdev->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(hdev->io_base))
return PTR_ERR(hdev->io_base);
hdev->phys_base = res->start;
ret = stm32_hash_get_of_match(hdev, dev);
if (ret)
return ret;
irq = platform_get_irq_optional(pdev, 0);
if (irq < 0 && irq != -ENXIO)
return irq;
if (irq > 0) {
ret = devm_request_threaded_irq(dev, irq,
stm32_hash_irq_handler,
stm32_hash_irq_thread,
IRQF_ONESHOT,
dev_name(dev), hdev);
if (ret) {
dev_err(dev, "Cannot grab IRQ\n");
return ret;
}
} else {
dev_info(dev, "No IRQ, use polling mode\n");
hdev->polled = true;
}
hdev->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(hdev->clk))
return dev_err_probe(dev, PTR_ERR(hdev->clk),
"failed to get clock for hash\n");
ret = clk_prepare_enable(hdev->clk);
if (ret) {
dev_err(dev, "failed to enable hash clock (%d)\n", ret);
return ret;
}
pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(dev);
pm_runtime_get_noresume(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
if (IS_ERR(hdev->rst)) {
if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto err_reset;
}
} else {
reset_control_assert(hdev->rst);
udelay(2);
reset_control_deassert(hdev->rst);
}
hdev->dev = dev;
platform_set_drvdata(pdev, hdev);
ret = stm32_hash_dma_init(hdev);
switch (ret) {
case 0:
break;
case -ENOENT:
case -ENODEV:
dev_info(dev, "DMA mode not available\n");
break;
default:
dev_err(dev, "DMA init error %d\n", ret);
goto err_dma;
}
spin_lock(&stm32_hash.lock);
list_add_tail(&hdev->list, &stm32_hash.dev_list);
spin_unlock(&stm32_hash.lock);
/* Initialize crypto engine */
hdev->engine = crypto_engine_alloc_init(dev, 1);
if (!hdev->engine) {
ret = -ENOMEM;
goto err_engine;
}
ret = crypto_engine_start(hdev->engine);
if (ret)
goto err_engine_start;
if (hdev->pdata->ux500)
/* FIXME: implement DMA mode for Ux500 */
hdev->dma_mode = 0;
else
hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR) & HASH_HWCFG_DMA_MASK;
/* Register algos */
ret = stm32_hash_register_algs(hdev);
if (ret)
goto err_algs;
dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
pm_runtime_put_sync(dev);
return 0;
err_algs:
err_engine_start:
crypto_engine_exit(hdev->engine);
err_engine:
spin_lock(&stm32_hash.lock);
list_del(&hdev->list);
spin_unlock(&stm32_hash.lock);
err_dma:
if (hdev->dma_lch)
dma_release_channel(hdev->dma_lch);
err_reset:
pm_runtime_disable(dev);
pm_runtime_put_noidle(dev);
clk_disable_unprepare(hdev->clk);
return ret;
}
static void stm32_hash_remove(struct platform_device *pdev)
{
struct stm32_hash_dev *hdev = platform_get_drvdata(pdev);
int ret;
ret = pm_runtime_get_sync(hdev->dev);
stm32_hash_unregister_algs(hdev);
crypto_engine_exit(hdev->engine);
spin_lock(&stm32_hash.lock);
list_del(&hdev->list);
spin_unlock(&stm32_hash.lock);
if (hdev->dma_lch)
dma_release_channel(hdev->dma_lch);
pm_runtime_disable(hdev->dev);
pm_runtime_put_noidle(hdev->dev);
if (ret >= 0)
clk_disable_unprepare(hdev->clk);
}
#ifdef CONFIG_PM
static int stm32_hash_runtime_suspend(struct device *dev)
{
struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
clk_disable_unprepare(hdev->clk);
return 0;
}
static int stm32_hash_runtime_resume(struct device *dev)
{
struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(hdev->clk);
if (ret) {
dev_err(hdev->dev, "Failed to prepare_enable clock\n");
return ret;
}
return 0;
}
#endif
static const struct dev_pm_ops stm32_hash_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
stm32_hash_runtime_resume, NULL)
};
static struct platform_driver stm32_hash_driver = {
.probe = stm32_hash_probe,
.remove_new = stm32_hash_remove,
.driver = {
.name = "stm32-hash",
.pm = &stm32_hash_pm_ops,
.of_match_table = stm32_hash_of_match,
}
};
module_platform_driver(stm32_hash_driver);
MODULE_DESCRIPTION("STM32 SHA1/SHA2/SHA3 & MD5 (HMAC) hw accelerator driver");
MODULE_AUTHOR("Lionel Debieve <[email protected]>");
MODULE_LICENSE("GPL v2");