=============================================
Broadcom Starfighter 2 Ethernet switch driver
=============================================
Broadcom's Starfighter 2 Ethernet switch hardware block is commonly found and
deployed in the following products:
- xDSL gateways such as BCM63138
- streaming/multimedia Set Top Box such as BCM7445
- Cable Modem/residential gateways such as BCM7145/BCM3390
The switch is typically deployed in a configuration involving between 5 to 13
ports, offering a range of built-in and customizable interfaces:
- single integrated Gigabit PHY
- quad integrated Gigabit PHY
- quad external Gigabit PHY w/ MDIO multiplexer
- integrated MoCA PHY
- several external MII/RevMII/GMII/RGMII interfaces
The switch also supports specific congestion control features which allow MoCA
fail-over not to lose packets during a MoCA role re-election, as well as out of
band back-pressure to the host CPU network interface when downstream interfaces
are connected at a lower speed.
The switch hardware block is typically interfaced using MMIO accesses and
contains a bunch of sub-blocks/registers:
- ``SWITCH_CORE``: common switch registers
- ``SWITCH_REG``: external interfaces switch register
- ``SWITCH_MDIO``: external MDIO bus controller (there is another one in SWITCH_CORE,
which is used for indirect PHY accesses)
- ``SWITCH_INDIR_RW``: 64-bits wide register helper block
- ``SWITCH_INTRL2_0/1``: Level-2 interrupt controllers
- ``SWITCH_ACB``: Admission control block
- ``SWITCH_FCB``: Fail-over control block
Implementation details
======================
The driver is located in ``drivers/net/dsa/bcm_sf2.c`` and is implemented as a DSA
driver; see ``Documentation/networking/dsa/dsa.rst`` for details on the subsystem
and what it provides.
The SF2 switch is configured to enable a Broadcom specific 4-bytes switch tag
which gets inserted by the switch for every packet forwarded to the CPU
interface, conversely, the CPU network interface should insert a similar tag for
packets entering the CPU port. The tag format is described in
``net/dsa/tag_brcm.c``.
Overall, the SF2 driver is a fairly regular DSA driver; there are a few
specifics covered below.
Device Tree probing
-------------------
The DSA platform device driver is probed using a specific compatible string
provided in ``net/dsa/dsa.c``. The reason for that is because the DSA subsystem gets
registered as a platform device driver currently. DSA will provide the needed
device_node pointers which are then accessible by the switch driver setup
function to setup resources such as register ranges and interrupts. This
currently works very well because none of the of_* functions utilized by the
driver require a struct device to be bound to a struct device_node, but things
may change in the future.
MDIO indirect accesses
----------------------
Due to a limitation in how Broadcom switches have been designed, external
Broadcom switches connected to a SF2 require the use of the DSA user MDIO bus
in order to properly configure them. By default, the SF2 pseudo-PHY address, and
an external switch pseudo-PHY address will both be snooping for incoming MDIO
transactions, since they are at the same address (30), resulting in some kind of
"double" programming. Using DSA, and setting ``ds->phys_mii_mask`` accordingly, we
selectively divert reads and writes towards external Broadcom switches
pseudo-PHY addresses. Newer revisions of the SF2 hardware have introduced a
configurable pseudo-PHY address which circumvents the initial design limitation.
Multimedia over CoAxial (MoCA) interfaces
-----------------------------------------
MoCA interfaces are fairly specific and require the use of a firmware blob which
gets loaded onto the MoCA processor(s) for packet processing. The switch
hardware contains logic which will assert/de-assert link states accordingly for
the MoCA interface whenever the MoCA coaxial cable gets disconnected or the
firmware gets reloaded. The SF2 driver relies on such events to properly set its
MoCA interface carrier state and properly report this to the networking stack.
The MoCA interfaces are supported using the PHY library's fixed PHY/emulated PHY
device and the switch driver registers a ``fixed_link_update`` callback for such
PHYs which reflects the link state obtained from the interrupt handler.
Power Management
----------------
Whenever possible, the SF2 driver tries to minimize the overall switch power
consumption by applying a combination of:
- turning off internal buffers/memories
- disabling packet processing logic
- putting integrated PHYs in IDDQ/low-power
- reducing the switch core clock based on the active port count
- enabling and advertising EEE
- turning off RGMII data processing logic when the link goes down
Wake-on-LAN
-----------
Wake-on-LAN is currently implemented by utilizing the host processor Ethernet
MAC controller wake-on logic. Whenever Wake-on-LAN is requested, an intersection
between the user request and the supported host Ethernet interface WoL
capabilities is done and the intersection result gets configured. During
system-wide suspend/resume, only ports not participating in Wake-on-LAN are
disabled.